A Relational Data Warehouse for Multidimensional Process Mining

Abstract : Multidimensional process mining adopts the concept of data cubes to split event data into a set of homogenous sublogs according to case and event attributes. For each sublog, a separated process model is discovered and compared to other models to identify group-specific differences for the process. For an effective explorative process analysis, performance is vital due to the explorative characteristics of the analysis. We propose to adopt well-established approaches from the data warehouse domain based on relational databases to provide acceptable performance. In this paper, we present the underlying relational concepts of PMCube, a data-warehouse-based approach for multidimensional process mining. Based on a relational database schema, we introduce generic query patterns which map OLAP queries onto SQL to push the operations (i.e. aggregation and filtering) to the database management system. We evaluate the run-time behavior of our approach by a number of experiments. The results show that our approach provides a significantly better performance than the state-of-the-art for multidimensional process mining and scales up linearly with the number of events.
Type de document :
Communication dans un congrès
Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.155-184, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_8〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651889
Contributeur : Hal Ifip <>
Soumis le : mercredi 29 novembre 2017 - 16:06:43
Dernière modification le : mercredi 29 novembre 2017 - 16:34:50

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Thomas Vogelgesang, H.-Jürgen Appelrath. A Relational Data Warehouse for Multidimensional Process Mining. Paolo Ceravolo; Stefanie Rinderle-Ma. 5th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA), Dec 2015, Vienna, Austria. Springer International Publishing, Lecture Notes in Business Information Processing, LNBIP-244, pp.155-184, 2017, Data-Driven Process Discovery and Analysis. 〈10.1007/978-3-319-53435-0_8〉. 〈hal-01651889〉

Partager

Métriques

Consultations de la notice

85