Visual Attention Saccadic Models Learn to Emulate Gaze Patterns From Childhood to Adulthood

Abstract : How people look at visual information reveals fundamental information about themselves, their interests and their state of mind. While previous visual attention models output static 2-dimensional saliency maps, saccadic models aim to predict not only where observers look at but also how they move their eyes to explore the scene. In this paper, we demonstrate that saccadic models are a flexible framework that can be tailored to emulate observer's viewing tendencies. More specifically, we use fixation data from 101 observers split into 5 age groups (adults, 8-10 y.o., 6-8 y.o., 4-6 y.o. and 2 y.o.) to train our saccadic model for different stages of the development of human visual system. We show that the joint distribution of saccade amplitude and orientation is a visual signature specific to each age group, and can be used to generate age-dependent scanpaths. Our age-dependent saccadic model does not only output human-like, age-specific visual scanpaths, but also significantly outperforms other state-of-the-art saliency models. We demonstrate that the computational modelling of visual attention, through the use of saccadic model, can be efficiently adapted to emulate the gaze behavior of a specific group of observers.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2017, 26 (10), pp.4777 - 4789. 〈10.1109/TIP.2017.2722238〉
Liste complète des métadonnées

Littérature citée [73 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01650322
Contributeur : Olivier Le Meur <>
Soumis le : mardi 28 novembre 2017 - 13:32:08
Dernière modification le : mercredi 16 mai 2018 - 11:24:14

Fichier

LeMeur_SaccadicModelFromChildh...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olivier Le Meur, Antoine Coutrot, Zhi Liu, Pia Rämä, Adrien Le Roch, et al.. Visual Attention Saccadic Models Learn to Emulate Gaze Patterns From Childhood to Adulthood. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2017, 26 (10), pp.4777 - 4789. 〈10.1109/TIP.2017.2722238〉. 〈hal-01650322〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

95