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Abstract

Protein structures are key to understanding bio-molecular mechanisms and diseases, yet their interpretation is

hampered  by  limited  knowledge  of  their  biologically  relevant  quaternary  structures  (QSs).  A critical

challenge in obtaining QSs from crystallographic data is to distinguish biological interfaces from crystal

packing contacts. We tackled this challenge with two strategies for aligning and comparing QS states, both

across homologs (QSalign), and across data repositories (QSbio). QS conservation across homologs was a

remarkably strong predictor of biological relevance and allowed annotating of >80,000 biological QS states.

QS conservation across  methods enabled us  to  create  a  meta-predictor,  QSbio,  from which we inferred

confidence estimates for >110,000 assemblies in the Protein Data Bank, which approach the accuracy of

manual  curation.  Based  on  the  dataset  obtained,  we  analyzed  interaction  interfaces  among  pairs  of

structurally conserved QSs. This revealed a striking plasticity of interfaces, which can maintain a similar

interaction geometry through widely different chemical properties.
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INTRODUCTION

A majority of proteins adopt a quaternary structure (QS) by interacting with copies of themselves, thereby

forming  homomers1-6.  These  protein  complexes  are  present  in  virtually  all  biological  processes7-9.  For

example,  the  well-known oncogene p53 is  a  homomer,  as  are  many transcription factors. In  apoptosis,

caspase-9 acts as a trigger after homodimer formation10, and it is the homotrimeric scaffold of the tumor

necrosis factor that induces cell death11. Metabolic pathways are no exception, with most glycolytic enzymes

forming homomers. Besides being ubiquitous, homomers are a common theme in cellular machines, with

ATP synthases, proteasomes, chaperones, photosystems, exosomes and nucleosomes having evolved from

ancestral homomers12. 

Knowledge of biological QS states is thus key to contribute to the understanding of protein function and

evolution. Currently, the richest source of information on protein QS is the Protein Data Bank (PDB), the

repository  for  structural  information  obtained  by  X-ray  crystallography,  NMR  spectroscopy,  and  cryo-

electron microscopy13,14. Structures solved by X-ray crystallography represent, by far, the majority of the data

with now over 118,000 structures deposited. However, X-ray crystallography provides the coordinates of

only the asymmetric unit (ASU) within the unit cell of a crystal. At the molecular level, a crystal is formed as

an infinite lattice of unit cells (Fig. 1), and a protein complex may be made from one or more ASUs, or

indeed from parts of several ASUs15. A critical challenge underlying analysis  and  interpretation of protein

structures is to discriminate between fortuitous protein-protein contacts that arise from crystal packing and

evolved contacts that make up the biologically relevant QS (Fig. 1). 

Much computational work has been devoted to addressing this challenge. Several properties were found to

be important and can be separated into two broad classes. The first class comprises physicochemical and

shape  properties  of  protein  interfaces  and  includes  size15-21,  planarity22,  atomic  packing19,21,23,  predicted

binding  free  energy15,20,  secondary  structure24,  as  well  as  the  composition18,19,21-23,25 or  entropy  of  amino

acids26. The second class is evolutionary conservation, either of individual residues27-31 or of the geometry of

the interaction interface, which can be assessed across different crystal forms32,33 or across homologs34,35. 

Historically, the protein QS (PQS) server15 was the first resource to provide information on likely biological

assemblies  of  structures  deposited in  the  PDB and has  since been succeeded by another  method called

PISA20. While the  predictions of these servers are generally correct, the hard nature of the problem means

that ~15% of QS states from the PDB do not reflect a biologically relevant state20,36. This limitation prompted

the development of PiQSi36, which contains 1,434 high-confidence and non-redundant manual annotations.

However, manual curation is tedious and cannot be applied at a PDB-wide scale, which motivated us to

develop novel automated methods approaching the accuracy of manual curation.

Approaches to superpose structurally related protein chains within arbitrary multi-component  complexes

have been previously reported37-39.  Here, we focus on the identification and analysis of homologous QSs
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sharing the same number of subunits, on the premise that conservation of QS provides a strong indicator for

biological relevance (Fig. 1b).  We first developed a heuristic algorithm named QSalign, which structurally

aligns  complete  QSs  and infers  those  conserved  as  being  biologically  relevant.  QSalign  confirmed  the

biological  relevance of 31,257 QS states from the PDB, with an estimated error  rate as low as 2%. To

annotate  monomeric  proteins,  we  inverted  the  QSalign  approach  and  used  the  absence  of  homomeric

homologs as predictive information of a protein being monomeric. We called this method anti-QSalign and

were able to annotate 46,877 monomeric proteins with it. In addition to comparing QSs across species, we

integrated  QS  conservation  across  methods  (PISA20,  EPPIC30,  and  QSalign/anti-QSalign).  The  resulting

predictor, named QSbio (www.QSbio.org), approached the accuracy of manual curation. We finally illustrate

the use of  QSalign in  an analysis of  interface properties  of structurally similar  but  evolutionary distant

complexes, which reflects the plasticity of interface properties among remote structural homologs.

