M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, p.ICML, 2017.

P. Bachman, An architecture for deep, hierarchical generative models, In: NIPS, 2016.

Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1798-1828, 2013.
DOI : 10.1109/TPAMI.2013.50

URL : http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf

Y. Burda, R. Salakhutdinov, and R. Grosse, Importance weighted autoencoders, p.ICLR, 2016.

A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, Semi-supervised learning with ladder networks, p.NIPS, 2015.

S. Reed, A. Van-den-oord, N. Kalchbrenner, S. G. Colmenarejo, Z. Wang et al., Parallel multiscale autoregressive density estimation, p.ICML, 2017.

D. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, p.ICML, 2014.

T. Salimans, A. Karpathy, X. Chen, and D. Kingma, Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications, p.ICLR, 2017.

X. Yan, J. Yang, K. Sohn, and H. Lee, Attribute2Image: Conditional Image Generation from Visual Attributes, p.ECCV, 2016.
DOI : 10.1109/TPAMI.2011.208

URL : http://arxiv.org/pdf/1512.00570