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Abstract. Multidimensional process mining adopts the concept of data
cubes to split event data into a set of homogenous sublogs according to
case and event attributes. For each sublog, a separated process model
is discovered and compared to other models to identify group-specific
differences for the process. For an effective explorative process analysis,
performance is vital due to the explorative characteristics of the anal-
ysis. We propose to adopt well-established approaches from the data
warehouse domain based on relational databases to provide acceptable
performance. In this paper, we present the underlying relational concepts
of PMCube, a data-warehouse-based approach for multidimensional pro-
cess mining. Based on a relational database schema, we introduce generic
query patterns which map OLAP queries onto SQL to push the opera-
tions (i.e. aggregation and filtering) to the database management system.
We evaluate the run-time behavior of our approach by a number of ex-
periments. The results show that our approach provides a significantly
better performance than the state-of-the-art for multidimensional pro-
cess mining and scales up linearly with the number of events.

1 Introduction

Process mining comprises a set of techniques that allows for the automatic anal-
ysis of (business) processes. It is based on so-called event logs which consist of
events recorded during the execution of the process. Figure 1 illustrates the typ-
ical structure of event logs. The events are grouped by their respective process
instance (case) and the ordered sequence of events for a case forms the trace.
Both, cases and events, may store arbitrary information as attributes.

CaseEvent Log Event
1 * 1 Trace *

Attribute Attribute
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*

1
*

Fig. 1: General structure of an event log



According to van der Aalst [13], there are three different kinds of process min-
ing: (1) Process discovery extracts a process model from the event log reflecting
its behavior, (2) conformance checking compares an event log to a manually
created or previously discovered process model to measure the quality of the
process model, and (3) process enhancement extends a process model with addi-
tional information (e.g., time-stamps) to provide additional perspectives on the
process.

Besides traditional business processes, process mining can also be applied in
the domain of healthcare e.g., to analyze the treatment process in a hospital.
However, healthcare processes are typically unstructured due to the individuality
of patients. The treatment has to be adjusted to the individual situation of the
patient considering age, sex, other diseases, and other features of the patient.
Furthermore, the process may also be influenced by institutional features, e.g.,
the experience of the medical staff. To minimize the influence of such features,
it is desirable to group patients with similar features and to analyze the process
separately for each group. Otherwise, the heterogeneity of patients would result
in a very complex model blurring the influence of particular features.

Traditional process mining techniques only consider the entire event log. Even
though filters can be applied to restrict the event log to a particular subset of
cases or events, this requires high effort if multiple groups of patients should be
analyzed and compared to each other. Therefore, an approach is required that
enables the analyst to partition event logs into groups of cases with homogeneous
features in a dynamic and flexible way. Then, an individual process model for
each group can be separately mined and compared to other models.

Multidimensional process mining (MPM) achieves this by adopting the con-
cept of data cubes that is well-known in the domain of data warehousing. It
considers the attributes of the event log, describing the variable features of the
patients, as dimensions forming a multidimensional data space. Each combina-
tion of dimension values forms a cell of the cube that contains a subset of the
event log (sublog) related to these dimension values. OLAP (Online Analytical
Processing) operators [3] can be used to manipulate the data cube and define
specific views on the data. For instance, roll-up and drill-down operators can be
applied to change the granularity of the cube’s dimensions while slice and dice
operators can be used to filter the data.

MPM is characterized by its explorative approach. The OLAP queries are
gradually modified to analyze the processes from multiple views. This way, the
analyst can derive and verify new hypothesis. To avoid interruptions of the ex-
plorative workflow, it is important to keep waiting times as short as possible.
Therefore, performance is vital for MPM, even though it is not a time-critical
application. We propose to adopt well-established data warehouse (DWH) tech-
nologies based on relational databases, to provide satisfying loading times for
the multidimensional event data.

In this paper, we show how to link multidimensional event data to relational
databases for MPM. As our main contribution, we show how to express the
MPM-specific OLAP queries using SQL to push filtering and aggregation of



event data into the database management system (DBMS). This way, MPM
may benefit from the comprehensive optimization techniques provided by state-
of-the-art DBMS.

The paper is organized as follows. First, we discuss related work in Section
2 and introduce a running example in Section 3. The general concept of our
approach PMCube is briefly introduced in Section 4. While Section 5 presents
the logical data model of the underlying data warehouse, Section 6 explains
its mapping onto a relational database schema. In Section 7, we map high-
level OLAP operators onto generic patterns expressed in SQL. In Section 8, we
evaluate our approach by a number of performance measurements comparing
our approach to the state-of-the-art approach for MPM. We conclude our paper
in Section 9.

2 Related Work

There is a wide range of literature in the data warehousing domain (e.g., [3])
describing the different general approaches for the implementation of data cubes.
Multidimensional OLAP (MOLAP) approaches rely on a mainly memory-based
multidimensional array storage. Relational OLAP (ROLAP) maps the multi-
dimensional data onto a relational database schema. A combination of both
approaches is known as Hybrid OLAP (HOLAP). In ROLAP approaches, the
schema typically consists of a fact table storing the data values. This table is
linked to other tables storing the values of the dimension and their hierarchies.
In the star schema, each dimension is stored in a single table representing all its
dimension levels while the snowflake schema stores each dimension level in its
own table.

The process mining manifesto [15] gives an overview of the field of process
mining. For a comprehensive introduction to this topic, we refer to van der
Aalst [13]. Event Cubes [11] are a first approach for MPM. This approach uses
information retrieval techniques to create an index over a traditionally structured
event log and derives a data cube from it. Each cell of an event cube contains
precomputed dependency measures instead of raw event data. A single process
model is generated on-the-fly from these dependency measures where each value
of the considered dimensions is mapped onto a different path in the model.

Process Cubes [14] are another approach for MPM which uses OLAP op-
erators to partition the event data into sublogs. It combines all dimensions in
a common data space so the cells of the cube contain sets of events. Its im-
plementation Process Mining Cube (PMC) [1] can use different algorithms to
discover a process model for each cell and provides the visualization of multiple
process models in a grid. Both, Event Cubes and PMC, are based on a MO-
LAP approach. According to Bolt et al. [1], PMC provides a significantly better
performance than the previous Process Cubes implementation PROCUBE. How-
ever, the reported loading times are still quite long if related to the amount of
data. Additionally, the filtering is limited to filtering particular cases and events.
Moreover, it does not provide the aggregation of events into high-level events.



Besides, there are several approaches for special DWH for storing process
data (e.g. [9,8]). These process warehouses (PWH) aim to analyze the underly-
ing processes to identify problems in process execution. However, they do not
store complete event logs, but measures for process performance (e.g. execution
times), where events and cases form the dimensions of the cube. The analysis
is performed by aggregating the measures along the dimensions. In contrast to
MPM, these approaches generally do not support process mining.

Relational XES [16] is a data format for storing event logs which is based
on the XES [4] event log structure. In contrast to it, Relational XES uses a re-
lational database in the background to store the data in a relational structure.
In comparison to the usual XML-based XES format, Relational XES reduces
the overhead for storing big event logs. However, it does not provide a multidi-
mensional structure to store the event logs in a data cube to directly support
MPM.

Schönig et al. present an approach for declarative process mining [12] that
assumes the data to be stored in a database using the Relational XES schema.
In order to use the optimization concepts provided by the database, they define
query patterns in SQL to extract the constraints of the declarative process model
directly from the database. In contrast to our approach, they perform process
discovery directly in the database system which is however limited to declara-
tive process models. Furthermore, they do not either consider multidimensional
aspects of the data nor compare different variants of the same process.