RESULTS

Inferring biological relevance by multi-chain superposition of protein QS

Evolutionary conservation is a powerful means to assess function and can be applied in the context of QS.

Previous work indeed reported that structural conservation of interface geometry is a strong indicator of

functional relevance33.  Among dimers, interface conservation directly reflects QS conservation because a

single  interface is  involved.  In  higher-order  oligomers,  however,  structural  similarity  cannot  be inferred

readily from similarity of pairwise interfaces (Supplementary Fig. S1), which prompted us to assess the

structural similarity of full complexes, without decomposing them into pairwise interfaces. 

The task of superposing full protein complexes presented two main obstacles. A first hurdle arose from the

size  of  QSs,  because  structural  superposition  algorithms  have  been  classically  applied  to  single  chain

proteins of a few hundred residues at most. In contrast, a QS can involve multiple chains totalling several

thousand residues (Fig. 2a). As a solution, we employed the Kpax protein structure alignment algorithm40,

which we found to be fast and robust, even with very large structures. A second obstacle arose from the fact

that QS information involves multiple chains, whose coordinates typically appear in PDB files in an arbitrary

order.  This prompted  the  development  of  a  heuristic  to  map  chain-chain  correspondences  (Methods,

Supplementary Fig. S2).  We used this approach to perform pairwise structural superpositions between all

homo-oligomeric assemblies from the PDB, and also included assemblies predicted by PISA. We focused on

potential  matches by comparing homomers with identical  numbers of subunits and domain folds,  which

resulted in >25 million superpositions. We then developed a strategy to integrate these data and infer the

biological QS of protein structures. The overall algorithm is described in detail in the Methods as well as in

Supplementary Figures S3 and S4. Henceforth, we refer to QSalign as the global method that computes

structural superposition of protein complexes and uses that information to infer the biological relevance of

assemblies in the PDB.

Benchmarking QSalign 
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We employed a multi-chain version of the TM-score41 to assess whether two QS states are similar or not. To

find the optimal  threshold and to examine how sensitive  results  were with respect  to the  threshold,  we

benchmarked QSalign using different TM-score cut-off values, from 0.4 to 0.9. For each value, we estimated

the accuracy of QSalign annotations by comparing them to manual annotations from PiQSi. As expected,

lower cut-off values gave more annotations but also higher error rates (Fig. 2b). Above a TM–score of 0.65,

however, the error rate remained stable, but coverage decreased. We thus chose a cut-off equal to 0.65, at

which 31,257 biological assemblies from the PDB were validated with an error rate of 2.1% (Fig. 2b).

Subsequently,  we  utilized  each  validated  assembly  to  search  for  non-annotated  entries  with  a  similar

sequence but a different QS. By transitivity, we annotated 11,119 such entries to be potentially incorrect, as

illustrated in  Figure 1b. Benchmarking these annotations against PiQSi showed an error rate estimated at

11.5% (Fig. 2c). While this error rate is higher, we note that these annotations are highly valuable because

they are specific to erroneous structures. 

We next compared the performance of QSalign to two state-of-the-art methods, PISA20 and EPPIC30. Using

PiQSi as a benchmark dataset, the prediction of dimers using PISA and EPPIC gave results comparable to

published values with 13% and 18% error rates, respectively, while we observed an error rate of 4% with

QSalign. Interestingly, among higher order oligomers, QSalign showed the same error rate of 4%, but values

for PISA and EPPIC increased to 16% and 32%, respectively. This increase might be due to the fact that

high-order oligomers involve several interfaces, and it becomes less likely to predict all of them correctly.

We also benchmarked QSalign using a compendium of gold standard datasets, henceforth the “cGS” dataset

(Methods), and we observed similar results (Fig 2d, Table S1,  Table S4 [[here we cite s4 before s2 …

problematic]]).

QSalign accuracy is supported by residue-level conservation information

In addition to benchmarking QSalign using a manually curated set of protein structures, we carried out a

global quality assessment by comparing the evolutionary conservation of amino acids in biological versus

non-biological  interfaces.  It  is  known that  amino acids present  at  interaction interfaces tend to be more

conserved than surface residues of the same protein28-31. Thus, we compared the log-ratio, r, of surface over

interface evolutionary rate (Methods). If residues are equally conserved in both structural regions, r will be

close to 0, whereas higher (or lower) conservation of interface residues will yield positive (or negative)  r

values, respectively. In non-biological QS states from PiQSi and QSalign, the distribution of r was centered

on, or close to zero, indicating that interface residues behaved like surface residues, as expected. Among

biological complexes, r was above zero on average (MeanPiQSi=0.70, p=2.5e-15; MeanQSalign=0.77, p=2.6e-6),

indicating that residues at biological interfaces are, on average, twice as conserved as surface residues. The

similarity  of  the  distribution of  r observed among curated  structures  from PiQSi  and among structures

annotated with QSalign further reflects the high quality of the annotations derived from the method (Fig.

