Aligning Process Model Terminology with Hypernym Relations

Abstract : Business process models are intensively used in organizations with various persons being involved in their creation. One of the challenges is the usage of a consistent terminology to label the activities of these process models. To support this task, prior research has proposed quality metrics to support the usage of consistent terms, mainly based on linguistic relations such as synonymy or homonymy. In this paper, we propose a new approach that utilizes hypernym hierarchies. We use these hierarchies to define a measure of abstractness which helps users to align the level of detail within one process model. Moreover, we define two techniques to detect specific terminology defects, namely process hierarchy defects and object hierarchy defects, and give recommendations to align them with hypernym hierarchies. We evaluate our approach on three process model collections from practice.
Type de document :
Communication dans un congrès
Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.105-123, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_5〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651888
Contributeur : Hal Ifip <>
Soumis le : mercredi 29 novembre 2017 - 16:06:39
Dernière modification le : mercredi 29 novembre 2017 - 16:34:50

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Stefan Bunk, Fabian Pittke, Jan Mendling. Aligning Process Model Terminology with Hypernym Relations. Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.105-123, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_5〉. 〈hal-01651888〉

Partager

Métriques

Consultations de la notice

24