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Abstract. In this paper, we propose a novel optical flow approach for estimat-
ing two-dimensional velocity fields from an image sequence, which depicts the
evolution of a passive scalar transported by a fluid flow. The Eulerian fluid flow
velocity field is decomposed into two components: a large-scale motion field and
a small-scale uncertainty component. We define the small-scale component as a
random field. Then the data term of the optical flow formulation is based on a
stochastic transport equation, derived from a location uncertainty principle [17].
In addition, a specific regularization term built from the assumption of constant
kinetic energy involves the same diffusion tensor as the one appearing in the data
transport term. This enables us to devise an optical flow method dedicated to flu-
id flows in which the regularization parameter has a clear physical interpretation
and can be easily estimated. Experimental evaluations are presented on both syn-
thetic and real images. Results indicate very good performance of the proposed
parameter-free formulation for turbulent flow motion estimation.

1 Introduction

Motion estimation techniques are becoming increasingly important in the study of fluid
dynamics. Extracting the velocity fields from image sequences allows the researchers
to get a deeper insight into the complex and unsteady fluid flows. First proposed by
Horn and Schunck [13], optical flow has been intensively studied in the computer vi-
sion community, and a huge number of variations have been presented in the literature,
such as [2], [3], [18], [21]. All these methods rely on the fundamental assumption of a
brightness conservation along a point trajectory:

dr _of

L ivre=o (1)

In this transport equation, referred to as the optical flow constraint (OFC), V denotes the
gradient operator, f and @ the intensity of the image and the motion field, respectively.
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For variational optical flow approaches, the OFC equation is associated with a spatial
coherency assumption [13], in order to cope with the so called aperture problem. A
weighting coefficient balances these two terms in the optic-flow energy functional.

Compared to the correlation-based motion estimators, optical flow methods enable
to estimate dense velocity fields and thus potentially lead to motion fields with finer
details. In addition, the OFC equation (1) can be combined with various physical con-
straints to describe the transportation of a fluidic scalar by a motion field. Note that the
classical optical flow methods are in general used for estimating rigid motions and rely
on a strong smoothing constraint. This constraint is difficult to interpret physically and
the weighting coefficient is hard to choose optimally.

The original Horn and Schunck (HS) formulation has been extended in various ways
to cope with motion estimation from fluid images. For instance, Corpetti et al. [7] p-
resented a fluid-flow dedicated formulation based on the integrated continuity equation
(ICE) and a second-order div-curl regularizer, that allow preserving better the diver-
gence and the vorticity of the flow. Liu and Shen [16] discussed the relation between
optical flow and fluid flow, and suggested to use the projected motion equation. A-
mong the recently-developed techniques, optical flow is also formulated in the forms of
orthogonal decomposition [22], wavelet expansion with a higher-order regularization
term [10], [15], optimal control scheme [19] or Bayesian stochastic filtering approach
[9]. A review on different fluid motion estimation techniques is presented in [12].

Despite a great deal of effort, turbulence modeling and measurement is still a chal-
lenging issue in fluid mechanics. Realistic turbulent flows contain small-scale structures
that are significant for energy and mass transport. However, the sub-grid scales are not
taken into account in the optical flow formulations. To overcome this problem, [5] re-
placed the optical flow constraint with a sub-grid transport equation by introducing an
eddy-diffusivity model. The diffusion coefficient of the transport equation is selected
empirically. Instead, a structural sub-grid model with an eddy viscosity for computing
the small-scale diffusion factor is applied in [6]. These works show good estimation
results. However, let us outline that these approaches still highly depend on a regular-
ization parameter whose value is difficult to fix and which has no direct physical inter-
pretation. Furthermore, an additional parameter associated with the turbulence model,
which is also difficult to fix in practice, is introduced in the data term.

