Multi-Object tracking using Multi-Channel Part Appearance Representation

Abstract : Appearance based multi-object tracking (MOT) is a challenging task, specially in complex scenes where objects have similar appearance or are occluded by background or other objects. Such factors motivate researchers to propose effective trackers which should satisfy real-time processing and object trajectory recovery criteria. In order to handle both mentioned requirements, we propose a robust online multi-object tracking method that extends the features and methods proposed for re-identification to MOT. The proposed tracker combines a local and a global tracker in a comprehensive two-step framework. In the local tracking step, we use the frame-to-frame association to generate online object trajectories. Each object trajectory is called tracklet and is represented by a set of multi-modal feature distributions modeled by GMMs. In the global tracking step, occlusions and mis-detections are recovered by tracklet bipartite association method based on learning Mahalanobis metric between GMM components using KISSME metric learning algorithm. Experiments on two public datasets show that our tracker performs well when compared to state-of-the-art tracking algorithms.
Type de document :
Communication dans un congrès
AVSS 2017 : 14-th IEEE International Conference on Advanced Video and Signal-Based Surveillance, Aug 2017, Lecce Italy
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01651938
Contributeur : Nguyen Thi Lan Anh <>
Soumis le : mercredi 29 novembre 2017 - 16:56:35
Dernière modification le : mardi 24 juillet 2018 - 15:51:35

Fichier

08078552.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01651938, version 1

Collections

Citation

Thi Lan Anh Nguyen, Furqan M.Khan, Farhood Negin, François Bremond. Multi-Object tracking using Multi-Channel Part Appearance Representation. AVSS 2017 : 14-th IEEE International Conference on Advanced Video and Signal-Based Surveillance, Aug 2017, Lecce Italy. 〈hal-01651938〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

55