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Abstract—This paper revisits the failure1 temporal indepen-
dence hypothesis which is omnipresent in the analysis of resilience
methods for HPC. We explain why a previous approach is incor-
rect, and we propose a new method to detect failure cascades,
i.e., series of non-independent consecutive failures. We use this
new method to assess whether public archive failure logs contain
failure cascades. Then we design and compare several cascade-
aware checkpointing algorithms to quantify the maximum gain
that could be obtained, and we report extensive simulation results
with archive and synthetic failure logs. Altogether, there are a few
logs that contain cascades, but we show that the gain that can be
achieved from this knowledge is not significant. The conclusion
is that we can wrongly, but safely, assume failure independence!

I. INTRODUCTION

This work revisits the failure temporal independence hy-
pothesis in HPC (High Performance Computing) systems. As-
suming failure temporal independence is mandatory to analyze
resilience protocols. To give a single example: the well-known
Young/Daly formula for the optimal checkpointing period [25],
[8] is valid only if failure inter-arrival times, or IATs, are IID
(Independent and Identically Distributed) random variables.
We aim at providing a quantitative answer to the following
question: to what extent are failures temporally independent?
We base our analysis on publicly available failure logs from
LANL [16], [15] and Tsubame [24]. We show that a previously
proposed approach based on degraded intervals [4] leads to
incorrect results, and we propose a new algorithm to detect
failure cascades, based on the study of pairs of consecutive
IATs. This new algorithm is used for the largest six public
logs at our disposal, and we detect cascades in one log for
sure, and possibly in a second one. The first conclusion is that
it is wrong to assume failure independence everywhere!

The next question is to assess which gain can be achieved
when equipped with the knowledge that failure cascades are
present in some logs (and in real life, on some large-scale
execution platforms). We design and compare several cascade-
aware checkpointing algorithms. Four algorithms are simple
periodic algorithms, with a constant checkpointing period
obeying the Young/Daly formula

√
2Cµ; they differ by the

value chosen for the MTBF µ. The choices for µ are: (i) the
MTBF of the entire log; (ii) the MTBF of the log expunged

1We use the work failure and fault interchangeably, to denote an unrecov-
erable interruption of resource execution, a.k.a a fail-stop error.

of failures present in degraded intervals [4]; (iii) the MTBF
of the log expunged of failures whose IATs belong to the first
quantile (our new algorithm); and (iv) a brute-force algorithm
that searches all possible periods (used for reference). The
remaining seven algorithms are more sophisticated in that they
use two different regimens: a normal regimen for failure-free
segments, with a large checkpointing period; and a degraded
regimen which is entered after a failure, with a smaller check-
pointing period to cope with potential cascades. We compare
different versions based upon the work in [4] and upon our
new cascade detection algorithm. Finally, we use brute-force
methods and oracle-based solutions to fully quantify the max-
imum gain that could be achieved with omniscient knowledge
of forthcoming failures. Altogether, the overall conclusion is
that there is not much to gain from the knowledge of failure
cascades: we can just ignore them without any significant
overhead. The second and final conclusion is that we can
wrongly, but safely, assume failure independence! The main
contributions of this work are:
• The correct evaluation of the method in [4] to detect failure
cascades (Section III-A);
• A novel method to detect failure cascades, based on the
quantile distribution of consecutive IAT pairs (Section III-B);
• The design and comparison of several cascade-aware check-
pointing algorithms to assess the potential gain of cascade
detection (Sections IV-A and IV-B);
• Extensive evaluation via archive and synthetic logs of all
algorithms (Section V).
In addition to the above sections, Section II reviews relevant
related work, and Section VI provides concluding remarks.

II. RELATED WORK

Reliability is key to future extreme-scale HPC systems. The
de-facto standard approach, namely the coordinated check-
pointing protocol [7] has been recently extended in several
directions, such as hierarchical checkpointing [6], in-memory
checkpointing [26], [19], or multi-level checkpointing [18],
[5], to quote just a few. To develop better solutions and relia-
bility techniques, it is important to understand and characterize
failure behavior. Indeed, failure characteristics can be used to
inform failure predictors [9], [3], or to improve fault-tolerance
techniques [12], [11], [23].



In their seminal work, Young [25] and Daly [8] assume that
failure IATs are IID and follow an Exponential probability
distribution. This assumption was key to derive their famous
formula for the optimal checkpoint interval. Other distributions
have been considered, such as Weibull distributions [10], [23],
[12]. Formulas for the optimal checkpointing period have
been obtained by Gelenbe and Hernández [10], but still under
the temporal independence assumption. In stochastic terms,
each checkpoint is assumed to be a renewal point, which
(unrealistically) amounts to rebooting the entire platform after
each failure. Tiwari et al. [23] and Heien et al [12] confirmed
the observation that the Young/Daly formula is a very good
approximation for Weibull distributions. In particular, Tiwari
et al. [23] analyze a failure log, show that it matches well a
Weibull distribution through Kolmogorov-Smirnov and other
statistical tests, and report some gains when using the fact that
much more than half of IATs are smaller than the expectation
of the Weibull law (due to its infant mortality property).