In this paper, we aim at proposing a novel formulation for turbulent fluid motion es-
timation with a different strategy. The main ideas and contributions of this work consist
in reformulating the optical flow estimation problem through the introduction of turbu-
lence modeling expressed under a location uncertainty principle. As derived in [17], the
Eulerian velocity of a flow is decomposed into a large-scale component and a small-
scale turbulent component. The latter one, specified as a random field and referred to as
location uncertainty, gives rise to a modified transport equation [20] obtained from a s-
tochastic expression of the Reynolds transport theorem [8], [17]. The resulting stochas-
tic optical flow constraint equation includes the effects of the unresolved (so called
sub-grid) velocity component. Another constraint on the kinetic energy enables us to
interpret the regularizer as a physical constraint. As we demonstrate it in this paper, all
the parameters involved in this optical flow model can be optimally set or estimated.
Therefore, it enables us to avoid the inescapable and cumbersome parameter tuning.
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2 Methodology Description

2.1 Stochastic transport

Let x, = (x(¢),y(t))T (x, € R?) denote the position of a particle in the two-dimensional
(2D) domain £ at time step ¢. Let us follow the basic assumption that the Eulerian ve-
locity field of turbulent flow consists of a smooth velocity component @(x,#) = (u,v)”
and a small-scale random velocity component termed uncertainty. Accordingly, the La-
grangian stochastic displacement regarding the trajectory x; reads:

dX[ = w(X[,I)dt + G(X[,t)dB[. (2)

The integral expression involves a random function, B;, that can be interpreted as a
white noise process in space and a Brownian process in time. The spatial correlations
of the velocity uncertainty are specified through a diffusion operator ¢ (x,7) defined
through the matrix kernel & (-, -, ) for any vectorial function f (n-dimensional) as:

G(x,t)fé/Qc“f(x,z,t)f(z,t)dz. 3)

Therefore, it can be seen that this operator is a matrix mapping from R” into R? at
point x. In a motion estimation context, the flow velocity field is assumed constant
between two successive image frames. Then without loss of generality we can safely
ignore the time variable of ®(x,7) and o (x,#). Thus we have dx = (x)dr + o(x)dBy,
where dx = x; — X, represents the displacements of particles between two successive
images. The uncertainty component, o (x)dBy, representing the small-scale velocity, is a
Gaussian random function correlated in space. The covariance tensor of the uncertainty
component 6dB; (at different locations - x and x’) reads:

Q = Cov(x,x')

2 [(o(x)dB,)(o(x')dB,)" | = /Q &(x,z)67 (X,z)dz dt = o(x)o” (X) dt, @

where I [(dB,)(dB,)”] = dr. The corresponding variance tensor, a, is defined by the
single-point covariance of the small-scale displacement. It is a 2 X 2 symmetric positive
definite matrix for each spatial point x in the 2D physical domain €2, given by:

a(x) £ o(x)o’ (x) = / G(x,z)67 (x,2)dz = M.

A m &)

Given the stochastic formalism, we now consider that a conserved scalar quantity f is
transported by a motion field under location uncertainty. The conservation law reads:

F(x +dx, 0 +dt) = f(x4,1). (6)

As f is a random function, its material derivative D, f £ df(x,t) = 0, which involves
the composition of two stochastic processes, can be expanded via the generalized Ito
formula (Ito-Wentzell formula). The expression is given by

2 p] f

1 ¢ 22
' ij=1 i0Xj

i=1 4
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where d; f stands for the time increment of the (non differentiable) quantity f: d,f =
f(x,t4+dt) — f(x,t) and the quadratic variation operator (-,-) is briefly presented in
the Appendix A. Compared to the standard Ito formula, the expression introduces the
additional co-variation terms between x and the gradient of the random function f. The
derivation of (7) is provided in details in [17] and [20], here we give the conclusion:
for an incompressible random velocity component (namely V - cdB; = 0), the material
derivative D; f has a simple form D; as following

D, f=df+ Vf-w*—%V-(an) dt+ Vf-odB,, (8)

which is refered to as the stochastic transport operator, where @™ is the modified large-
scale velocity that takes into account the inhomogeneity of the small-scale random ve-
locity component:

w*:w—%(V-a)T. )

This velocity corresponds to a correction of the large-scale velocity induced by the small
scales inhomogeneity. The induced statistical velocity (V - a) is a drift going from the
variance tensor maxima to the variance tensor minima.