An approach for data-aware declarative process mining is described in [7].
It extends the logical constraints of the declarative process model notation by
additional conditions defined over the data attributes. Roughly, this approach is
comparable to process discovery with an integrated analysis of decision points.
Even though it considers arbitrary data attributes of the event logs, it does
not provide a multidimensional view on the processes. In contrast to the most
approaches for MPM, it generates a single process model instead of a set of
variant-specific models.

The approach presented in [10] aims to automatically analyze the structure
of relational database items like tables, primary keys, and foreign key relation-
ships to identify so-called business objects or artifacts. Based on the identified
artifacts, it automatically generates SQL queries to extract event logs from the
database that reflect different processes and are suitable for process mining.
However, this approach does not consider MPM.

The Slice-Mine-and-Dice (SMD) approach [2] aims to reduce the complexity
of process models in two ways. On the one hand, it clusters similar traces of
the event log to split the model into a set of behavioral variants. On the other
hand, it reduces the model complexity by extracting and merging of shared
subprocesses. Even though the name of the approach indicates a relationship
to MPM, it neither considers attribute values nor it uses data cubes or OLAP
operations.



3 Running Example

To provide a descriptive explanation of the developed concepts, we introduce
a running example in this section. We assume a simple and fictive healthcare
process which comprises the diagnoses and therapy for a patient. Figure 2 shows
this process as a BPMN model.

A B

C

D

E

F G
start end

Admission

Examination

Blood test

Urine test

X-ray scan

Surgery Discharge

Fig. 2: Simple and fictive healthcare process of the running example

The process starts with the admission of the patient to the hospital (A). After
the examination of the patient (B), the process splits into two parallel paths.
The first path consists of a lab test, which can be either a blood test (C) or an
urine test (D). The second path consists of a X-ray scan (E). After both parallel
paths are completed, the treatment proceeds with a surgery (F) which can be
repeated multiple times, e.g., in case of complications. Finally, the process ends
after the patient’s discharge from hospital (G).

For the running example, we define each hospital stay as an independent
process instance. Therefore, a particular patient can be represented by several
cases. We assume that each case is recorded in an event log with additional
information. Age, sex, and insurance status of the patients, year of treatment,
and the hospital are saved for the cases. Besides the activity of each event, it
is also stored who performed the activity (a doctor or a nurse) and the costs
related to the execution of the activity. Furthermore, we assume that each event
has a time-stamp which is precise enough to reflect a unique event order.

Table 1 shows an example event log consisting of 20 cases reflecting the fic-
tive example process of Figure 2. For each case, its id and the age, the sex, the
insurance status (public or private insurance), the year of treatment, and the
hospital location are given. Furthermore, the table shows the trace of each case
as the sequence of events using the abbreviations of activity names introduced
in Figure 2, e.g, ABCEFFG for the first case. In total, the event log contains
four different traces representing different process behavior (variations are un-
derlined): ABCEFG, ABEDFG, ABCEFFG, ABEDFFG. For the sake of clarity,
we omit the event attributes.



case id Age Sex Insurance Year Hospital Trace

1 34 female private 2012 Oldenburg ABCEFFG

2 31 male private 2013 Vienna ABCEFFG

3 23 female public 2014 Oldenburg ABCEFG

4 56 male public 2012 Oldenburg ABEDFG

5 69 female public 2015 Vienna ABEDFG

6 56 male public 2014 Vienna ABEDFG

7 54 female private 2012 Vienna ABEDFFG

8 55 male public 2015 Oldenburg ABEDFG

9 36 female public 2015 Vienna ABCEFG

10 67 male public 2014 Oldenburg ABEDFG

11 56 female private 2013 Oldenburg ABEDFFG

12 68 male private 2014 Berlin ABEDFFG

13 30 female public 2014 Vienna ABCEFG

14 71 male public 2012 Berlin ABEDFG

15 65 female public 2015 Berlin ABEDFG

16 23 male private 2012 Vienna ABCEFFG

17 29 female public 2011 Vienna ABCEFG

18 72 male private 2010 Oldenburg ABEDFFG

19 38 female public 2010 Vienna ABCEFG

20 42 male public 2011 Berlin ABCEFG

Table 1: Example Event Log L1

Even though the process model (Figure 2) reflects the overall process, it
does not reveal the influence of particular attributes. Consequently, the specific
process behavior of particular groups of patients cannot be seen in the model.
Partitioning the event log L1 into sublogs using MPM enables the analyst to
identify differences in the group-specific process models that are related to par-
ticular attributes and their values. Tables 2 and 3 show the two sublogs L2 and
L3 which can be derived from L1 using MPM by drilling-down the data cube
alongside the age dimension. While L2 comprises all cases of younger patients
(age < 50), L3 only contains the cases of older patients. For the sake of clarity,
we only show the age, sex, and insurance status attributes.

Mining both sublogs results in the two variants of the process model which
are shown in Figure 3a (for L2) and in Figure 3b (for L3). Comparing these
models clearly shows that patients are treated differently depending on their
age: The activity C (blood test) is only performed for patients younger than 50
years, the activity D (urine test) is exclusively performed for patients of 50 years
or older.

Alternatively, drilling down alongside the insurance status dimension instead
of the age dimension would reveal that activity F (surgery) is only repeated for
patients with private healthcare insurance. For patients with public healthcare
insurance, this activity is only executed once. However, partitioning the event
log does not always result in such obvious differences. For instance, the sex of the



case id Age Sex Ins. Trace

1 34 female private ABCEFFG

2 31 male private ABCEFFG

3 23 female public ABCEFG

9 36 female public ABCEFG

13 30 female public ABCEFG

16 23 male private ABCEFFG

17 29 female public ABCEFG

19 38 female public ABCEFG

20 42 male public ABCEFG

Table 2: Sublog L2 (age < 50)

case id Age Sex Ins. Trace

4 56 male public ABEDFG

5 69 female public ABEDFG

6 56 male public ABEDFG

7 54 female private ABEDFFG

8 55 male public ABEDFG

10 67 male public ABEDFG

11 56 female private ABEDFFG

12 68 male private ABEDFFG

14 71 male public ABEDFG

15 65 female public ABEDFG

18 72 male private ABEDFFG

Table 3: Sublog L3 (age ≥ 50)

patients does not have any influence on the treatment of the example process.
Using the sex of the patients for drilling down results in the two sublogs L4

(female) and L5 (male) which are shown in Tables 4 and 5, respectively. Both
sublogs comprise all four variations of the process. Consequently, mining the
sublogs L4 and L5 will result in the overall process model shown in Figure 2.

case id Age Sex Ins. Trace

1 34 female private ABCEFFG

3 23 female public ABCEFG

5 69 female public ABEDFG

7 54 female private ABEDFFG

9 36 female public ABCEFG

11 56 female private ABEDFFG

13 30 female public ABCEFG

15 65 female public ABEDFG

17 29 female public ABCEFG

19 38 female public ABCEFG

Table 4: Sublog L4 (female patients)

case id Age Sex Ins. Trace

2 31 male private ABCEFFG

4 56 male public ABEDFG

6 56 male public ABEDFG

8 55 male public ABEDFG

10 67 male public ABEDFG

12 68 male private ABEDFFG

14 71 male public ABEDFG

16 23 male private ABCEFFG

18 72 male private ABEDFFG

20 42 male public ABCEFG

Table 5: Sublog L5 (male patients)

In contrast to the given example, the influence of the dimensions is usually not
that clear for real-world data. Even if a dimension has an affect on the process,
the sublogs may contain noise due to exceptional behavior. The influence of a
dimension may also not be distinctive. This means that the dimension value does
not necessarily imply an exclusive choice like always executing activity C (blood
test) for younger patients and activity D (urine test) for older patients, as it was
shown in the example. Instead, the dimensions often influence the likelihood for
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(a) Process model variant for sublog L2 (age < 50)
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(b) Process model variant for sublog L3 (age ≥ 50)

Fig. 3: Process model variants for sublogs L2 and L3

a particular path in the process. Furthermore, process variations may only occur
for a specific value combination of multiple dimensions.

