Combining Free choice and Time in Petri Nets

S.Akshay^a, L. Hélouët^b, R. Phawade^a

a) IIT Bombay, India

b) INRIA Rennes. France

TRENDS Sept. 9th 2017

[TIME'16]

Motivation 1 : Modeling issues

Model Time constrained unbounded concurrent systems

Desired features

- Latency : messages take at least 10 ms to reach their destination
- Timeout/urgency : a message not consumed after 200ms is lost
- Rates : a message is received every γ t.u,...

Motivation 2: Verification

Standard questions

- Reachability: is marking M reachable from initial marking M₀?
- Coverability: Given a marking M, is there a marking M' reachable from M_0 such that M'(p) > M(p) for every place p?
- Boundedness: is there a bound K such that for every reachable marking, every place p, $M(p) \le K$?
- Firability: is there an execution in which transition t is fired?

Objectives

- Decidability for these questions
- Efficient algorithms

Motivation 3: Robustness

 φ_{17} : Transition t_{17} (a major failure) is not firable.

What if:

- time is measured with some imprecision
- clocks tend to have some drift/jitter/delay, ...

Robustness: reasonning with idealized time representation

Assume a class of properties Φ , a model for time imprecision $[\![.]\!]_{\delta}$

Given a model \mathcal{M} , and a value $\delta \in \mathbb{R}$, check that :

$$\forall \varphi \in \Phi, \mathcal{M} \models \varphi \Longleftrightarrow \llbracket \mathcal{M} \rrbracket_{\delta} \models \varphi$$

Given a model \mathcal{M} , check if :

$$\exists \Delta, \forall \delta \leq \Delta, \forall \varphi \in \Phi, \mathcal{M} \models \varphi \Longleftrightarrow \llbracket \mathcal{M} \rrbracket_{\delta} \models \varphi$$

Time vs Timed Petri nets

Time Petri nets [Merlin74]

Pros:

- time
- Urgency
- unbounded places
- Expressive power

Cons: Undecidability

Timed Petri nets [Walter83]

Pros:

- time
- unbounded places
- Ages
- WSTS = decidability of coverability, boundedness....

Cons: no urgency

Outline

- Free-choice Multiserver Time Petri nets
- Processes and their relation to untimed nets
- Firability
- Robustness

TPN Multiserver Semantics : Configuration

Configuration (Threshold Semantics)

$$C = (M, mem)$$

- M: marking, enables transitions several times
- mem: remembers for each enabling instance of a transition for how long it has been enabled

$$M(p_0) = 2; M(p_1) = 3; M(p_3) = 0; M(p_4) = 0$$

 $mem(t_1) = \{10; 15\} \ mem(t_2) = \{4; 7\}$

TPN Multiserver Semantics: timed move

Timed Move : $C \stackrel{\delta}{\longrightarrow} C'$

Let a duration δ elapse = update memorized durations

Urgency of a transition t in C = (M, mem)

Let t be a transition such that:

- I(t) = [l, u]
- t has been enabled for u t.u, i.e., $\max mem(t) = u$ then, t is urgent.

Time cannot progress, a discrete move must occur.

TPN Multiserver Semantics: discrete move

Discrete firing : $C \stackrel{t_i}{\longrightarrow} C'$

- ullet $I(t_i) = [l, u], \max(mem(t_i)) > l$ (t_i need not be urgent)
- modification of memory for transitions in competition with t_i
- Other enabling instances remain untouched

Behaviors of a net

- Labeled Transition System : $(C, \longrightarrow, C_0)$
- $Lang(\mathcal{N}) \subseteq T \times \mathbb{R}$: set of timed words of $\mathcal{N}: w = (t_1, d_1)(t_2, d_2) \dots$

Restrictions (to obtain decidable classes)

Forbid nets that can force zero-delay behaviors.

Free choice PN and free choice TPN

(FC-PN) $\mathcal{U}=(P,T,F)$ is free choice if $\forall t,t'\in T, {}^{\bullet}t\cap {}^{\bullet}t'\neq\emptyset \implies {}^{\bullet}t={}^{\bullet}t'.$ (FC-TPN) $\mathcal{N}=(\mathcal{U},M_0,I)$ is a free choice TPN if $\textit{Untime}(\mathcal{N})=\mathcal{U}$ is free choice.

The cluster of transition t is $Cl(t) = \{t' \in T \mid {}^{\bullet}t \cap {}^{\bullet}t' \neq \emptyset\}$

Pruning FC-TPN (a.k.a normalization [Chatain13])

Some transitions in FC-TPNs will obviously never fire!