Compared to the deterministic material derivative, several additional terms related
to the uncertainty random field are now involved in the formulation (8). A transport
by the small-scale component is visible in the last right-hand side term of (8). The
uncertainty term has also a mixing effect on the large-scale motion through a diffusion
term along the proper directions of the variance tensor (third term of the right-hand side
of (8)). Note that there are possibly a lot of degrees of freedom to define the diffusion
tensor a. In this study, in order to demonstrate the potential of this formalization we
will only consider a simple isotropic divergence free model. This condition leads to a
constant uncertainty for the whole domain between two successive samples, i.e., a(x) =
oll, = const., where [ is the 2 X 2 identity matrix, hence V - a(x) = 0 and then 0* = @
due to (9). Therefore, in this case the stochastic transport equation (8) can be simplified
as follow:

1
ID,f_d,er(Vf-wzaAf)dtJer-GdBt, (10)
where A is the Laplacian operator. In the next section this expression of the material
derivative enables us to derive an optical flow formulation under location uncertainty.
2.2 Data term based on stochastic model
From the previous stochastic transport equation, a novel observation term for optical
flow estimation can be proposed. Hereafter, the conserved quantity f is assumed to be

proportional to the image intensity. Since the Brownian random terms have zero mean,
one can take the expectation of (10) to derive the mean scalar advection, namely

E(ID,f)=1E[d,f+ (Vf-w—échf) dt]. (11)
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The data term of the motion estimation cost functional can be set as the variance of the
luminance variation:

edara =E[(Dyf —E(D, f))?]

2 12
zéigm«&ﬁw—;mu>m}m-AﬁWmvamx 12
where | - | denotes the Euclidean norm, i.e., | Vf [*= (9, f)? + (9, f)?. The derivation in
(12) is thoroughly given in Appendix A. In this expression an additional coefficient 3
has to be fixed or estimated. An estimate of this parameter is also provided in Appendix
A. As all the quantities involved are assumed to be constant in time between two con-
secutive images, dr can be replaced by the time interval between the two frames and
adimensioned to 1. Note that if the investigated flow is fully resolved or contains no lo-
cation uncertainty (i.e., the variance factor of the uncertainty component a = all; = 0),
the simplified version of (12) boils down exactly to the classical optical flow constrain-
t equation. The data model is the sum of two quadratic terms. The first one has the
form of a modified OFC equation. This new brightness consistancy model includes a
diffusion of the image brightness, which represents the unresolved scales action on the
transported luminance function. As for the second term, it can be observed that it cor-
responds to a weighting of the luminance energy dissipation. It can be thus seen as the
measure of the mean transported scalar energy evolution on the time interval between
two consecutive images.

2.3 Regularization term dedicated to stochastic transport

Generally, the regularization term in motion estimation cost functionals is set from a
regularity condition on the solution. Such assumption is difficult to relate to kinematical
or dynamical properties of the flow. In this section, we explain the spatial regularizer
ensuing from an energy conservation assumption. Based on the stochastic transport
presented in Section 2.1, a stochastic representation of the Navier-Stokes equations has
been derived in [17]. By neglecting the external and conservative forces, the dynamics
of the stochastic flow (namely momentum equation under location uncertainty) has the
following expression:

dw; 1
‘V l—f A l__ 5 1
3 +(@0-V)o 5 0A® 0 (13)

where @ and a = &I are defined in the same way as (10), and i stands for the compo-
nent of x-direction or y-direction, i.e., @; = u or v. An inner product with the velocity of
equation (13) followed by integrations by parts provides the kinetic energy evolution:

By =-2 S Vo | 2dx. 14
ot i =29 ez 2/_(2;06‘ or|dx (14

In order to obtain a transformation from one image to the subsequent one that tends to
conserve the kinetic energy, we can expect the semi-norm appearing in the right-hand-
side of (14) to be as small as possible, i.e.,

1 1
ene=13 [l Vo lkax= [ a(VuP+|vP)ax (1)
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where || - || denotes the Frobenius norm for a matrix. We remark that the regulariz-
er (15) is the same as the usual gradient penalizer except for the introduction of the
diffusion factor ¢. Therefore, the classical gradient smoothing penalization can be in-
terpreted as derived from a homogeneous divergence-free uncertainty random field [17].
This basic model yields a smoothing term with no preferential direction.

