Time Series Petri Net Models

Abstract : Operational support as an area of process mining aims to predict the performance of individual cases and the overall business process. Although seasonal effects, delays and performance trends are well-known to exist for business processes, there is up until now no prediction model available that explicitly captures seasonality. In this paper, we introduce time series Petri net models. These models integrate the control flow perspective of Petri nets with time series prediction. Our evaluation on the basis of our prototypical implementation demonstrates the merits of this model in terms of better accuracy in the presence of time series effects.
Type de document :
Communication dans un congrès
Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.124-141, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_6〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651885
Contributeur : Hal Ifip <>
Soumis le : mercredi 29 novembre 2017 - 16:06:33
Dernière modification le : mercredi 29 novembre 2017 - 16:34:51

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Andreas Solti, Laura Vana, Jan Mendling. Time Series Petri Net Models. Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.124-141, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_6〉. 〈hal-01651885〉

Partager

Métriques

Consultations de la notice

33