M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, ICML, 2017.

P. Bachman, An architecture for deep, hierarchical generative models, NIPS, 2016.

Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1798-1828, 2013.
DOI : 10.1109/TPAMI.2013.50

URL : http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf

Y. Burda, R. Salakhutdinov, and R. Grosse, Importance weighted autoencoders, ICLR, 2016.

A. Deshpande, J. Lu, M. Yeh, M. Chong, and D. Forsyth, Learning Diverse Image Colorization, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.307

L. Dinh, D. Krueger, and Y. Bengio, NICE: Non-linear independent components estimation, 2015.

L. Dinh, J. Sohl-dickstein, and S. Bengio, Density estimation using real NVP, 2017.

M. Germain, K. Gregor, I. Murray, and H. Larochelle, MADE: Masked autoencoder for distribution estimation, ICML, 2015.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, NIPS, 2014.

K. Gregor, F. Besse, D. Rezende, I. Danihelka, and D. Wierstra, Towards conceptual compression, NIPS, 2016.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin et al., PixelVAE: A latent variable model for natural images, ICLR, 2017.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR, 2015.

D. Kingma and M. Welling, Auto-encoding variational Bayes, ICLR, 2014.

D. Kingma, D. Rezende, S. Mohamed, and M. Welling, Semi-supervised learning with deep generative models, NIPS, 2014.

D. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever et al., Improved variational inference with inverse autoregressive flow, NIPS, 2016.

A. Kolesnikov and C. Lampert, PixelCNN models with auxiliary variables for natural image modeling, ICML, 2017.

A. Krizhevsky, Learning multiple layers of features from tiny images, 2009.

H. Larochelle and I. Murray, The neural autoregressive distribution estimator, 2011.

R. Neal and G. Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, Learning in Graphical Models, pp.355-368, 1998.
DOI : 10.1007/978-94-011-5014-9_12

A. Van-den-oord, N. Kalchbrenner, and K. Kavukcuoglu, Pixel recurrent neural networks, 2016.

A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, Semi-supervised learning with ladder networks, NIPS, 2015.

S. Reed, A. Van-den-oord, N. Kalchbrenner, S. Gómez-colmenarejo, Z. Wang et al., Parallel multiscale autoregressive density estimation, ICML, 2017.

D. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, ICML, 2014.

T. Salimans, A. Karpathy, X. Chen, and D. Kingma, Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications, ICLR, 2017.

A. Van-den-oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves et al., Conditional image generation with PixelCNN decoders, NIPS, 2016.

X. Yan, J. Yang, K. Sohn, and H. Lee, Attribute2Image: Conditional Image Generation from Visual Attributes, ECCV, 2016.
DOI : 10.1109/TPAMI.2011.208