Remark 1. Tt is necessary to discuss here the unit of the covariance factor a = «l.
According to the principle that different terms in a physical equation should have the
same unit, we now examine the units of the different terms in the momentum transport
equation (13). By letting [g| denote the unit of function g, we have: [%—‘;’J =L/T?,
where L and T denote the basic units of length and time, respectively. That means the
unit of the third term in (13) should satisfy:

1 L
Aw| = JAw| = =
(@d0] = [a]-[A0) = [a] - = = =
Hence, we obtain the units of «, the data term and the regularization term as follows:
L? I? L2
[aj = Ta I_edataJ = ﬁ7 (erng = F7 (16)

where I denotes the basic unit of the luminance function (greyscale unit), and in prac-
tice, the unit of time is adimensioned with the time difference between two samples
and therefore set to 1. To balance the two terms, a weighting coefficient with unit I? /L2
must be introduced.

Gathering the data term and the regularization term, the final energy functional reads:

-

where A is a positive weight coefficient. In traditional optical flow methods the weight-
ing coefficient balancing the data term and the regularizer is a very sensible parameter
that is difficult to tune since A is not directly related to any physical quantity such as
the motion amplitude. In this paper, by dimensional analysis of the objective functional
(discussed in Remark 1), we find that A should have the unit of I /L. That means A
can be related to the gradient of image intensity. Therefore, from this point of view,
there are several choices can be used to formulate A:

A :i/ (d.f)? dx, A :i/ (d | VS ?)dx, A :i/ (1, Vf*)dx, (18)
Qo Lo Q)0 » BT a oM ’

where Ly represents a characteristic value of the length scale in the images, which can
be given by the maximum magnitude of the apparent displacements. We will evaluate
these candidates in the experimental section.

The resulting energy functional (17) resembles to a simple modification of the Horn
& Schunk functional. However, in this new formulation, the penalization constant of the
smoothing term is now interpreted as the variance of the small-scale unresolved motion.
This variance parameter & now also appears as the weighting factor of two additional
terms in the data adequacy terms. As explained in the next section, this property will
allow us to optimally estimate the variance parameter.

2
(d,f+Vf-w—;aAf> — Ba|Vf? dx+/ %mn Vo |7dx, (17)
Q
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3 Minimization and Implementation

In this section we detail the computation of the cost functional optimum with respect
to the two unknowns: @ and «. The optimization algorithm is performed through an
alternated minimization of the two variables.

3.1 Minimization with respect to the motion field

Let us assume that an initial ¢ is known (in our paper, alpha is initialized with a
fixed value 0.5 for both synthetic and real-world image sequences), d,f £ f;, Vf =
(0sf,9yf) = (fv, fy)- By applying the calculus of variation (Euler-Lagrange equation)
to (17), we have

2 (fxu+fyv+ﬁ— ;aAf) fi—2- %laAuzo,
1 1 (19)

With the approximations of Laplacians Au = k(i — u), Av = k(v —v), where i, v denote
the local averages and k depends on the difference scheme, (19) can be expressed as
the following equations:

(fxz + ;2,06) u+ frfyv :%A(xﬁ—k %afof_fxfta
(20)

1 1 1
fxfyu+ <fy2+ 22«0‘) Viixaﬁ‘i’ EafyAfffyﬁa

which can be solved by the Gauss-Seidel method or the Successive Over Relation
(SOR) iteration. In our algorithm, by applying elimination method to (20), the velocity
vector @ can be computed by the following iterative formulation:

¢ KAV f - aAf

k+1 _ -
= o

Mo+ 2+ o1
. fuit + f, 7 + f; — %aAffv

ot fpfp

3.2 Estimation of diffusion factor

The most important parameter to estimate the large-scale velocity field, m, is the diffu-
sion factor . Since & can be regarded as an unknown in the objective functional (17),
one can compute ¢ by cancelling the energy functional gradient with respect to this
variable. Therefore, we have

aJ : 1

or :/ Af(0f+VF-0——aAf) - BV dx
o fo) 2

- (22)
+/ Ve |2 ax=o.
Ja?l
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Then we readily obtain

akszzjb[Af(Vf-@k+j»-+ﬁ2\Vf|2—%l||Vd%”%]dx
Jo(Af)*dx ’

where @F is the estimated velocity vector from the previous iteration, defined by (21).