It is important to understand the impact of the renewal
condition on the works that deal with non-Exponential dis-
tribution. Consider a platform with several processors, each
subject to failures whose IATs follow a Weibull (or, in fact, any
other, except Exponential) probability distribution. Without
the renewal condition, the distribution of failure IATs over
the whole platform is no longer independent nor identically
distributed, which complicates everything, including the mere
definition of the platform MTBF (see [13] for details). This
explains why all these previous works consider that failures
are temporally independent.

However, it has been observed many times that when a
failure occurs, it may trigger other failures that will strike
different system components [12], [23], [4]. As an example,
a failing cooling system may cause a series of successive
crashes of different nodes. Also, an outstanding error in the
file system will likely be followed by several others [21], [14].
Recently Bautista-Gomez et al. [4] studied nine systems, and
they report periods of high failure density in all of them. They
call these periods cascade failures. This observation has led
them to revisit the temporal failure independence assumption,
and to design bi-periodic checkpointing algorithms that use
different periods in normal (failure-free) and degraded (with
failure cascades) modes. See Sections III-A and IV-B for a
full description of their approach [4].

Finally, this paper focuses on temporal properties of failures.
Spatial properties of failures [11] are out of scope for this
study.

III. ALGORITHMS TO DETECT FAILURE CASCADES

We informally define a failure cascade as a series of consec-
utive failures that strike closer in time that one would normally
expect. We explain how to refine such an imprecise definition
by describing two approaches below. The first approach is
introduced in [4] and is based upon degraded intervals. The
second approach is a major contribution of this paper and uses
quantiles of consecutive IAT pairs.

A. Degraded Intervals

In their recent work, Bautista-Gomez et al. [4] provide
Algorithm 1 to detect degraded intervals, i.e., intervals con-
taining failure cascades. Consider a failure log of total duration
L seconds, with n failures striking at time-steps ti, where
0 ≤ t1 ≤ . . . ≤ tn ≤ L. By definition, the MTBF (Mean
Time Between Failures) of the platform log is µ = L

n .
Intuitively, we expect failures to strike every µ seconds in
average. Algorithm 1 simply divides the log into n intervals of
length L/n and checks for intervals that contain two or more
failures. Such intervals are called degraded while intervals
with zero or one failure are called normal. Algorithm 1 returns
the set Sc of degraded intervals. The percentage of degraded
intervals is Pdeg = |Sc|

n .

Algorithm 1 Identifying the set Sc of degraded intervals.
1: procedure DETCASCADES({t1, . . . , tn}, L,X)
2: for i = 0 to n− 1 do
3: if |{j|tj ∈ [iLn , (i+ 1)Ln ]}| ≥ 2 then
4: Sc = Sc ∪ {j|tj ∈ [iLn , (i+ 1)Ln ]}
5: end if
6: end for
7: return Sc
8: end procedure

Table I summarizes the percentage of degraded interval Pdeg

found by Algorithm 1 for the LANL and Tsubame failure logs.
Altogether, 20% to 30% of system time is spent in degraded
regimen. The authors of [4] conclude that Algorithm 1 has
identified failure cascades. This conclusion is incorrect:
• Assume first that failure IATs are IID and follow an
Exponential probability distribution EXP[λ] with parameter λ
(we have P(X ≤ t) = 1 − e−λt). For a failure log of size L
and with n failures, we directly have λ = 1

µ = n
L . Theorem 1

shows that in this case, the expected percentage of degraded
intervals is 1− 2

e ≈ 0.264 (or 26.4%).
• Assume now that failure IATs are IID and follow a Weibull
probability distribution WEIBULL[k, λ] with parameter shape
parameter k and scale parameter λ: we have P(X ≤ t) =

1 − e−( tλ )k , and the MTBF is µ = λΓ(1 + 1
k ). For a failure

log of size L and with n failures, we have µ = L
n , hence we

let λ = L
nΓ(1+ 1

k )
. Table II shows the value of Pdeg for values

of the shape parameter k ranging from 0.5 to 1. The value for
k = 1 is the same as for the Exponential distribution, because
WEIBULL[1, λ] reduces to EXP[ 1

λ ]. For all the values of k
in Table II, the percentage of degraded intervals lies between
26% and 27.5%. These values are independent of λ and are
obtained experimentally, using MonteCarlo simulations. Note
that typical values of k used to model failures in the literature
are ranging from k = 0.5 to k = 0.9 [17], [20], [23].