2d). Interestingly, despite the fact that QSalign relies on interface geometry conservation to infer biological
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relevance, 5.6% of complexes annotated as biologically relevant show r values below 0. Among these, the

geometry of the interaction between subunits is conserved, but the residues mediating the interaction are

variable. 

Annotating monomers with anti-QSalign 

QSalign  was  unable  to  annotate  monomeric  proteins,  which  by  definition  do  not  contain  conserved

interfaces. Nonetheless, by “inverting” the QSalign principle, we may consider the absence of interface in

homologs to be predictive of monomeric proteins. We call this approach “anti-QSalign”.

Our predictor was based on counts of non-redundant homologs having or not having a QS. With this strategy,

it is expected that protein families with fast-evolving QS will lead to erroneous annotations, while families

with conserved QS will allow robust predictions. As for QSalign, the high degree of redundancy in the PDB

enabled annotating a majority of protein structures. Indeed, we found that ~80% of monomeric proteins

(46,877)  had at  least  one homolog in the 30% to 90% sequence identity  range,  and could therefore  be

classified as being either monomeric or oligomeric by anti-QSalign (Methods). 

We benchmarked the predictions of anti-QSalign using both the cGS dataset (Fig. 3a) and PiQSi (Fig. 3b). In

both  benchmarks,  anti-QSalign  proved to  be  a  reliable  predictor  with  areas  under  the  curve  (AUC)  of

receiver-operator characteristic (ROC) plots equal to 0.94 (cGS) and 0.90 (PiQSi). These results compared

favorably to PISA and EPPIC predictions, which showed maximal AUC values of 0.85.

QSbio integrates predictions and provides QS confidence estimates on a PDB-wide scale

Together, QSalign and anti-QSalign enabled annotating the QS state of over 80,000 structures (Table S5).

Next, we asked whether QS conservation across methods could be utilized to create a meta-predictor with

even  higher  accuracy  and  coverage.  We  employed  the  structural  superposition  heuristic  of  QSalign  to

compare QS states across PISA and the PDB, and we also mapped interfaces annotated by EPPIC onto the

PDB assemblies (Methods,  Fig.  3c and Supplementary Fig.  S5).  The comparison of PISA and EPPIC

predictions  with  PDB assemblies  enabled  consensus  predictions  to  be  derived  from their  agreement  or

disagreement. We expected that a QS supported by both methods should be more likely to be biologically

relevant than a QS supported by only one or neither method.

Among the structures annotated by QSalign or anti-QSalign, QSbio relied on all three methods. For other

structures, QSbio combined PISA and EPPIC only. We assessed the performance of QSbio and saw that

integrating predictions gave substantial improvements over each method taken individually. Integrating PISA

and EPPIC (without QSalign/anti-QSalign) improved AUC values by 0.06, 0.08, and 0.08 for monomers,

dimers, and oligomers, to reach values of 0.91, 0.91, and 0.83, respectively (Fig. 3b). A notable improvement

is seen among dimers where the false positive rate is above 0.20 for either PISA or EPPIC, but decreases to

0.05 when both methods agree. 
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For structures also annotated by QSalign or anti-QSalign, the performance of QSbio was remarkable: among

monomer  and  dimers,  the  AUC  reached  0.95  and  0.97,  respectively  (Fig.  3b).  Among  higher-order

oligomers, the predictive power of QSalign was already maximal (AUC=0.92) and only marginally improved

in QSbio. 

Overall,  QSbio provides QS annotations with a quality approaching that of  manual  curation for 80% of

monomeric  and  70%  of  homo-oligomeric  structures,  and  high-quality  annotations  for  the  rest  of  the

structures. We estimated error rates for each class of prediction within the benchmark, and from them derived

five levels of annotation confidence: very high, high, medium, low, and very low, corresponding to estimated

error rates of 0-2, 2-5, 5-15, 15-50, and 50-100 percent. The numbers of structures assigned to each category

were, respectively: 51,050, 18,217, 14,995, 14,335, and 11,499. These annotations will allow the scientific

community  to  select  high-confidence  QSs  to  carry  out  structural  analyses.  Equally  important,  the  low-

confidence classes pinpoint structures in the PDB that may require correction. 