4 PMCube Concept

Figure 4 illustrates the basic concept of PMCube. The starting point for each
analysis is the multidimensional event log (MEL; step 1©). It is a specific DWH
which stores all the available event data in a cube-like data structure. Section
5 introduces its logical data model while Section 6 presents its relational-based
realization.

Multidimensional 
event log

Data selection 
(OLAP)

Process mining Consolidation Visualization
4321 5

Fig. 4: Basic concept of PMCube



By using OLAP operators (step 2©), it is possible to filter (slice or dice) the
MEL or to change its level of aggregation (roll-up or drill-down). This allows for
the creation of flexible views on the event data. The query results in a set of
cells where each cell contains a sublog. Each sublog is mined separately (step 3©)
using an arbitrary process discovery algorithm to create an individual process
model reflecting the behavior of the sublog. Additionally, it is possible to enhance
the process model with additional perspectives or to measure its quality using
conformance checking techniques.

The OLAP query may result in multiple cells, leading to an unmanageable
amount of process models. Therefore, PMCube introduces an optional step of
consolidation (step 4©), which aims to reduce the complexity of results. Its main
idea is to automatically preselect a subset of potentially interesting process mod-
els by a heuristic. For example, assuming that big differences are more relevant
to the analyst than minor differences between the models, it is possible to cluster
similar process models and select a representative for each cluster. Alternatively,
the process models can be selected by simply filtering them by their properties
(e.g., occurrence of particular nodes). Finally, the process models are visualized
(step 5©). As MPM strongly benefits from comparing the different process mod-
els, it is not sufficient to visualize each model on its own. Therefore, PMCube
provides several visualization techniques, e.g. merging two models into a differ-
ence model highlighting the differences between them. The concept of PMCube
is presented in [18] in more detail.

5 Logical Data Warehouse Model

In contrast to the Process Cubes approach, the MEL maps the structure of event
logs onto a data cube and organizes cases and events on different levels. Fur-
thermore, the cells of the MEL do not contain sets of events, but a set of cases.
The attributes of the cases are considered as dimensions forming the multidi-
mensional data cube. Each combination of dimension values identifies a cell of
the cube. According to the values of its attributes, each case is uniquely mapped
onto a cell. However, some attributes represent highly individual features, e.g.,
the name of the patient. Mapping them onto dimensions results in sparse data
cubes and does not add any benefit to the multidimensional analysis. On the
contrary, these attributes might give valuable insights if the process model be-
havior is related to individual cases. Therefore, these non-dimensional attributes
are directly attached to the case as so-called simple attributes.

Related to their respective case, the events are stored inside the MEL as
well. Similar to the case attributes, the event attributes can be interpreted as
dimensions, too. To avoid the aggregation of events from different, independent
cases, the event attributes form an individual multidimensional data space for
each case which is contained in the cell of the case. Figure 5 shows the relation-
ship of these nested cubes. Each cell of the data cubes on the event level consists
of a set of events identified by a combination of event dimension values. Similar
to cases, non-dimensional event attributes are directly attached to the event as
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simple attributes. All dimensions, both on the case and event level, may have
an arbitrary number of hierarchically structured dimension levels.
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Fig. 6: Aggregation of cases (left) and events (right)

The OLAP queries like slice, dice, roll-up and drill-down are defined on a
set of base operators like filtering (selection) and aggregation. Due to different
semantics, the definition of the operators might vary between case and event
level. Figure 6 illustrates this using the example of the aggregation operator.
Aggregating cells on the case level creates the union of all the cells cases. For
example, aggregating the cube on the left-hand of Figure 6 along the dimensions
sex and age results in a single cell containing all cases for both women and men
of all age for a specific year. On the contrary, aggregating cells on the event level
merges all events into a single, more abstract event. This is demonstrated on the
right-hand side of Figure 6, showing the aggregation of events along the dimen-
sions activity and resource. Previously, various events are spread across different
cells, each representing different kinds of activities performed by either doctors
or nurses. The aggregation abstracts from the original events and replaces them
by a single merged event. This style of aggregation can be useful if the analyst



is only interested if a laboratory test was performed or not, regardless of which
kind of test or how many tests were performed. Reducing the number of events
may simplify the mined process model by reducing its number of nodes.

The MEL can be filtered by selection operators on both the case and the event
level. On the event level, the selection predicate contains only event attributes
(dimensions as well as simple attributes). This enables the analyst, for example,
to remove all events representing non-medical activities to focus on the medical
treatment process. On the case level, the MEL can be filtered by both case and
event attributes. However, a quantifier (∃ or ∀) must be specified for each event
attribute of the selection predicate in order to specify whether the condition
must hold for at least one event or for all events of a case. Alternatively, an
aggregation function (min, max, avg, sum, or count) can be specified, e.g. to
select only cases exceeding a maximum cost limit.

The MEL typically contains all available case and event attributes. However,
most process mining techniques (i.e. process discovery algorithms) only need a
small subset of attributes. To reduce the amount of data loaded from the MEL,
the projection operator can be used to remove unneeded attributes. This may
significantly speed up the OLAP query in case of slow database connections.
In contrast to Process Cubes, the data model of our approach is a little more
restrictive, e.g. it is not possible to change the case id during the analysis. How-
ever, it allows for a wider range of operations (e.g., selecting full cases based on
event attributes) and a clear mapping onto the relational data model which is
discussed in the following section.

6 Relational Data Warehouse Model

In contrast to traditional data cubes, the cells of the MEL do not contain single
values but complex data. As available data warehousing tools are not capable
of handling such data, MPM requires specific solutions storing event log data.
The cells of the MEL consist of an arbitrary number of cases and events, which
contradicts the MOLAP approach, where each cell typically represents a data
point of fixed size. In contrast, ROLAP approaches allow for a more flexible
modeling of complex data. Additionally, a ROLAP-based approach for MPM
can benefit from various optimization techniques implemented in state-of-the-
art DBMS. Therefore, we choose a ROLAP approach to realize the MEL.

Even though star schemes usually provide a better performance, we extend
the traditional snowflake schema (cf. Section 2) to avoid redundancy which may
lead to data anomalies. Figure 7 shows the generic database schema as an entity-
relationship model. Similar to the traditional snowflake schema, there is a fact
table for storing the cells of the data cube. Each cell is identified by a unique
combination of foreign keys referencing the cells dimension values. These values
are stored in normalized dimension tables (e.g., D1.K0 to D1.Km for a dimension
D1) to avoid redundancy. In contrast to the traditional snowflake schema, the
fact table does not directly store the cells value, but a unique id. The data content
of the cells, namely the cases, is normalized and stored in the case table, which
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Fig. 7: Generic database schema of the MEL

also stores the simple attributes (A1 to Ap) of the cases. The corresponding
cell of a case is referenced by the fact id. The events are normalized in an
analogous manner and stored in the event table, which also holds the simple
attributes of the event. Events can also have dimension attributes, which are
stored in dimension tables similar to the case dimensions. However, the event
table directly references the dimension tables, as dimension values might differ
for events of the same case.
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Fig. 8: Example database schema for the running example

