Monitoring brain tumor evolution using multiparametric MRI

Benjamin Lemasson 1 Nora Collomb 2 Alexis Arnaud 3 Florence Forbes 3 Emmanuel Barbier 4
2 INSERM U836, équipe 1, Physiopathologie du cytosquelette
GIN - Grenoble Institut des Neurosciences
3 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : — Analysing brain tumor tissue composition can improve the handling of tumor growth and resistance to therapies. We show on a 6 time point dataset of 8 rats that multiparametric MRI can be exploited via statistical clustering to quantify intra-lesional heterogeneity in space and time.
Document type :
Poster communications
Complete list of metadatas

Cited literature [5 references]  Display  Hide  Download

https://hal.inria.fr/hal-01652026
Contributor : Florence Forbes <>
Submitted on : Wednesday, November 29, 2017 - 6:38:40 PM
Last modification on : Wednesday, April 11, 2018 - 1:58:48 AM

File

ISBI17_0556_MS.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01652026, version 1

Collections

Citation

Benjamin Lemasson, Nora Collomb, Alexis Arnaud, Florence Forbes, Emmanuel Barbier. Monitoring brain tumor evolution using multiparametric MRI. 2017 IEEE International Symposium on Biomedical Imaging, Apr 2017, Melbourne, Australia. ⟨hal-01652026⟩

Share

Metrics

Record views

545

Files downloads

68