Plasticity of interfaces

Interaction interfaces place constraints on the structure, chemistry, and evolution of proteins. Structurally,

subunits may be required to maintain a precise orientation relative to each other42. Chemically, a specific

composition at the interface is needed for binding18,19,21-23, and we know that mutations generally decrease the

interaction affinity43. As a result, on average, interfaces are hydrophobic, they are enriched in specific sets of

amino acids, and their residues are more conserved than those at the surface27-31. 

There is,  however,  a large degree of variability around these average trends:  some interfaces can be as

hydrophilic as protein surfaces, while others can be less conserved than protein surfaces (Fig. 2e). It can be

hypothesized that such variability reflects different structural requirements found across different protein

families. In that case, structurally similar interfaces should deviate from the average in a similar fashion.

Alternatively,  interfaces  may  be  plastic  and  be  able  to  drift  extensively,  while  maintaining  the  overall

structure of a protein oligomer. To decide between these two alternatives, we examined the variability of

interface properties within and across protein families. 

As  an  initial  case  study,  we  analyzed  six  dimeric  alcohol  dehydrogenases.  These  show high  structural

similarity, with a mean TM-score among pairs equal to 0.81. In these enzymes, NAD (or NADP) is used as a

cofactor and is in contact with both subunits, so we expected physicochemical and evolutionary properties of

the dimeric interfaces to be conserved. We analyzed three interface properties (interface propensity, interface

hydrophobicity, and the ratio of interface to surface conservation) among the six members of the family. We

then compared how these properties varied relative to the entire dataset of 4,215 pairs (Fig. 4a). We observed

that interface properties across the six enzymes spanned nearly the entire range seen in the dataset (Fig. 4b).

For  example,  the  human enzyme (PDB code  3COS)  has  a  highly  hydrophobic  interface,  while  that  of
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Rhizobium etli  (PDB code 4DVJ) is  predominantly hydrophilic.  Similarly,  in terms of  conservation,  the

interface of the enzyme from Escherichia coli (PDB code 4ILK) is 3.9 times more conserved than the rest of

the surface, while its yeast homologue (PDB code 4OAQ) shows interface conservation similar to the rest of

the surface. Thus, these dimers do not need their interface to meet strict family-specific physico-chemical

requirements.  Rather,  their  interfaces exhibit  nearly as  much variability as  is  sampled among dimers  in

general. 

Is  such interface  plasticity  specific  to  this  alcohol  dehydrogenase  family,  or  is  it  general  to  all  protein

families? To answer this question, we employed a dataset of 4,215 pairs of homologous interfaces based on

the  results  of  QSalign.  We  then  assessed  the  within-family  variability  of  each  property  relative  to  the

variability across families. If variability within families is  small compared to the variability seen across

families, the correlation coefficient will be close to one. However, if the variability within families is as large

as the variability across families (as we observed for alcohol dehydrogenases) the correlation coefficient will

be  close to zero (Fig.  4c).  When comparing interface properties  among homologs sharing 80% to 90%

sequence identity, we observe high correlations, with R2  values equal to 0.82, 0.48, and 0.57 for interface

conservation, hydrophobicity, and propensity, respectively (Supplementary Fig. S6). However, the fact that

close homologs share interface properties is expected because they have not had sufficient evolutionary time

to diverge.  As sequence identity decreases among the homologs being compared,  so does the similarity

between their interfaces, to the point where the interfaces within two homologous assemblies are no more

alike than random interfaces. Indeed, for the three interface properties we considered, the correlation among

distant homologs is close to zero, even though they share the same interface geometry and overall structure

(Fig. 4,  Supplementary Fig. S6). Thus, this result generalizes previous observations made on heteromeric

and transient interactions44,45 and shows that homo-oligomeric interfaces, which are often large and stable,

can nevertheless be highly plastic. 

DISCUSSION 

We introduced two complementary approaches, QSalign and anti-QSalign, which allow QS prediction based

on conservation across  evolution.  While  we focused on annotating monomers  and homo-oligomers,  QS

conservation  could,  in  principle,  also  be  applied  to  hetero-oligomers.  Such  an  extension  will  require

additional  developments  because  differences  in  numbers  of  subunits  may  be  tolerated  among  hetero-

oligomers, and because subunits of different size make global structure similarity harder to interpret. 

