Gradient-based steering for vision-based crowd simulation algorithms

Teófilo Bezerra Dutra 1 Ricardo Marques 2 Joaquim Bento Cavalcante-Neto 1 Creto Vidal 1 Julien Pettré 3
3 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA_D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives through a more realistic simulation of the way humans navigate according to their perception of the surrounding environment. In this paper, we propose a new perception/motion loop to steering agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with solutions where agents avoid collisions in a purely reactive (binary) way, we suggest exploring the full range of possible adaptations and retaining the locally optimal one. To this end, we introduce a cost function, based on perceptual variables, which estimates an agent's situation considering both the risks of future collision and a desired destination. We then compute the partial derivatives of that function with respect to all possible motion adaptations. The agent then adapts its motion by following the gradient. This paper has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the perceived danger of the current situation. We demonstrate improvements in several cases.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2017, 36 (2), pp.337 - 348. 〈10.1111/cgf.13130〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01653590
Contributeur : Julien Pettré <>
Soumis le : vendredi 1 décembre 2017 - 15:51:47
Dernière modification le : mercredi 16 mai 2018 - 11:24:14

Fichier

EG2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Teófilo Bezerra Dutra, Ricardo Marques, Joaquim Bento Cavalcante-Neto, Creto Vidal, Julien Pettré. Gradient-based steering for vision-based crowd simulation algorithms. Computer Graphics Forum, Wiley, 2017, 36 (2), pp.337 - 348. 〈10.1111/cgf.13130〉. 〈hal-01653590〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

87