To obtain a Pruned FC-TPN

remove unfirable transitions :

$$t: I(t) = [a, b] \land \exists t', I(t') = [c, d]$$
 with $d < a$

Associate to remaining transition possible values for intervals

$$I(t) = [a, b] \Rightarrow I'(t) = [a, \max_{t \in Cl(t)} (lft(t'))]$$

Pruning Lemma : Let \mathcal{N} be a FC-TPN, then

the transition systems associated with $\mathcal N$ and $\mathit{Prune}(\mathcal N))$ are isomorphic. (not true outside FC-TPNs)

Causal processes

Untimed causal processes ON1 and ON2

Causal processes

- A partial order representation of executions
- Principle: Unfold the net by glueing transitions/places occurrences one after another starting from the initially marked places

Still an untimed setting!

Timed causal processes

Advantages of Timed Causal processes

- Partial order timed representation of timed executions
- URGENCY is considered: if d occurs at date 7 in TON, all urgent transitions before d also occur in TON.

Relation between Timed causal Processes and timed languages

Let \mathcal{P} be the set of timed causal processes of \mathcal{N} . Then,

$$Lang(\mathcal{N}) = \bigcup_{N \in \mathcal{D}} Lang(N)$$

Properties of Free Choice TPN

Theorem 1: Inclusion of untimed prefixes

Let $\mathcal{N} = (\mathcal{U}, M_0, I)$ be a pruned FC-TPN (w.o. forced 0-delay sequences). U be an (untimed) causal process of $\mathcal{U} = \textit{Untime}(\mathcal{N})$.

Then there exists a timed causal process N of \mathcal{N} such that $U \leq \textit{Untime}(N)$.

Decidability

Theorem 2: Fireability

Let $\mathcal{N}=(\mathcal{U},M_0,I)$ be an FC-TPN (w.o. forced 0-delay). Checking fireability of a transition $t\in T$ in \mathcal{N} is decidable.

 $\underline{\text{Proof idea :}} \text{Firability} \sim \text{coverability in untimed nets }_{\tiny{\text{[Rack78]}}}$

Theorem 3: Termination

Let $\mathcal{N}=(\mathcal{U},M_0,I)$ be an FC-TPN (w.o. forced 0-delay). It is decidable if \mathcal{N} terminates.

Proof Idea:

an infinite run of $\mathcal{U} = Untime(Prune(\mathcal{N}))$ has a timed counterpart in \mathcal{N} and conversely. (and termination is decidable in untimed Petri nets)

Robustness

A major drawback of timed models:

```
public class MyProgram {
    throws InterruptedException {
        Myprogram prog-new MyProgram();
        //Pause for 2 seconds
        Thread.sleep(2000);
        prog.t();
    }
}
```

What the implementation might really do:

Guard enlargement

 $p_0 \underbrace{\qquad \qquad }_{[1+\Delta,2-\Delta]} p$

Guard Shrinking

Form now : $\mathcal{N}_{\delta} = \mathcal{N}$ with enlarged guards

Robustness

Definition (robustness problems for TPNs)

Given a TPN \mathcal{N} , does there exist $\Delta \in \mathbb{Q}_{>0}$ such that $\forall \delta \leq \Delta$

- Fireable(\mathcal{N}) = Fireable(\mathcal{N}_{δ})?
- $\mathcal N$ terminates iff $\mathcal N_\delta$ terminates
- \mathcal{N} is bounded iff \mathcal{N}_{δ} is bounded...

<u>Note</u>: Firability, termination, boundedness are not a priori robust/non robust properties of the whole class of FC-TPNs.

Theorem 4

Let $\mathcal N$ be a FC-TPN without forced 0-delay time firing sequences. Then robustness of fireability is decidable. If $\mathcal N$ has robust fireability, bound Δ can Be effectively computed.

Theorem 5

Let $\mathcal N$ be a FC-TPN without forced 0-delay time firing sequences. Then it is decidable whether temination is a robust property of $\mathcal N$.

Proof idea

If $Prune(\mathcal{N})$ and $Prune(\mathcal{N}_{\Delta})$ have the same clusters, then Δ -enlargement of \mathcal{N} does not modify firable transitions.

Check for each accessible cluster C whether intervals can be enlarged by some Δ_C without changing firable transitions

Conclusion

Contributions so far:

- A FC-Multiserver PN variant with its process semantics
- Decidable firability, termination
- Decidability of robustness of firability, termination, wrt enlargement (and shrinking)

Open questions:

- decidability of Coverabillity, reachability and boundedness for FC-TPNs?
- Robustness of more properties?
- same issues without multi-enabledness?
- Expressiveness of FC-TPNs?