The main limitation of QSalign and anti-QSalign is their requirement for homologous structures, but the high

species  coverage of  the  PDB allowed annotating ~80% and ~70% of  monomeric  and homo-oligomeric

structures, respectively. We anticipate that these fractions will  increase with time, as more structures are

solved.  Increasing  the  number  of  high  quality  QS annotations  will  be  important  for  detailed  structural

analyses of disease-causing mutations46,47 and the determinants of protein evolution48,49. 
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In addition to using QS conservation across evolution, we employed QS comparison to integrate predictions

of different methods with QSbio, which improved considerably the prediction accuracy for monomers and

dimers. A noteworthy feature of QSbio are the confidence estimates that will facilitate the interpretation of

QS information, both for individual structures and for PDB-wide datasets serving in bioinformatics analyses.
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Figure 1 | Quaternary structure conservation across species points to biologically relevant crystal contacts. (a) Protein

X-ray diffraction requires formation of a crystal. At the molecular level, a crystal is formed by a lattice within which the

repeated unit is the unit cell. Here, the unit cell contains eight copies of the protein (PDB code 1EX2) in contact with

one another.  Identifying biologically relevant contacts among these is challenging. For example,  the authors of the

structure shown50 assigned the top dimer as biologically significant, while the method PISA predicts the dimeric form

underneath to be so. Searching for homologous structures reveals the latter to be conserved across species (e.g., PDB

code 4LU1) (b) Tyvelose epimerase is a tetrameric enzyme in Salmonella typhi (PDB code 1ORR). A similar tetramer

is found in  Arabidopsis thaliana (PDB code 1I2B, RMSD=3.55Å) despite their sequence sharing only 22% identity.

Such  conservation  suggests  that  both  tetramers  are  biologically  relevant.  This  information  enables  subsequent

correction of entries showing identical sequence but different QS (e.g., PDB code 1I24).     
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Figure 2 | Quaternary structure superposition and benchmark of predictions.  (a)  Superposition of two large QSs by

QSalign (only half of the structure is shown to facilitate visualization). (b) We compared QSalign predictions against a

manually curated dataset from PiQSi36. QSalign infers two QSs as correct when their structural similarity exceeds a

TM-score cut-off. We scanned different cut-off values and for each, recorded the error rate (blue line) and the total

number of QSs annotated (green line). (c) QSalign then searches for proteins with conflicting QSs and infers those as

erroneous.  (d)  Benchmark  of  QSalign,  PISA and  EPPIC  using  the  same  datasets.  The  number  in  parenthesis

corresponds to the error rate after discarding a structure for which recent work confirms QSalign prediction. Detailed

prediction information for the three methods is given in Supplementary Table S1. (e) Sequence conservation of interface

residues of QSs predicted to be biological (green) or non-biological (red) in QSalign, and PiQSi. Similar distributions of

relative  interface  conservation  are  observed  (MeanPiQSi=0.70,  p=2.5e-15;  MeanQSalign=0.77,  p=2.6e-6;  two  sided

Wilcoxon test).
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Figure 3 | Principle of anti-QSalign and benchmark of QSbio. (a) anti-QSalign uses the oligomeric state of homologues

to infer whether a protein is monomeric. ROC analysis based the cGS dataset (144 monomers and 187 oligomers). The

AUC for anti-QSalign, PISA and EPPIC are shown. Detailed prediction information are given in Supplementary Table

S2. (b) Benchmark of individual methods and of their integration into QSbio. Among monomers, dimers, and larger

oligomers, combining PISA and EPPIC led to 2, 2, and 1.3-fold reduction in error rate. The addition of QSalign reduced

the error rate further, by 2, 3, and 3.5-fold, respectively. These improvements are reflected in the AUC values. Detailed

prediction information are given in Supplementary Table S3. (c). Example of QS states annotated as correct or incorrect

in  QSbio. The predictions across  methods agree for  the top QS (green,  PDB code 2I56) and disagree for  the QS

underneath (PDB code 1JQN).
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Figure 4 | Protein interfaces are plastic. (a) We compared the interfaces of structurally similar protein complexes and

exemplify interface plasticity in dimeric alcohol dehydrogenases. Two homologous structures sharing 31% sequence

identity  are  shown.  The  interface,  shown with  spheres,  is  conserved  structurally  but  not  chemically.  (b)  Rank of

interface properties for six alcohol dehydrogenases, where 0 and 100 correspond respectively to the lowest and highest

values  seen in  any complex from the dataset.  The six members  span nearly the entire  range,  indicating that  their

interface properties vary greatly, nearly as much as seen across the entire dataset of 4,215 pairs. (c) We evaluated

interface plasticity across the entire dataset. The correlation coefficient (R2) of a given property for pairs of structures

reflects whether that property is  constrained in a family-specific manner.  If  pairs of homologous interfaces exhibit

similar values for the properties examined, a high R2  value is expected. In contrast, if there are no family-specific

constraints, homologous interfaces will be as different from each other as two random interfaces can be, and R2 will be

low. (d).  The correlation coefficient  among pairs of  structurally similar  interfaces is  low (<0.1) when the proteins

compared share less than 30% sequence identity. This result highlights that structurally similar interfaces can be as

different from each other chemically and evolutionarily as interfaces from entirely different families, provided they

have had sufficient evolutionary time to diverge.
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METHODS

Datasets

The dataset of protein structures on which all analyses were performed is based on 3DComplex as of March

20152 and consists of 110,498 “biological assemblies” defined by the Protein Data Bank. Note that the total

number of structures annotated in QSbio is slightly lower (110,096) because EPPIC lacks some annotations.