Figure 8 shows a possible database schema for the running example as an
entity-relationship model. All case attributes are modeled as dimensions. While
the sex and hospital dimension only consist of a single dimension level, the age
and the year of treatment dimensions have additional dimension levels. These



artificial dimension levels enable the analysts to group the patients by 5-year and
10-year classes respectively. For the events, only the activity attribute is mapped
onto a dimension with two dimension levels. In this example, the Activity type
dimension level is introduced to define several types of activities, e.g., admission
and discharge activities can be considered as organizational activities. All other
event attributes (cost, time-stamp, and resource) are attached to the Event table
as simple attributes. Note that there are also other possibilities to model the
database schema for the running example, e.g., one could map the resource onto
a dimension as well.
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Fig. 9: Mapping an OLAP query to a set of SQL queries

Figure 9 illustrates how the event data is loaded from the MEL and processed
in PMCube. The starting point is an OLAP query which is defined by a user,
e.g., through a graphical user interface (cf. 1©). By this OLAP query, the user
describes a logical view on the data cube (cf. 2©). After that, the OLAP query is
translated into a set of SQL queries (cf. 3© and 4©). Each SQL query represents
a cell defined by the OLAP query and expresses the appropriate filtering and
aggregation operations. Section 7 presents the query translation in more detail.
The SQL queries are sent to the MEL consisting of a relational database (cf.
5©). The result of each query is a set of tuples, each tuple representing an event

with all its (case and event) attributes. Immediately after the query result is sent
back, the tuple set is parsed (cf. 6©) and translated into a sublog (cf. 7©) with
the usual event log structure (cf. Figure 1). Then the sublogs are mined using
an arbitrary process discovery algorithm (cf. 8©). To improve the performance,
the sublogs are parsed and mined asynchronously. This means that the data
is processed immediately after it has been loaded from the MEL. Finally, the



process discovery results in a set of process models (cf. 9©), one model for each
cell.

Typically, the events in the traces of an event log are temporally ordered.
This is mandatory to identify relationships between particular events. File-based
event log formats like XES [4] usually imply this order by the position in the
documents structure. However, relational databases store unordered multisets of
tuples. To be able to restore the event order, PMCube requires the definition
of an order-preserving attribute. By default, we use the event time-stamp for
this. However, it might be possible that the time-stamp is missing or not precise
enough to preserve the event order. Therefore, it is also possible to use other
attributes, e.g., an explicit event index or the event id if this reflects the order
of events.

7 Generic Query Patterns

PMCube aims to benefit from the various optimization techniques of state-of-the-
art relational DBMS providing high performance and scalability. Therefore, PM-
Cube expresses the filtering and aggregation operators within the SQL queries
to push their processing to the database. PMCube uses a generic query pattern
to map the cells defined by the OLAP query onto correspondent SQL queries.
In Section 7.1, we first explain the general structure of the generic query pat-
tern. After that, we show its extensions for event-based case filtering and event
aggregation in Sections 7.2–7.5.

7.1 General Structure

Listing 1.1 shows the general structure of the generic SQL pattern. To improve
the understandability, we use placeholders (<. . .>) for particular parts of the
pattern which will be explained in more detail.

1 SELECT <event log attributes >

2 FROM Fact

3 JOIN Case ON Case.fact_id = Fact.id

4 JOIN Event ON Case.id = Event.case_id

5 <dimension joins>

6 WHERE <filter conditions >

7 ORDER BY Event.case_id , <sequence -preserving attribute >

Listing 1.1: Generic query pattern in SQL-like pseudo code

The placeholder <event log attributes> (line 1) is replaced by a list of all
database attributes that should be loaded from the database. These database
attributes can comprise values of dimension attributes and non-dimensional at-
tributes, both on the case and event level. Representing the MEL’s projection
operator, it is possible to omit unneeded attributes by specifying a subset of at-
tributes. This reduces the size of the data to be loaded from the database, leading



to faster responses, especially if the data is transferred via a low bandwidth net-
work connection. However, the case id, the sequence-preserving attribute, and
the classifier (representing the name of the nodes in the process model) are
mandatory and must be contained in the attribute list.

As the event data is spread across multiple database tables, it is necessary
to join the tables to reconstruct the relationships between them. Therefore, the
central tables (fact, case, and event) are joined (lines 2-4). Additionally, the fact
table and the event table need to be joined with the dimension tables, to link the
events with their respective dimension level values. The placeholder <dimension
joins> (line 5) subsumes these join statements. Because join operations are very
costly, we limit them to the tables that are required to filter the data or to retrieve
the attributes specified in <event log attributes> (line 1). All other tables are
omitted from <dimension joins> during query translation.

The placeholder <filter conditions> (line 6) subsumes all filtering operations,
both on the case and the event level, as a conjunction of boolean expressions.
Because each SQL query represents a particular cell, the dimensions forming the
cube must be limited to their respective dimension values for this cell. For ex-
ample, if a cell should represent all patients of the year 2015, <filter conditions>
must contain an expression like DIM TIME YEAR.VALUE = 2015 (assuming that
DIM TIME YEAR is the name of the table representing the time dimension at the
year level and that VALUE is the name of an attribute of this table storing the
values of the year). Finally, the tuples of the result table are sorted by the case
id and the sequence-preserving attribute (line 7). This is done to restore the
sequence of events for each case.

1 SELECT Event.case_id , Event.Timestamp , Activity.value ,

2 Hospital.value , Sex.value , Treatment_year.value ,

3 Event.resource , Event.cost

4 FROM Fact

5 JOIN Case ON Case.fact_id = Fact.id

6 JOIN Event ON Case.id = Event.case_id

7 JOIN Hospital ON Hospital.id = Fact.Hospital_id

8 JOIN Sex ON Sex.id = Fact.Sex_id

9 JOIN Year_of_treatment ON

10 Year_of_treatment.id = Fact.year_of_treatment_id

11 JOIN Activity ON Activity.id = Event.Activity_id

12 WHERE Hospital.value = ’Oldenburg ’

13 AND Sex.value = ’female ’

14 AND Year_of_treatment.value IN (2012, 2013, 2014)

15 ORDER BY Event.case_id , Event.timestamp

Listing 1.2: Example instantiation of the generic query pattern

Listing 1.2 shows an example instantiation of the generic query pattern based
on the running example. Besides the case id, the time-stamp, and the event’s
activity, it also loads the name of the treating hospital, the sex of the patient,
the year when the patient was treated, the resource performing the activity, and



the individual costs related to an event (lines 1-3). In addition to the mandatory
join of the fact, case and event tables (lines 4-6), this query joins the fact and
event tables with the dimension tables (lines 7-11) in order to retrieve the selected
attributes from the dimension tables. As the query is only defined for a single cell,
the WHERE clause restricts the events to all female patients that were treated
in the hospital in Oldenburg (lines 12-13). Additionally, the data is filtered by
the year of the treatment, restricting the result to treatments in the years 2012
to 2014 (line 14). Finally, the events of the result set are ordered by their case
and the time-stamp to reconstruct the traces of the event log (line 15).

