Diagnosability Degree of Stochastic Discrete Event Systems

Abstract : — Diagnosability is the ability to detect a fault from partial observations collected on a system. It has been studied for numerous models of discrete event systems, but essentially from a logical perspective. This paper explores quantitative versions of the problem, to evaluate " how much " a system is (non-)diagnosable. For the diagnosable part of a system, that we characterize, we then examine the probability distribution of the detection delay. We show that the mean and the standard deviation of the detection delay can be easily evaluated.
Type de document :
Communication dans un congrès
CDC 2017 - 56th IEEE Conference on Decision and Control, Dec 2017, Melbourne, Australia. pp.1-6
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651232
Contributeur : Eric Fabre <>
Soumis le : mardi 28 novembre 2017 - 18:03:27
Dernière modification le : jeudi 13 décembre 2018 - 17:15:19

Fichier

diagdegree.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01651232, version 1

Citation

Hugo Bazille, Eric Fabre, Blaise Genest. Diagnosability Degree of Stochastic Discrete Event Systems. CDC 2017 - 56th IEEE Conference on Decision and Control, Dec 2017, Melbourne, Australia. pp.1-6. 〈hal-01651232〉

Partager

Métriques

Consultations de la notice

377

Téléchargements de fichiers

75