The dataset is available on the 3DComplex (Version 5) website:

http://shmoo.weizmann.ac.il/elevy/3dcomplexV5/Home.cgi

For each structure, we also included the top prediction from PISA20 as of April 2015. EPPIC assignments of

interfaces were kindly provided by G. Capitani in October 2015. 

Structural superposition of QSs

Structural superposition was carried out using Kpax (version 3)40; Briefly, Kpax first aligns two structures by

placing all possible pairs of 5-mer fragments at the coordinate origin by exploiting the tetrahedral geometry

of their central Cα atoms, and by using dynamic programming (DP) to find the optimal combination of pairs

of fragments, and hence pairs of central Cα atoms. The aligned Cα atoms are then superposed by least-

squares fitting, and the resulting superposition is refined using further rounds of DP on the atomic Gaussian

overlap of the superposed Cα pairs. Each Gaussian represents the volume of one Cα atom. Thus, if two Cα

atoms overlap perfectly they contribute one volume unit to the overall superposition score, and if two aligned

protein chains superpose perfectly then the total Gaussian overlap score directly corresponds to the volume

of their overlaid Cα atoms. Kpax can align structures with multiple chains, but only in the given chain order.

To  find  the  maximum  aligned  overlap  volume  between  two  multi-chain  oligomers,  it  is  necessary  to

determine the best chain order of one structure with respect to the other. We therefore employed a two-step

heuristic procedure to avoid the computational cost of running Kpax repeatedly on different chain order

permutations. A first alignment and superposition is carried out. The coordinates of the superposed QSs are

then  analyzed  to  map  corresponding  chains  across  the  two  structures.  Scores  between  chain  pairs  are

calculated and correspond to the number of Cα atoms of one chain closer than 2 Å from any Cα from

another chain. The highest-ranking chain pairs provide correspondences that are used to rewrite the PDB

file  in  matching chain  order.  The re-ordered coordinates  are  then used in  a  second round of  structural

superposition,  which yields  the  final  TM-score.  Pseudo-code describing this  procedure is  provided in  a
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Supplemental  Note.  An  executable  version  of  the  structural  superposition  program  is  available  at

https://github.com/elevywis/QSalign.  

PDB-wide superposition of QSs

The  annotation  process  of  QSalign  first  required  structural  superposition  of  homo-oligomers.  To  save

computation time, we carried out structural alignments between potential matches only, that is, between pairs

of  structures  sharing  structural  homology as  reflected  in  their  SCOP or  PFAM domain  architecture,  or

sharing sequence homology (>30% sequence identity). Ultimately, we measured the structural similarity of

25,965,020 QS pairs and recorded the TM-score for each, which was stored in a MySQL database table. We

give the pseudocode for the comparison of one query structure with multiple target structures as a function

“QSalign” in a Supplementary Note.

Annotation procedure

The execution of structural alignments was followed by an inference process described in the pseudocode

“QSinfer” given in Supplementary Note. Briefly, a query QS was annotated as correct if another structurally

similar QS (TM score > threshold) was found for a homolog with less than 80% sequence identity. Pairs of

QSs sharing more than 80% sequence identity were not considered in order to reduce the risk of the same

crystal packing being formed due to protein surface similarity. The annotation process was carried out for

each symmetry group separately, starting with those containing larger numbers of subunits. This condition

ensured that a lower-order oligomer (e.g., a dimer) would be annotated as correct only if no evidence for

high-order  oligomerization  (e.g.,  a  tetramer)  was  found.  Once  all  QSs  from  a  symmetry  group  were

processed,  those  annotated  as  correct  where  used  to  search  for  possible  errors.  The  overall  strategy is

described in the pseudocode “QSpropagate”, given in Supplementary Note. The correction step consists of

identifying proteins with an identical sequence and a structure different from that of a QS annotated as being

correct (Supplementary Figures S3 and S4). Then, the annotation depends on the number of subunits of the

QS to be annotated (QS2) and the QS that is supposedly correct (QS1). We distinguish three cases: (i) If QS2

has more subunits  than QS1,  we  analyze the  consistency of  QS2 given  its  number  of  subunits  and  its

symmetry. We call QS2 consistent when the number of subunits is expected from the point group symmetry

(e.g., dimer for C2, tetramer for D2, etc). Consistent structures are flagged as “ambiguous” and not annotated

as errors, while inconsistent structures are annotated as errors. (ii) If QS2 has the same number of subunits as

QS1, we infer that QS2 is incorrect.  (iii)  Lastly, when QS2 has fewer subunits than QS1, we infer that

interfaces are missing from QS2, which is also annotated as incorrect.