(23)

3.3 Multi-resolution algorithm

For the basic optical flow methods, one common weakness is that the procedure can
yield good results only when the magnitude of image motions is small (smaller than
the shortest spatial wavelength present in the image [12]). To overcome the estimation
issue due to the large displacements, we use an incremental coarse-to-fine strategy. The
main idea of this strategy can be divided into several processes: a) a multi-resolution
representation through the successive Gaussian filtering and sub-sampling is applied to
the images pair; b) the optical flow is computed from the coarse-resolution level and
then projected onto the next finer level of the pyramid; in the projection step, image
warping is required so we only need to compute the small velocity increments at the
higher resolution level; c) this process is repeated at finer and finer spatial scales until
the original image resolution is reached. The choice of the image filtering process is
significant for the multi-resolution algorithm. Gaussian filters are applied to the orig-
inal images to reduce the noise effect. Furthermore, median filters are applied to the
estimated velocity fields after each warping step for the purpose of eliminating the out-
liers. For more details of the coarse-to-fine algorithm we refer to [21]. The framework
of the multi-resolution strategy is shown in Algorithm 1.

4 Experimental Results

4.1 Synthetic Image sequence

A synthetic fluid image sequence? is tested in this section, which is provided by [4] and
generated by Direct Numerical Simulation (DNS). The phenomenon investigated is the
spreading of a low diffusivity dye in a 2D homogeneous turbulent flow with Reynolds
number Re = 3000 and Schmidt number Sc = 0.7. The intensity of the passive scalar
images is proportional to the dye concentration. The sequence consists of 100 succes-
sive images at the resolution of 256 x 256 pixels. An example of the scalar image and
the corresponding vorticity map are displayed in Figure 1 (a) and (b). A multi-resolution
algorithm with 2 levels and 5 warping steps at each level has been implemented. As for
the computation of A, we use the first formulation in (18) by default.

To evaluate quantitatively the estimated motion fields, we follow a standard way by
computing the average angular error (AAE) and root mean square error (RMSE) over
N pixels of the image:

_ 1vN bl +vive41
AAE = § Y\ arccos NSV SR (24)
RMSE — \/ﬁ TV [ — )2+ (A — )2, 25)

3 Available online: http://fluid.irisa.fr/
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Algorithm 1: Multi-resolution algorithm with symmetric warping for motion es-
timation
Load image pair /mg; and Img;;
Pre-processing;
Pyramidal generation from level O (original) to L (coarsest);
Compute the weighting coefficient A ;
for | =Lto0do
if / = L then
Set initial velocities be O at coarsest level 60/1:1 =0;
Set initial estimation of «;

else
Expand the velocities from coarser level @y to finer level @, by
interpolation;
Set o the estimated o from the previous level;
end
or Each warping step do
Symmetric warping
fi = warpForward(Imgl), f» = warpInverse(Img,).
Optimization
Compute the gradients and Laplacians f;, Vf, A f;
Compute the estimation of B2;
Estimate the motion field dw and o by iterations (21) and (23),

=

respectively;
Update @, = @41 +dw;
Median filtering
end

end
End multi-resolution;

where (u',v") and (u¢,v°) denote the ground-truth velocity and the estimated velocity,
respectively. The index i represents the pixel where optical flow is computed. Further-
more, vorticity maps which are computed by (d,v — dyu) are also demonstrated.

The estimated motion field and vorticity map at time step ¢ = 50 are illustrated in
Figure 1, in comparison with the methods of [13], [10], and [11]. We can observe from
the vorticity maps that the proposed stochastic formulation performs better than the
other references, especially in the area with high vorticity. The vortex structures are well
recovered by the proposed optical flow formulation, whereas they are blurred by the HS
method. The methods of [10] and [11] achieve to estimate the large-scale structures
of the flow. However, they fail to provide the small-scale components in some areas.
Figure 2 illustrates the result of a typical area of the scalar image with a strong vortex.
A zoom in this region shows that the estimated velocity field (black vectors) is highly
consistent with the ground-truth (red vectors).