case id timestamp activity hospital sex year resource cost

1 01.02.2012 08:30 Admission Oldenburg female 2012 nurse 58

1 01.02.2012 09:42 Examination Oldenburg female 2012 doctor 161

1 01.02.2012 10:38 Blood test Oldenburg female 2012 nurse 142

1 01.02.2012 10:51 X-ray scan Oldenburg female 2012 doctor 61

1 02.02.2012 09:11 Surgery Oldenburg female 2012 doctor 66

1 03.02.2012 08:23 Surgery Oldenburg female 2012 doctor 50

1 04.02.2012 13:27 Discharge Oldenburg female 2012 nurse 137

3 01.02.2014 08:30 Admission Oldenburg female 2014 nurse 102

3 01.02.2014 09:42 Examination Oldenburg female 2014 doctor 163

3 01.02.2014 10:38 Blood test Oldenburg female 2014 nurse 168

3 01.02.2014 10:51 X-ray scan Oldenburg female 2014 doctor 168

3 02.02.2014 09:11 Surgery Oldenburg female 2014 doctor 140

3 04.02.2014 13:27 Discharge Oldenburg female 2014 nurse 98

11 01.02.2013 08:30 Admission Oldenburg female 2013 nurse 67

11 01.02.2013 09:42 Examination Oldenburg female 2013 doctor 41

11 01.02.2013 10:38 X-ray scan Oldenburg female 2013 doctor 178

11 01.02.2013 10:51 Urine test Oldenburg female 2013 nurse 176

11 02.02.2013 09:11 Surgery Oldenburg female 2013 doctor 105

11 03.02.2013 08:23 Surgery Oldenburg female 2013 doctor 40

11 04.02.2013 13:27 Discharge Oldenburg female 2013 nurse 157

Table 6: Result of example query from Listing 1.2

Table 6 shows the query result when executing the query from Listing 1.2 on
the event log L1 (cf. Table 1). Due to the filter condition (only female patients
who were treated in Oldenburg between 2012 and 2014), there are only three out
of 20 cases selected. Each one of the resulting tuples represents a single event.
The events are grouped by their related case and sequentially ordered by their
case id and time-stamp. According to the projection (Listing 1.2, lines 1-2), the
extracted data is restricted to a subset of the available attributes.

To filter cases by the attributes of their events, the <filter conditions> in
Listing 1.1 (line 6) need to be extended by a subquery. The subquery selects the
case ids of all cases meeting a particular condition. Due to the different kinds of



case selection over event attributes (∃, ∀, aggregation), there are differences in
the patterns for the subqueries as well.

7.2 Case Filter Extension: ∃ Subquery

Listing 1.3 shows the subquery for the selection of cases with at least one event
per case matching a condition. It simply selects all case ids of an event meeting
the boolean condition given in line 3 (<condition>). Duplicates are removed us-
ing the UNIQUE key word, because more than one event of a case might match the
condition. Usually, removing duplicates is a very expensive database operation.
However, this overhead can be significantly reduced by defining an index on the
case id attribute in the database.

1 ... AND case_id IN (

2 SELECT UNIQUE case_id FROM Event

3 WHERE <condition >

4 ) ...

Listing 1.3: Subquery for selecting cases with at least one event matching a
condition

Based on the running example, Listing 1.4 shows an example subquery that
selects all cases for which at least one blood test has been performed. All other
cases are omitted from the query result. For convenience, we use readable and
meaningful string ids for the activity in this example.

1 ... AND case_id IN (

2 SELECT UNIQUE case_id FROM Event

3 WHERE Activity_id = ’blood test ’

4 ) ...

Listing 1.4: Example subquery for selecting cases with at least one blood test
event

Assuming that the WHERE clause in the example of the generic query pat-
tern (Listing 1.2) is extended by the condition shown in Listing 1.4, the query
will return a subset of the result from Table 6 which only comprises the tuples
related to cases 1 and 3. The tuples for case 11 will be removed from the result,
because no blood test was conducted for this patient.

7.3 Case Filter Extension: ∀ Subquery

If the condition must hold for each event of a case, the subquery shown in
Listing 1.5 is used. Because SQL does not support such a selection, we use double
negation. First, we select the ids of all cases that violate the condition expressed
in <condition> (line 3). At this point, we also have to check all variables <v1>
to <vn> used in <condition> for NULL values (lines 4-6). This is required



because undefined attribute values are a violation of the condition as well which
is however not covered by the condition in line 3. After we have selected the ids
of all cases violating the condition, we only select that cases not contained in
this subset (line 1).

1 ... AND case_id NOT IN (

2 SELECT UNIQUE case_id FROM Event

3 WHERE NOT <condition >

4 OR <v1> IS NULL

5 OR ...

6 OR <vn> IS NULL

7 ) ...

Listing 1.5: Subquery for selecting cases where each event of a case matches
a condition

Listing 1.6 shows an example subquery for selecting cases whose events were
all executed by a nurse. As described above, the subquery selects all ids of
all cases that have an event violating this condition, e.g., if an activity was
performed by a doctor. Note that the attribute resource has to be checked for
NULL values as events with an unknown resource violate the condition, too.

1 ... AND case_id NOT IN (

2 SELECT UNIQUE case_id FROM Event

3 WHERE NOT resource = ’nurse ’

4 OR resource IS NULL

5 ) ...

Listing 1.6: Example subquery for selecting cases whose events were all exe-
cuted by a nurse

Adding the subquery in Listing 1.6 to the WHERE clause of the generic query
pattern example (Listing 1.2), will return an empty result set when executed on
the example data from event log L1. This is obvious as every patient already
selected by the conditions defined in Listing 1.2 (female, treated between 2012
and 2014 in Oldenburg) has multiple events that where conducted by a doctor.
Consequently, there is no case having all its events exclusively executed by nurses.

7.4 Case Filter Extension: Aggregation Subquery

Furthermore, PMCube allows for the selection of cases by aggregated event at-
tributes. Assuming each event has an attribute representing the individual cost
for the execution of its activity, it is possible to select all cases that, e.g., have at
least an average cost per event of $100. This allows the analyst to define a very
specific filtering of cases. Listing 1.7 shows the subquery to express this kind of
filtering. The subquery groups all events by the id of their cases (line 3). Af-
ter that, the condition is evaluated for each case. The placeholder <condition>



(line 4) consists of a boolean expression which specify an aggregation over the
grouped events. It is possible to use arbitrary SQL aggregation functions like
SUM, AVG, MIN, or MAX for any event attribute.

1 ... AND case_id IN (

2 SELECT UNIQUE case_id FROM Event

3 GROUP BY case_id

4 HAVING <condition >

5 ) ...

Listing 1.7: Subquery for selecting cases using aggregations over event at-
tributes

An example for selecting cases by aggregated event attribute values is given
in Listing 1.8. It selects all cases whose events in average exceed the cost limit
of $100 per event.

1 ... AND case_id IN (

2 SELECT UNIQUE case_id FROM Event

3 GROUP BY case_id

4 HAVING AVG (cost) > 100

5 ) ...

Listing 1.8: Example subquery for selecting cases whose events have an aver-
age cost of more than $100

Extending the WHERE clause of the example query in Listing 1.2 by the
subquery from Listing 1.8 and executing it on event log L1 will return a subset
of Table 6. The query result will only contain the events for the cases 3 and 11
as their average costs ($139.8 and $109.1, respectively) exceed the threshold of
$100. The events related to case 1 will be removed because the average event
costs of 96.4$ do not meet the condition.

7.5 Event Aggregation Extension

Finally, it is also possible to realize the aggregation of events (cf. Section 5)
within the SQL query. For this operation, we extend the generic query pattern
from Listing 1.1 at several points. First, we insert a GROUP BY <attributes>
statement between lines 6 and 7 to group the attributes that should be merged
into a single high-level attribute. To avoid mixing events from different cases,
the attribute list <attributes> starts with the case id. Additionally, the list com-
prises all dimension attributes at their respective dimension level that should be
targeted by the aggregation. Note that omitting a particular dimension from
<attributes> rolls up the data cube to the artificial root node ALL which de-
scribes the highest level of abstraction comprising all values of a dimension.
E.g., inserting the statement GROUP BY Event.case id, Activity.value ag-
gregates all events of a case that represent the same activity to a new high-level
activity.