To optimize the TM-score threshold at which two QSs were considered equivalent, we carried out several

full cycles of annotation (e.g., inference + propagation steps) using different TM-scores cut-off (Fig. 2) and

benchmarked the results after each cycle based on PiQSi36. 

Benchmarking the annotations of QSalign for TM-score optimization
After  each  cycle  of  the  annotation  procedure,  we  counted  the  number  of  structures  in  the  following
categories:  TP=annotated as correct  by QSalign and PiQSi;  FP=annotated as correct  by QSalign and as
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incorrect by PiQSi; FN=annotated as incorrect by QSalign and as correct by PiQSi; and TN=annotated as
incorrect  by both QSalign and PiQSi. We calculated the error rate of “correct” annotations by the false
discovery rate FDR = FP / (TP+FP) and the error rate of “incorrect” annotations by the false omission rate
FOR = FN / (FN+TN). The dataset of structures on which these rates were calculated was filtered at a level
of 90% sequence identity. In addition, we used only high confidence annotations from PiQSi, which did not
contain the tag “probable”. The resulting number of structures from PiQSi used for the benchmark was 1434.

Annotating monomers with anti-QSalign

We annotated monomers based on the QS state - considered either as monomeric or oligomeric - of known

homologs. The underlying assumption of this approach is that QS is generally conserved during evolution51,

so that structures homologous to a true monomer should be more likely to be monomeric than oligomeric.

Thus, for a particular protein sequence, the enrichment of monomeric over oligomeric homologs was used to

derive a probability score to be monomeric. These probabilities were estimated based on PDB structures not

found in any benchmark, as follows. We defined six bins of “numbers of homologs”: 0, 1, 2-3, 4-7, 7-14, and

>14, and each protein was assigned to two such bins, one for the number of monomeric homologs and the

other  for  the  number  of  oligomeric  homologs.  We then  recorded frequencies  of  monomers  in  each  bin

combination, e.g., 4.2% of monomers have 2 or 3 monomeric homologs and a single oligomeric homolog.

Then, we recorded the same frequencies for oligomers,  e.g., 1.35% of oligomers have 2 or 3 monomeric

homologs and a single oligomeric homolog. The frequencies were subsequently converted into probabilities,

e.g., we estimated that a protein has a probability of 4.2/(4.2+1.35)=0.76 to be monomeric if it has 2 or 3

monomeric homologs and a single oligomeric homolog. This process is illustrated in Supplementary Fig.

S7. We considered proteins sharing a minimum of 30% and a maximum of 90% sequence identity to be

homologs. We also imposed a minimum of 60% overlap of the sequence alignment relative to the longest of

the two proteins being aligned.

Comparative benchmarks against PiQSi 

We compared the set of annotations obtained with QSalign and anti-QSalign to predictions derived from

PISA and EPPIC.  Importantly,  PiQSi  annotations  refer  to  specific  PDB structures.  Therefore,  we  could

directly compare the annotations of PiQSi to the annotations of PISA and EPPIC for the corresponding

structure. Positives and negatives were counted when the methods supported (positive, P) or not (negative,

N) a particular PDB structure. These predictions, together with PiQSi annotations, allowed a contingency

table to be created, and performance statistics to be derived. ROC curves were plotted using R 52 and the

pROC package53.  The numbers of structures (broken down by oligomeric state) used in this comparative

benchmark are given in Table S4.

The specific conditions to count positives and negatives depend on the oligomeric state of the PDB structure

considered. First, for monomeric proteins, the conditions for counting positives and negatives were:

- anti-QSalign: the “monomer probability score” associated with the PDB code was above (positive)

or below (negative) 0.4.
- PISA: no assembly was predicted (positive), or an assembly was predicted (negative)
- EPPIC: no biological interface was predicted (positive), or at least one was (negative).
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Second, for oligomers with two or more subunits, the conditions for counting positives and negatives were: 

- QSalign: the structure is annotated as correct (positive) or incorrect (negative).
- PISA: the structure matches the PDB structure (positive, TM-score > 0.9) or not (negative, TM-score

< 0.9)
- EPPIC:  when biological  interfaces  are  mapped onto the PDB structure,  they either  maintain all

subunits in contact (positive) or they do not (negative).

Comparative benchmarks against the compendium gold-standard dataset (cGS).

