N. Arima, H. Okazaki, and H. Nakano, A generation mechanism of canards in a piecewise linear system, IEICE T. Fundam. Electr, vol.80, pp.447-453, 1997.

E. Beno??tbeno??t, Canards et enlacements. Publications Mathématiques de l'IHÉSIH´IHÉS 72, pp.63-91, 1990.

M. Brøns, M. Krupa, and M. Wechselberger, Mixed mode oscillations due to the generalized Canard phenomenon, Fields Institute Communications, vol.49, pp.39-63, 2006.
DOI : 10.1090/fic/049/03

M. Desroches, S. Fernández-garcía, and M. Krupa, Canards in a minimal piecewise-linear square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.2, issue.1, p.73111, 2016.
DOI : 10.1142/S0218127496001594

URL : https://hal.archives-ouvertes.fr/hal-01243302

M. Desroches, A. Guillamon, E. Ponce, R. Prohens, S. Rodrigues et al., Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-Linear Slow-Fast Systems, SIAM Review, vol.58, issue.4, pp.653-691, 2016.
DOI : 10.1137/15M1014528

URL : https://hal.archives-ouvertes.fr/hal-01243289

M. Desroches, T. J. Kaper, and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.49, issue.1, p.46106, 2013.
DOI : 10.1016/j.jtbi.2010.03.030

URL : https://hal.archives-ouvertes.fr/hal-00932344

M. Desroches, J. M. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga et al., Mixed-Mode Oscillations with Multiple Time Scales, SIAM Review, vol.54, issue.2, pp.211-288, 2012.
DOI : 10.1137/100791233

URL : https://hal.archives-ouvertes.fr/hal-00765216

M. Diener, The canard unchainedor how fast/slow dynamical systems bifurcate, The Mathematical Intelligencer, vol.108, issue.3, pp.38-49, 1984.
DOI : 10.1016/B978-0-12-550350-1.50055-2

F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Memoirs of the American Mathematical Society, vol.121, issue.577, pp.1131-1162, 1996.
DOI : 10.1090/memo/0577

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, vol.31, issue.1, pp.53-98, 1979.
DOI : 10.1016/0022-0396(79)90152-9

URL : https://doi.org/10.1016/0022-0396(79)90152-9

S. Fernández-garcía, M. Desroches, M. Krupa, and F. Clément, A Multiple Time Scale Coupling of Piecewise Linear Oscillators. Application to a Neuroendocrine System, SIAM Journal on Applied Dynamical Systems, vol.14, issue.2, pp.643-673, 2015.
DOI : 10.1137/140984464

S. Fernández-garcía, M. Desroches, M. Krupa, and A. E. Teruel, Canard solutions in planar piecewise linear systems with three zones, Dynamical Systems, vol.74, issue.11, pp.173-197, 2016.
DOI : 10.1063/1.4827026

S. Fernández-garcía, M. Krupa, and F. Clément, Mixed-Mode Oscillations in a piecewise linear system with multiple time scale coupling, Physica D: Nonlinear Phenomena, vol.332, pp.9-22, 2016.
DOI : 10.1016/j.physd.2016.06.002

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

E. Freire, E. Ponce, R. F. Torres, and F. , Bifurcation Sets of Continuous Piecewise Linear Systems with Two Zones, International Journal of Bifurcation and Chaos, vol.8, issue.11, pp.2073-2097, 1998.
DOI : 10.1109/37.466263

E. Freire, E. Ponce, and F. Torres, Hopf-like bifurcations in planar piecewise linear systems, Publicacions Matem??tiques, vol.41, pp.135-148, 1997.
DOI : 10.5565/PUBLMAT_41197_08

URL : http://dmle.cindoc.csic.es/pdf/PUBLICACIONSMATEMATIQUES_1997_41_01_07.pdf

C. K. Jones, Geometric singular perturbation theory, 1995.
DOI : 10.1007/978-1-4612-4312-0

T. Kaper, R. E. O-'malley, J. , and J. Cronin, Systems theory for singular perturbation problems In: Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proceedings of Symposia in Applied Mathematics, pp.8-132, 1999.

M. A. Kramer, R. D. Traub, and N. J. Kopell, New Dynamics in Cerebellar Purkinje Cells: Torus Canards, Physical Review Letters, vol.49, issue.6, p.68103, 2008.
DOI : 10.1016/j.physleta.2004.05.062

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662447/pdf

M. Krupa and P. Szmolyan, Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points---Fold and Canard Points in Two Dimensions, SIAM Journal on Mathematical Analysis, vol.33, issue.2, pp.286-314, 2001.
DOI : 10.1137/S0036141099360919

M. Krupa and P. Szmolyan, Relaxation Oscillation and Canard Explosion, Journal of Differential Equations, vol.174, issue.2, pp.312-368, 2001.
DOI : 10.1006/jdeq.2000.3929

URL : https://doi.org/10.1006/jdeq.2000.3929

H. P. Mckean, Nagumo's equation, Advances in Mathematics, vol.4, issue.3, pp.209-223, 1970.
DOI : 10.1016/0001-8708(70)90023-X

J. Mitry and M. Wechselberger, Faux canards, 2017.

J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, vol.50, issue.10, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

R. Prohens and A. E. Teruel, Canard trajectories in 3d piecewise linear systems, Discrete Contin. Dyn. Syst, vol.33, issue.3, pp.4595-4611, 2013.

R. Prohens, A. E. Teruel, and C. Vich, Slow???fast n -dimensional piecewise linear differential systems, Journal of Differential Equations, vol.260, issue.2, pp.1865-1892, 2016.
DOI : 10.1016/j.jde.2015.09.046

M. Wechselberger, Existence and Bifurcation of Canards in $\mathbbR^3$ in the Case of a Folded Node, SIAM Journal on Applied Dynamical Systems, vol.4, issue.1, pp.101-139, 2005.
DOI : 10.1137/030601995