The aggregated events have the same structure as the original events. There-
fore, the event attributes of the original attributes have to be aggregated into
a single value for each aggregated event. The aggregation of the dimension at-
tributes is given by the structure of the dimension hierarchies. For each non-
dimensional attribute, we individually select a SQL aggregation function de-
pending on the semantics of the attribute. E.g., for the attribute cost of activity
it makes sense to sum up the individual costs of the original events. This way,
the new value will reflect the total cost of all events that are comprised by
the aggregated event. However, depending on the analysis question, also other
aggregation functions (e.g., average) might be meaningful, so it is a partially
subjective choice.

Figure 10 illustrates the merging
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Fig. 10: Aggregating start and end time-
stamps of events

of the start and end time-stamps of
events as another example. We use
the MIN function for the start time-
stamp and the MAX function for the
end time-stamp. Consequently, the ag-
gregated event en covers the same pe-
riod of time like the single events e1,
e2, and e3. However, there might be
some event attributes that cannot be
aggregated in a meaningful way. To
ensure that these attributes do not
impede the aggregation, we propose

to use the MIN function to aggregate the attributes even though these attributes
will probably not contribute to the interpretation of results anymore. Addition-
ally, all case attributes in the attribute list <event log attributes> (cf. Listing
1.1, line 1) have to be surrounded by aggregation function. This is due to the
fact that SQL only allows for aggregations and grouping attributes after the
SELECT statement if a grouping is used. We propose to use the MIN function
for them, because all case attributes have the same value for each event of a case
and the MIN function will preserve this value.

Listing 1.9 shows an extended query based on the example query from Listing
1.2 that aggregates the events by the activity. This results in a sublog where each
activity occurs at most once per trace, e.g., each trace has at most one blood test
activity. In this example, we use the MIN function to aggregate the values of
the hospital, the sex, the year of treatment dimensions because SQL only allows
to select aggregated values or grouping attributes. As all case attributes have
the same value for all events of a case, selecting the minimum does not change
the results here. For the event attribute, we use the MIN function as well while
we use the SUM function to calculate for the event costs. In contrast to the
example presented in Figure 10, we only have a single time-stamp related to
an event. Therefore, we map the time-stamps of the aggregated events onto its
earliest occurrence using the minimum. However, this is a subjective choice.
Alternatively it is also possible to use other aggregation functions, e.g., the



1 SELECT Event.case_id , min(Event.Timestamp) as alias_ts ,

2 Activity.value , min(Hospital.value),

3 min(Sex.value), min(Treatment_year.value),

4 min(Event.resource), SUM(Event.cost)

5 FROM Fact

6 JOIN Case ON Case.fact_id = Fact.id

7 JOIN Event ON Case.id = Event.case_id

8 JOIN Hospital ON Hospital.id = Fact.Hospital_id

9 JOIN Sex ON Sex.id = Fact.Sex_id

10 JOIN Year_of_treatment ON

11 Year_of_treatment.id =Fact.year_of_treatment_id

12 JOIN Activity ON Activity.id = Event.Activity_id

13 WHERE Hospital.value = ’Oldenburg ’

14 AND Sex.value = ’female ’

15 AND Year_of_treatment.value IN (2012, 2013, 2014)

16 GROUP BY Event.case_id , Activity.value

17 ORDER BY Event.case_id , alias_ts

Listing 1.9: Extended example query aggregating events by their activity

maximum to map the events onto the latest occurrence. Note that the case
id and the activity dimension do not require an aggregation function because
both are used in the GROUP BY clause (line 16). Furthermore, the aggregated
time-stamp is renamed to alias ts in order to use the aggregated value for
ordering the events.

Table 7 shows the result for executing the query from Listing 1.9 on the
example data of Event Log L1. Its content is quite similar to the results shown
in Table 6. The only difference in this example is that the surgery events for
cases 1 and 11 are aggregated into a single event for each case (highlighted in
Table 7). For the merged event, the time-stamp of the first event is used. For
the cost attribute, the individual costs of the original events are summed up.

The case study reported in [18] revealed that the aggregation of events is
able to improve the fitness of the resulting process models if the frequency of
an activity per case does not correlate with its importance. For example, each
parameter of a blood test event may be represented by an individual event.
Algorithms which consider the ratio between the events, tend to overestimate
the importance of these events. The Fuzzy Miner [5], for example, will cluster
the less frequent events into one node while representing the more frequent but
less important blood test events as individual nodes. Aggregating the events
by their activity removes this bias because it restricts the maximum frequency
per trace of each activity to one. On the contrary, the process model can also
be significantly biased by the event aggregation itself. Especially if other events
are located between the aggregated events in the trace, the dependencies to the
aggregated events are lost. This may be indicated by a significant loss of fitness
of the resulting process model. Therefore, the analysts are recommended to be
aware of the possible bias of the process model and apply the event aggregation
carefully.



case id timestamp activity hospital sex year resource cost

1 01.02.2012 08:30 Admission Oldenburg female 2012 nurse 58

1 01.02.2012 09:42 Examination Oldenburg female 2012 doctor 161

1 01.02.2012 10:38 Blood test Oldenburg female 2012 nurse 142

1 01.02.2012 10:51 X-ray scan Oldenburg female 2012 doctor 61

1 02.02.2012 09:11 Surgery Oldenburg female 2012 doctor 116

1 04.02.2012 13:27 Discharge Oldenburg female 2012 nurse 137

3 01.02.2014 08:30 Admission Oldenburg female 2014 nurse 102

3 01.02.2014 09:42 Examination Oldenburg female 2014 doctor 163

3 01.02.2014 10:38 Blood test Oldenburg female 2014 nurse 168

3 01.02.2014 10:51 X-ray scan Oldenburg female 2014 doctor 168

3 02.02.2014 09:11 Surgery Oldenburg female 2014 doctor 140

3 04.02.2014 13:27 Discharge Oldenburg female 2014 nurse 98

11 01.02.2013 08:30 Admission Oldenburg female 2013 nurse 67

11 01.02.2013 09:42 Examination Oldenburg female 2013 doctor 41

11 01.02.2013 10:38 X-ray scan Oldenburg female 2013 doctor 178

11 01.02.2013 10:51 Urine test Oldenburg female 2013 nurse 176

11 02.02.2013 09:11 Surgery Oldenburg female 2013 doctor 145

11 04.02.2013 13:27 Discharge Oldenburg female 2013 nurse 157

Table 7: Result of example query from Listing 1.9 (event aggregation)

8 Evaluation

We implemented our approach in a prototype called PMCube Explorer [17]. Due
to a generic, plug-in-based interface, arbitrary DBMS can be used to store the
data. We conducted a case study and a number of experiments to evaluate our
approach. We reported the results of the case study in [18]. In this section, we
focus on the experiments measuring the run-time performance of our approach.

For our experiments, we used the data set of the case study. It consists
of 16,280 cases and 388,395 events and describes a process in a large German
hospital of maximum care. For a more detailed description of the data, we refer
to Vogelgesang and Appelrath [18]. We created multiple subsets of that data,
each consisting of a particular number of events. While creating these subsets, we
kept the cases as a whole in order to avoid splitting up the traces into fragments.
Table 8 shows the number of cases and events for each data set. Figure 11 clearly
shows the linear relationship between the number of cases and the number of
events of the data sets.

Sample 1 2 3 4 5 6 7 8

Events 50,000 100,000 150,000 200,000 250,000 300,000 350,000 388,395

Cases 2,154 4,332 6,340 8,448 10,418 12,538 14,734 16,280

Table 8: Number of cases and events of the evaluation’s data sets
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Fig. 11: Linear relationship of the number of cases and events for the evaluation’s
subsets of data

To evaluate PMCube, we also performed similar tests with the PMC tool1

as the state-of-the-art implementation of the Process Cubes approach. Event
Cubes were not considered in the experiments because that approach is very
different (e.g, no creation of sublogs) which makes it incomparable to PMCube
and Process Cubes. All experiments were conducted on a laptop with Intel Core
i5-2520M 2,5 GHz CPU, 16 GB DDR3 RAM, and ATA SSD running on 64-bit
Windows 7. For the MEL, we used a local installation of Microsoft SQL Server
2012. We used the following OLAP queries derived from our case study.