We assembled a second gold standard dataset  based on previously published datasets.  We used datasets

published by Bahadur et al.54, Ponstigl et al.18 and Duarte et al.55 (for monomers only), which gave a total of

338 structures including 144 monomers, 137 dimers, and 57 oligomers (Table S4). We call the so-obtained

dataset the consolidated gold standard (cGS).

An important difference to note between cGS and PiQSi is that we only used “PDB code identifiers” for the

cGS and not  actual  structures.  Therefore,  we  used  the  “number  of  subunits”  to  assess  predictions.  For

monomers, the conditions for counting positives and negatives were identical to those used in the PiQSi

benchmark. For oligomers, however, they differed as follow:

- QSalign: the number of subunits predicted by QSalign is equal to the number of subunits in the

benchmark dataset (positive) or is different (negative)
- PISA: the number  of  subunits  in  the  PISA assembly is  equal  to  the  number  of  subunits  in  the

benchmark dataset (positive) or is different (negative)
- EPPIC: we could not infer the number of subunits solely from interface information, and so we were

unable to include EPPIC in this benchmark.

Integrating QS information with QSbio 

QSbio compares  QSs from the PDB with predictions  of  EPPIC,  PISA,  and QSalign/anti-QSalign when

available. The comparison with PISA was carried out by structural superposition, as described above, and

pairs of QSs with a TM-score above 0.9 were considered identical. To compare PDB and EPPIC QSs, we

mapped interface groups from EPPIC onto PDB structures. For the mapping, we decomposed each PDB

assembly into pairs of contacting chains, and each pair was superposed onto the interfaces from EPPIC to

identify matching pairs (Supplementary Figure S5). We then derived a weighted score for a PDB structure

based  on  its  support  by  the  different  methods.  For  monomers,  the  score  was  calculated  as:  SMONO  =

0.4*antiQSalign + 0.4*PISA + 0.2*EPPIC. For oligomers, the score was calculated as: SOLIGO = 0.7*QSalign

+ 0.2*PISA + 0.1*EPPIC.  When the annotation  of  (anti)-QSalign  was  not  available,  the  score  was  re-

normalized to 1.0, but the same weights for PISA and EPPIC were used. We estimated the expected error

rates (err) in QSbio by:  err = FPR * fN / (FPR * fN + TPR * fP), where TPR and FPR are the true and false

positive rates measured in each score class, and fP and fN are the estimated (unknown) fractions of correct

and incorrect structures in the PDB. We aimed for conservative error rates, so we used relatively high values

for fN and fP, namely fN=0.2 and fP=0.8. Importantly, the error rates estimated for each class also depend on

the benchmark dataset and on the assumed pattern of errors in the PDB. In that respect, their absolute value
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should be interpreted with care. We do expect, however, that the accuracy rank of the different classes will be

robust. To reflect this limitation, as well as to simplify the use of these predictions by end-users, we created

five  confidence  categories:   “very  high”,  “high”,  “medium”,  “low”  and  “very  low”,  corresponding

respectively to estimated error rates of 0-2, 2-5, 5-15, 15-50, and 50-100 percent.

Interface properties

We selected pairs of homologous dimers matching the following criteria: the TM-score was above 0.65, each

structure’s resolution was below 2.5Å, each structure was a representative of a non-redundant set at 90%

sequence identity and each structure was annotated as biological by QSalign. All properties were calculated

on interface core residues, as defined in Levy56. To calculate sequence conservation, each protein was used to

search for homologs in Uniref9057 and homologs with >40% sequence identity and 80-100% coverage were

retained for multiple alignments using MUSCLE58. Alignments with less than 5 sequences were discarded.

We subsequently used rate4site with default parameters59 to obtain amino acid specific evolutionary rates.

Rates were rescaled to positive values by subtracting the minimum score in each alignment. Interface-core

and surface evolutionary rates were obtained by averaging the scores of residues composing each region

respectively. The relative conservation of interfaces was obtained by the log-ratio r log (evolutionary rate at

surface / evolutionary rate at interface), so r > 0 indicates the interface is more conserved (i.e., lower rate of

evolution)  compared  to  the  surface.  Differences  in  the  distribution  of  r were  tested  using  a  two-sided

Wilcoxon test. Interface hydrophobicity was calculated by the ratio of hydrophobic residues present at the

interface. Interface residue propensity was calculated by averaging individual amino acid propensities taken

from Dey et al.60 and normalizing them by the size of the interface.

Data Availability

All  the  annotations  and  confidence  categories  derived  from  this  work  are  available  for  download  at

www.QSbio.org. 

Code Availability

The code implementing the heuristic procedure to be used with the Kpax algorithm for QS alignment is

available at https://github.com/elevywis/QSalign.
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