Auxiliary Guided Autoregressive Variational Autoencoders

Thomas Lucas 1 Jakob Verbeek 1
1 Thoth - Apprentissage de modèles à partir de données massives
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann
Abstract : Generative modeling of high-dimensional data is a key problem in machine learning. Successful approaches include latent variable models and autoregressive models. The complementary strengths of these approaches, to model global and local image statistics respectively, suggest hybrid models combining the strengths of both models. Our contribution is to train such hybrid models using an auxiliary loss function that controls which information is captured by the latent variables and what is left to the autoregressive decoder. In contrast, prior work on such hybrid models needed to limit the capacity of the autoregressive decoder to prevent degenerate models that ignore the latent variables and only rely on autoregressive modeling. Our approach results in models with meaningful latent variable representations , and which rely on powerful autoregressive decoders to model image details. Our model generates qualitatively convincing samples, and yields state-of-the-art quantitative results.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01652881
Contributeur : Thomas Lucas <>
Soumis le : jeudi 30 novembre 2017 - 18:32:50
Dernière modification le : samedi 2 décembre 2017 - 01:14:52

Fichier

paper_iclr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01652881, version 1

Collections

UGA | LJK | INRIA

Citation

Thomas Lucas, Jakob Verbeek. Auxiliary Guided Autoregressive Variational Autoencoders. 2017. 〈hal-01652881〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

18