Q1: We used the dimensions medical department and urgency to create the cube
and removed all cases with the value unknown for the urgency dimension.
This query results in a cube with 12 cells.

Q2: The dimensions medical department and reason for discharge form the
cube. No filtering was used. Depending on the used subset of the data, this
query creates 40 to 56 cells for PMC which only considers dimension values
reflected in the data set. In contrast, PMCube Explorer considers each pos-
sible dimension value which is defined in the database, whether it is reflected
by the events or not. Therefore, it procudes 92 cells for each subset.

Q3: The dimensions age (in 10-year-classes) and sex form the cube. All cases
with values unknown and older than 100 years were removed. This query
results in 30 cells.

Q4: We used the dimensions urgency and type of admittance (in-patient or
not) to create the cube, filtering the value unknown for both dimensions.
The resulting data cube for this query contains six cells.

1 http://www.win.tue.nl/~abolt/userfiles/downloads/PMC/PMC.zip, downloaded
on June, 16th 2015

http://www.win.tue.nl/~abolt/userfiles/downloads/PMC/PMC.zip


Both tools, PMC and PMCube Explorer, vary in the set of supported oper-
ations. For example, PMCube Explorer provides the aggregation of events while
PMC does not support this. Consequently, we only used queries that could be
defined and answered by both tools. All queries partition the data by a number
of case attributes into sublogs and filter the data by neglecting particular cells.
As the definition of these operations is similar for both approaches, the resulting
sublogs are congruent. However, PMCube Explorer may return more cells than
PMC (cf. query Q2) as it also considers predefined dimension values that are
not represented in the data. However, these additional cells do not affect the re-
sults of other cells and only require minimal overhead because they only contain
empty sublogs.

Query Events (in thousand) 50 100 150 200 250 300 350 388.395

Q1
PMC (min) 28.7 98.6 212.9 356.2 560.6 792.8 1013.0 1263.3
PMCube Explorer (seq) 7.1 11.0 15.5 20.5 25.6 30.4 35.5 38.8
PMCube Explorer (async) 5.0 7.3 10.2 13.5 17.1 20.3 24.5 26.4

Q2
PMC (min) 31.7 108.9 222.3 387.1 561.2 800.2 1087.2 1319.9
PMCube Explorer (seq) 8.7 13.3 19.6 26.1 30.5 36.1 40.7 45.0
PMCube Explorer (async) 7.3 10.0 14.6 18.5 21.1 24.6 27.3 29.8

Q3
PMC (min) 31.0 101.8 214.1 363.1 549.8 761.4 1043.4 1302.7
PMCube Explorer (seq) 8.3 12.1 17.0 21.8 26.9 31.7 36.8 40.1
PMCube Explorer (async) 6.5 8.9 11.4 14.1 17.3 20.1 22.4 25.3

Q4
PMC (min) 28.0 96.9 203.5 350.1 534.2 755.5 1021.0 1269.3
PMCube Explorer (seq) 4.7 8.7 13.5 18.9 24.7 30.1 35.9 41.6
PMCube Explorer (async) 3.7 6.9 10.7 15.4 20.2 25.4 30.0 35.0

Table 9: Average run-times in seconds

Reflecting the overall waiting time for the analysts, we measured the total
run-time for the processing of the OLAP query, discovering the model using
Inductive Miner [6], and visualizing the process models of all cells in a matrix
using process trees. Because some preliminary test runs with small data sets indi-
cated unacceptable run-times of several hours for PMC with bigger data sets, we
only used the minimum set of dimensions for PMC to improve its performance.
This means, that we omitted all dimensions from the data cube which were
not used to express the OLAP query. However, for our approach PMCube, we
kept all available dimensions in the data cube. Even though this might overrate
the performance of PMC, the affect on run-time should be insignificant because
dimension tables are not joined unless they are used in the OLAP query.

Table 9 shows the average run-time in seconds of ten runs for both tools and
each combination of query and data set. To evaluate the performance improve-
ment of the asynchronous process discovery, we also performed the experiments
with an alternative configuration of PMCube Explorer with a sequential pro-
cessing of cells, i.e., the processing of a cell is completed before the next cell



is loaded from the database. Note that the last column of Table 9 shows the
measured values for the full data set.

The values in Table 9 show that the measured run-times of PMCube Explorer,
both for asynchronous as well as sequential processing of cells, are significantly
shorter than the run-times of PMC. E.g., PMCube Explorer needs between 25
and 45 seconds to process the queries for the complete data set while PMC
requires more than 21 minutes for it.
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Fig. 12: Comparing average run-time of PMCube Explorer (async) with PMC
(min) for queries Q1-Q4

Figure 12 shows the run-times (in seconds) of the queries Q1-Q4 over the
number of events. It reveals a polynomial incline for the PMC tool and a linear
incline for the PMCube Explorer with asynchronous process discovery. Com-
paring the four charts to each other, PMC as well as PMCube Explorer show
a similar run-time behavior for all queries. Figure 13 compares the run-time of
both configurations of PMCube Explorer for the queries Q1-Q4. It confirms that
the run-time increases linearly by the number of events. Additionally, it clearly
shows the performance benefit of the asynchronous processing of events which
increases by the number of events as well, even though the advantage of the
asynchronous processing varies for each query.
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Fig. 13: Comparing average run-time of PMCube Explorer (async) with PMCube
Explorer (seq) for queries Q1-Q4

Table 10 shows the measured loading times in seconds for PMC and both
configurations of PMCube Explorer. The measured values reflect the time needed
for processing the query and returning a set of sublogs. Comparing the differ-
ent approaches clearly shows that the loading times of PMCube Explorer are
significantly lower than the loading times of PMC. However, the loading times
for PMCube Explorer (seq) are shorter than for PMCube Explorer (async). At
first glance, this is in contrast to the overall processing times shown in Table
9, which are shorter for the asynchronous processing. These differences can be
explained by the additional overhead required for the asynchronous processing.
In the evaluation setting, all processes – also the database management system
– are running on the same machine in parallel. Consequently, the loading of data
(including the parsing of SQL results), the discovery of processes (implemented
as an individual process for each cell) and the data processing of the database are
competing for the same resources, especially CPU. Therefore, the loading pro-
cess of PMCube Explorer may be waiting for resources while previously started
process discovery threads are occupying the CPU cores. Due to this waiting
times and the additional effort for process switches, the loading times are longer
in case of asynchronous processing. However, as they significantly reduce the



Query Events (in thousand) 50 100 150 200 250 300 350 388.395

Q1
PMC (min) 27.9 97.4 211.6 354.8 558.7 790.8 1010.6 1260.7
PMCube Explorer (seq) 1.9 3.4 4.9 6.6 8.0 9.7 11.5 12.7
PMCube Explorer (async) 2.5 4.6 6.7 9.0 11.0 13.1 15.2 17.8

Q2
PMC (min) 30.5 107.1 220.4 385.0 558.4 797.4 1083.8 1316.4
PMCube Explorer (seq) 2.9 4.7 6.6 8.8 10.7 12.8 15.2 16.6
PMCube Explorer (async) 4.0 6.3 9.7 12.6 16.0 19.1 21.8 24.2

Q3
PMC (min) 29.8 100.2 212.5 361.5 547.4 759.1 1040.5 1299.8
PMCube Explorer (seq) 2.4 4.1 5.8 7.7 9.4 11.2 13.9 14.5
PMCube Explorer (async) 3.1 5.6 8.0 10.6 13.2 15.9 18.4 21.2

Q4
PMC (min) 27.4 96.0 202.4 348.8 532.6 753.7 1018.8 1267.1
PMCube Explorer (seq) 1.6 3.0 4.4 5.9 7.2 8.5 10.2 11.4
PMCube Explorer (async) 1.7 3.2 4.7 6.3 7.9 9.4 11.0 12.1

Table 10: Average loading times in seconds

overall run-time for processing a query, these delays while loading the data are
justified.