Quantitative evaluations for the DNS passive scalar images are given in Figure 3.
The AAE and RMSE errors of the proposed method and the HS method are plotted in
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0.5

(b

0.5

(d) (e) €9

Fig. 1. Velocity fields and vorticity maps estimated from different methods on DNS passive s-
calar image sequence at t = 50: (a) scalar image; (b) ground-truth; (c) proposed method; (d) HS
method; (e) method of [10]; (f) method of [11].

Figure 3 (a) and (b), respectively. It can be seen that the accuracy is drastically improved
by more than 50% for both the AAE and the RMSE. Even compared with the state-
of-the-art approaches, the proposed method shows the best performances. Error data
of the other optical flow methods, including [22], [10], [11], [15], and [6], are taken
from [6] and displayed in Figure 3 (c) and (d). The results of our method is close to
(slightly better than) the results of [6], which applies a data term based on the large eddy
simulation (LES) sub-grid model and a divergence-free regularization term. Both the
proposed technique and [6] outperform the other methods for the whole passive scalar
image sequence, indicating that the introduction of turbulence models is significant for
fluid motion estimation. The method of [6] depends on several parameters: the standard
deviation of a low-pass filtering applied on the sequence, the regularization coefficient,
and the ratio of the Reynolds and Schmidt numbers of the flow. These constants are
difficult to fix or not available with accuracy in practice, and must be adapted from one
sequence to the other. On the contrary, the estimator under uncertainty proposed in this
paper does not require such a tuning and can be qualified as a parameter-free approach.

Finally, Figure 4 shows the impact of different choices for lambda, which have the
same required unit. As we can see, although those candidates give different values of A,
they provide similar estimation results of the velocity field. We conclude that one can
choose any of them to construct a parameter-free estimator.
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Fig. 2. Velocity vectors on DNS passive scalar image sequence at ¢t = 50: (a) scalar image with
zoomed area; (b) true velocity vectors (red) and the estimated vectors by the proposed method
(black).

4.2 Real Images

An experimental image sequence of 2D turbulence is provided by [14]. The authors
presented the first detailed experimental observation of the Batchelor regime [1], in
which a passive scalar was dispersed by a large-scale strain. Two successive frames of
this sequence are displayed in Figure 5 (a) and (b), respectively. The strong turbulent
vortices can be clearly observed. We implement a multi-resolution algorithm with 5
levels and 2 warping steps at each multi-resolution level . Figure 5 (c), (d) demonstrate
the vorticity maps estimated from the HS method and the proposed method. It can be
seen that the result of the HS method is over-smoothed, while the result of the proposed
formulation shows more finer structures on the vorticity map.

5 Conclusion

In this paper, we introduce a variational optical flow formulation for turbulent fluid mo-
tion estimation. This novel formulation is derived from a location uncertainty principle
[17], which enables us to take into account the small-scale unresolved components of
the velocity field, and also allows us to estimate explicitly the different parameters in-
volved. The experimental results on both synthetic and real image sequences indicate
the efficiency of the proposed parameter-free technique.

A Variance of Stochastic Transport Operator

Before deriving the variance of the stochastic transport operator, we first recall briefly
the notions of quadratic variation and covariation, which are important in stochastic
calculus. Suppose that X;, Y; are stochastic processes defined on the probability space
(Q,F,P), the quadratic covariation process denoted as (X,Y),, is defined as the limit
in probability:

n—1

<X’Y>’ = lim Z (Xfi+1 _Xti) (Yti+1 _Yti)T7 (26)

(sliﬁo i=0
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Fig. 3. AAE (left) and RMSE (right) errors of different estimators for DNS scalar image sequence.
Results of the proposed method are plotted in figures (a) and (b), in comparison with the results
of the HS method. Results of several state-of-the-art approaches are shown in figures (c) and (d).

withfy <1, < --- <t, and &t; = t;;| — t;. For the Brownian motion, the quadratic co-
variances can be computed by the following rules:

<B’B>Y =1, <B’h>l = <hvB>l = <h7h>f =0, (27)
where h is a deterministic function and B denotes a Brownian process. Now we can
recall the stochastic transport of a scalar f and its expectation, i.e., equations (10) and
(11). Assuming a stationary distribution, then the expectation is the solution of a sta-

tionary equation and IE(ID, f) = 0. Therefore, the variance of the stochastic transport
operator is expressed as:

Var(D E (D f —E(D tf))Z] =K [(]th)z}
2
E{ d.f+ Vf-w—iaAf)dt] }+E{(Vf-0'dB,)2} (28)

+IE{ {d,f—y (Vf—a)—;aAf) dt} (Vf~GdB,)},

where the second term and the third term involve a Brownian term. According to the Itd
isometry, we obtain:

E{(Vf- GdB,)z} —E{(Vf-0dB,, Vf-odB,)} =E{(a|Vf])d} 29)
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Fig. 4. The values of different choices for the weighting coefficient A (left) and the corresponding
estimated RMSE results (right) on DNS scalar images. The notation E denotes the mean value
over the image domain.

and

E{Z [dlf—s— <Vf-a)—;aAf> dt} (Vf-GdB,)}
1 (30)
:2]E{<d,f+ (Vf-a)—zocAf> dr, Vf~cht>} —2E{(d,f, Vf-odB,)},

where (30) represents the correlation between the martingale part of d; f and the random
advection term V f - cdB,. For a conserved quantity f, we have the transport equation
D, f = 0. This implies that when separating f = f 4 f’ in terms of its bounded variation
part and its martingale part (i.e., time scale separation in terms of d¢ and dB;, which is
a unique decomposition), the transport equation can be separated into:

af 1 B
it (Vf-a)—zocAf) dr =0,

&f +Vf-odB, =0.

€29

Thus, we have
0= <dtf/—i—Vf-GdB,7 d,f’+Vf-GdBt>,

(32)
= (dif', dif') + (Vf-0dBy, Vf-0dB,) +2(d,f', Vf-0dB,).

Note that (d,f’, d,f’) = (d,f, d,f), since the quadratic variation of bounded variation
functions (such as the deterministic functions) is equal to 0. Equation (31) shows that
in the case of a transported quantity d, f’ = —V f - 6dB,. When the conservation does
hold only approximately (as in the case of the brightness consistency assumption), we
will assume the proportionality relation: d, f/ = BV f - 6dB,, where 8 has to be fixed or
estimated (note that § = —1 for a strict stochastic transport). This assumption comes
to assume that the highly fluctuating part of the intensity difference is explained by the
transport of the luminance function by the small-scale motion up to a proportionality
factor. With this assumption we have:

E{(df df)} =E{(BVf-cdB, BVf-0dB)} = B°E{(a|Vf])dt}. (33)
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Fig. 5. Results on experimental scalar images: (a) first frame; (b) second frame; (c) estimated
velocity field and vorticity map from the HS method; (d) estimated velocity field and vorticity
map from the proposed method.

112
An estimate of 8 from this equation can be readily obtained: > = E [ (df) } .

alV

In practice the fluctuation f' = f — f is set as the difference between the luminance
function and a local (spatial/temporal) mean f. For successive images, the temporal d-
ifference is thus d, f' = f3 — f{ = (fo— f2) — (fi — f1). Note that as a is also an unknown
in the optical flow formulation. This leads to an interleaved optimization problem. Here
we adopt a simpler strategy in which the proportionality coefficient is fixed from the
value of a at the previous multi-resolution level (i.e., a“~!). Eventually, by combining
(32), (33) and (29), it yields

E{(d,f', Vf-0dB,)} =—E{(a|Vf[*)dt} - B*E{(a|Vf|*)dt}. (34)
Substituting these equations into (28), we finally obtain:

2
Var(]th)%IE{[d,f—i— (Vf-w—%ocAf)dt] }—E{ﬁ2a|Vf|2dz}. (35)

A minimum variance estimator with a spatial averaging for the expectation or consid-
ering a homogeneous Gaussian density leads to minimize:

2
Var(]th)z/Q [dtf+ (Vf-w—%omf) dt} dx—/g(ﬁzawﬂzdz)dx. (36)
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