 $\mathbb{L}_{\mathit{TPN}^M}$: Timed languages expressible with Time Petri nets (Multiserver)

 $\mathbb{L}_{\mathit{TPN}}$: Timed languages expressible with Time Petri nets

 $\mathbb{L}_{\textit{PN}}$: Untimed languages expressible with Petri nets

(Thm. 1) In free choice nets, timed / untimed processes tightly related What about Languages?

$$\mathbb{L}_{PN} \subseteq Untime(\mathbb{L}_{TPN^M}) \quad \mathbb{L}_{PN \cap Safe} = Untime(\mathbb{L}_{TPN^M \cap Safe}) \quad \mathbb{L}_{PN} \neq Untime(\mathbb{L}_{TPN^M}??)$$

References

Time & PN related Publis (SUMO group, INRIA Rennes) :

[AHP16]S. Akshay, L. Hélouët, R. Phawade, Combining free choice and time in petri nets, IEEE Proc. of TIME 2016, pp. 120–129, 2016.

[AHP17] S. Akshay, L. Hélouët, R. Phawade, Combining free choice and time in petri nets (Extended Version).

http://people.rennes.inria.fr/Loic.Helouet/Papers/Lamp.pdf

[AGH16] S. Akshay, B. Genest, L. Hélouët, *Decidable classes of unbounded Petri nets with time and urgency*, in : PETRI NETS'16, Vol. 9698 of LNCS, Springer, 2016, pp. 301–322.

[AHJR16] S. Akshay, L. Hélouët, C. Jard, P.-A. Reynier, Robustness of time Petri nets under guard enlargement, Fundam. Inform. 143 (3-4) (2016) 207–234.

Petri nets & semantics :

[Merlin74] P. Merlin, A study of the recoverability of computing systems, Ph.D. thesis, University of California, Irvine, CA, USA (1974).

[EsparzaD95] J. Esparza, J. Desel, Free Choice Petri nets, Cambridge University Press, 1995.

[BoyerD01] M. Boyer, M. Diaz, Multiple enabledness of transitions in Petri nets with time, in: Proc. of PNPM'01, IEEE, 2001, pp. 219–228.

[AuraL00] T. Aura, J. Lilius, A causal semantics for time Petri nets, TCS 243 (1-2) (2000) 409-447.

[Chatain13] T. Chatain, C. Jard, *Back in time Petri nets*, in : Proc. of FORMATS'13, Vol. 8053 of LNCS, Springer, 2013, pp. 91–105.

Bibliography (continued)

Verification of Concurrent systems:

[Jones77] N. Jones, L. Landweber, Y. Lien, *Complexity of some problems in Petri nets*, TCS 4 (3) (1977) 277–299.

[AbdullaN01] P. Abdulla, A. Nylén, *Timed Petri nets and BQOs*, in : Proc. of ICATPN 2001, Vol. 2075 of LNCS, Springer, 2001, pp. 53–70.

Rack78 C. Rackoff, The covering and boundedness problem for vector addition systems, TCS 6 (1978) 223–231.

[FinkelL15] A. Finkel, J. Leroux, *Recent and simple algorithms for Petri nets*, Software and System Modeling 14 (2) (2015) 719–725.

[Hack76] Hack, M.: Decidability Questions for Petri Nets, Ph.D. Thesis, M.I.T., MIT, CA, USA, 1976.

[KarpM69] Karp, R., Miller, R.: Parallel program schemata, In JCSS, 3, 1969, 147–195.

[CHSS13] L. Clemente, F. Herbreteau, A. Stainer, G. Sutre, *Reachability of communicating timed processes*, in: FoSSaCS, Vol. 7794 of LNCS, 2013, pp. 81–96.

Bibliography (continued)

Robustness

[Puri00] A. Puri, Dynamical properties of timed automata, In DEDS 10 (1-2) (2000) 87–113.

[BouyerMS11] Bouyer, P., Markey, N., Sankur, O. Robust Model-Checking of Timed Automata via Pumping in Channel Machines, Proc. of FORMATS, 6919, Springer, 2011.

[DDMR08] De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust Safety of Timed Automata, Formal Methods in System Design, 33(1-3), 2008, 45–84.

[DDR05] De Wulf, M., Doyen, L., Raskin, J.-F., Systematic Implementation of Real-Time Models, Proc. of Formal Methods, 3582, Springer, 2005.

[Sankur11] Sankur, O., *Untimed Language Preservation in Timed Systems*, Proc. of MFCS, 6907, Springer, 2011.

[SwaminathanFK08] Swaminathan, M., Fränzle, M., Katoen, J.-P., *The Surprising Robustness* (Closed) Timed Automata against Clock-Drift, Proc. of TCS, Springer, 2008