Figure 14 shows the average loading times in seconds over the number of
events for PMC and PMCube Explorer (async) for queries Q1-Q4. The charts
reveal the same behavior as the overall run-time depicted in Figure 12. While the
loading time grows polynomially with the number of events for PMC, it grows
linearly for PMCube Explorer (async). This clearly shows that the PMCube
Explorer’s advantage in run-time can be traced back to the data storage and
management based on the relational data warehouse. The charts presented in
Figure 15 show the average loading times in seconds over the number of events for
both configurations of PMCube Explorer for queries Q1-Q4. They also confirm
the linear incline of the loading time by the number of events. Furthermore, the
charts indicate that the measured loading times of PMCube Exporer (async) are
bigger than the loading times of PMCube Explorer (seq). However, comparing
the charts also shows that the difference varies between the queries. While the
difference between both configurations is significant for queries Q1-Q3, there is
only a slight difference for Q4.

Due to the clear linear relationship between the number of events and the
number cases of the evaluation’s data sets (cf. Table 8 and Figure 11), the ob-
served run-time behavior can also be related to the number cases. Consequently,
the run-times increases polynomially by the number of cases for PMC, while it
increases linearly for PMCube Explorer.

9 Conclusions

Multidimensional process mining adopts the concept of data cubes to the field of
process mining. Even though it is not time-critical, performance is a vital aspect
due to its explorative characteristics. In this paper, we presented the realization
of our approach PMCube using a relational DBMS. The logical data model is
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Fig. 14: Comparing average loading time of PMCube Explorer (async) with PMC
(min) for queries Q1-Q4

mapped onto a generic relational database schema. We use generic query pat-
terns to express the OLAP queries by a separated SQL query for each cell.
The experiments reported in this paper show, that PMCube provides a signifi-
cantly better performance than PMC, the state-of-the-art implementation of the
Process Cubes approach. Additionally, the performance of our approach seems
to scale linearly by the number of events, promising acceptable processing times
with bigger amounts of data. Nevertheless, further improvements of performance
might be possible, e.g., by denormalizing the relational schema (similar to a star
schema), which should be evaluated by future research. Furthermore, it should
be investigated how to improve the flexibility of our approach, e.g., how to reflect
multiple case ids in the database schema without loosing performance.
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7. Maggi, F.M., Dumas, M., Garćıa-Bañuelos, L., Montali, M.: Discovering Data-
Aware Declarative Process Models from Event Logs, pp. 81–96. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/

978-3-642-40176-3_8

http://dx.doi.org/10.1007/978-3-642-40176-3_6
http://dx.doi.org/10.1007/978-3-642-40176-3_6
http://www.xes-standard.org/xesstandarddefinition
http://www.xes-standard.org/xesstandarddefinition
http://dx.doi.org/10.1007/978-3-642-40176-3_8
http://dx.doi.org/10.1007/978-3-642-40176-3_8


8. Neumuth, T., Mansmann, S., Scholl, M.H., Burgert, O.: Data Warehousing Tech-
nology for Surgical Workflow Analysis. In: Proceedings of the 2008 21st IEEE In-
ternational Symposium on Computer-Based Medical Systems. pp. 230–235. CBMS
’08, IEEE Computer Society, Washington, DC, USA (2008)

9. Niedrite, L., Solodovnikova, D., Treimanis, M., Niedritis, A.: Goal-driven design
of a data warehouse-based business process analysis system. In: Proceedings of
the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases - Volume 6. pp. 243–249. AIKED’07, World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA
(2007)

10. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-
centric and artifact-centric processes. In: Business Process Management Workshops
- BPM 2012 International Workshops, Tallinn, Estonia, September 3, 2012. Revised
Papers. pp. 316–327 (2012), http://dx.doi.org/10.1007/978-3-642-36285-9_

36
11. Ribeiro, J.T.S., Weijters, A.J.M.M.: Event cube: another perspective on business

processes. In: Proceedings of the 2011th Confederated international conference on
On the move to meaningful internet systems - Volume Part I (OTM’11). pp. 274–
283. Springer-Verlag, Berlin, Heidelberg (2011)

12. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Ef-
ficient and Customisable Declarative Process Mining with SQL, pp. 290–305.
Springer International Publishing, Cham (2016), http://dx.doi.org/10.1007/

978-3-319-39696-5_18
13. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement

of Business Processes. Springer, Berlin (2011)
14. van der Aalst, W.M.P.: Process Cubes: Slicing, Dicing, Rolling Up and Drilling

Down Event Data for Process Mining. In: Song, M., Wynn, M., Liu, J. (eds.)
Asia Pacific Business Process Management, Lecture Notes in Business Information
Processing, vol. 159, pp. 1–22. Springer International Publishing (2013)

15. van der Aalst, W.M., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) Business Process Management Workshops (1). Lecture Notes in
Business Information Processing, vol. 99, pp. 169–194. Springer (2011)

16. van Dongen, B.F., Shabani, S.: Relational XES: Data Management for Process
Mining. In: Proceedings of the CAiSE 2015 Forum at the 27th International Con-
ference on Advanced Information Systems Engineering co-located with 27th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE 2015),
Stockholm, Sweden, June 10th, 2015. pp. 169–176 (2015), http://ceur-ws.org/
Vol-1367/paper-22.pdf

17. Vogelgesang, T., Appelrath, H.: Multidimensional Process Mining with PMCube
Explorer. In: Daniel, F., Zugal, S. (eds.) Proceedings of the BPM Demo Ses-
sion 2015 Co-located with the 13th International Conference on Business Pro-
cess Management (BPM 2015), Innsbruck, Austria, September 2, 2015. CEUR
Workshop Proceedings, vol. 1418, pp. S. 90–94. CEUR-WS.org (2015), http:

//ceur-ws.org/Vol-1418/paper19.pdf
18. Vogelgesang, T., Appelrath, H.J.: PMCube: A Data-Warehouse-Based Approach

for Multidimensional Process Mining. In: Reichert, M., Reijers, A.H. (eds.) Busi-
ness Process Management Workshops: BPM 2015, 13th International Work-
shops, Innsbruck, Austria, August 31 – September 3, 2015, Revised Papers. pp.
167–178. Springer International Publishing (2016), http://dx.doi.org/10.1007/
978-3-319-42887-1_14

http://dx.doi.org/10.1007/978-3-642-36285-9_36
http://dx.doi.org/10.1007/978-3-642-36285-9_36
http://dx.doi.org/10.1007/978-3-319-39696-5_18
http://dx.doi.org/10.1007/978-3-319-39696-5_18
http://ceur-ws.org/Vol-1367/paper-22.pdf
http://ceur-ws.org/Vol-1367/paper-22.pdf
http://ceur-ws.org/Vol-1418/paper19.pdf
http://ceur-ws.org/Vol-1418/paper19.pdf
http://dx.doi.org/10.1007/978-3-319-42887-1_14
http://dx.doi.org/10.1007/978-3-319-42887-1_14

	A Relational Data Warehouse for Multidimensional Process Mining