Altogether, the correct conclusion from Theorem 1 and the
results in Table I is that public logs exhibit the same number of
degraded intervals as pure EXP[λ] and WEIBULL[k, λ] renewal
processes. Hence we cannot conclude anything!



Log Approach in [4]
Id Number MTBF MTBF Degraded Faults

of faults in hours in hours intervals: Pdeg in cascades
LANL 2 5351 14.1 36.4 25.3% 71.1%
LANL 3 294 59.3 142.3 26.3% 69.4%
LANL 4 298 56.2 126.7 24.9% 66.8%
LANL 5 304 54.7 119.6 26.4% 66.4%
LANL 6 63 279.9 604.1 33.9% 69.8%
LANL 7 126 311.1 943.1 21.6% 74.6%
LANL 8 448 84.5 226.6 26.2% 72.5%
LANL 9 278 58.8 216.0 23.1% 79.1%
LANL 10 234 68.7 218.3 23.6% 76.1%
LANL 11 265 60.8 230.5 23.9% 80.0%
LANL 12 254 64.2 192.7 25.3% 75.2%
LANL 13 193 83.4 380.7 24.0% 83.4%
LANL 14 120 103.7 410.6 20.0% 80.0%
LANL 15 53 124.1 292.0 23.1% 67.9%
LANL 16 2262 21.9 56.2 25.2% 70.9%
LANL 17 125 216.9 526.1 21.8% 68.0%
LANL 18 3900 7.5 17.9 26.0% 68.9%
LANL 19 3222 7.9 17.1 26.4% 66.0%
LANL 20 2389 13.7 41.5 21.3% 74.1%
LANL 21 105 24.2 79.9 26.9% 78.1%
LANL 22 235 272.1 696.6 27.8% 71.9%
LANL 23 448 147.3 348.8 23.7% 67.9%
LANL 24 150 412.7 1040.6 22.1% 69.3%
Tsubame 884 14.8 36.5 23.9% 69.2%

Table I: Percentage of degraded intervals in failure
logs. Expected value for an Exponential distribu-
tion is 26.4%. Red entries are within 5% of this
value. Pink entries are within 10% of this value.

Shape Degraded Faults
parameter k intervals: Pdeg in cascades

0.50 26.0% 84.7%
0.52 26.3% 83.7%
0.54 26.6% 82.7%
0.56 26.8% 81.6%
0.58 27.0% 80.6%
0.60 27.2% 79.7%
0.62 27.3% 78.7%
0.64 27.4% 77.7%
0.66 27.4% 76.8%
0.68 27.5% 75.9%
0.70 27.5% 75.0%
0.72 27.5% 74.1%
0.74 27.5% 73.2%
0.76 27.5% 72.4%
0.78 27.4% 71.5%
0.80 27.4% 70.7%
0.82 27.3% 69.9%
0.84 27.3% 69.1%
0.86 27.2% 68.3%
0.88 27.1% 67.5%
0.90 27.0% 66.8%
0.92 26.9% 66.0%
0.94 26.8% 65.3%
0.96 26.7% 64.6%
0.98 26.6% 63.9%
1.00 26.4% 63.2%

Table II: Expected values of Pdeg and
of the number of faults in cascades for
IID IATs following a Weibull distribu-
tion WEIBULL[k, λ].

Theorem 1. For a log duration L, and IID failure IATs with
distribution EXP[λ], the percentage of degraded intervals Pdeg

converges to limL→∞ Pdeg = 100(1− 2
e ) ≈ 26.4%.

Due to lack of space, the (technical) proof of Theorem 1 is
available in the companion research report [2].
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Figure 1: Cumulative plot of IATs for failure log LANL 2.

B. Quantile distribution of consecutive IAT pairs

In this section, we introduce a new method to detect failure
cascades. In a nutshell, the method analyzes the distribution
of pairs of two consecutive IATs. Intuitively, consider a failure
log and its IATs. If small values are scattered across the log,
we do not conclude anything. On the contrary, if a small value
follows another small value, we may have found the beginning
of a cascade. Our approach checks the frequency of having two
consecutive small values, and compares this frequency with
the expected value when IATs are independent. Our approach

proceeds as follows. Consider a failure log with n = N + 2
failures, i.e., with N + 1 IATs zi, 1 ≤ i ≤ N + 1. Note
that the first failure in the log does not correspond to an IAT
since its predecessor is not included in the log. Note also that
zi = ti+1 − ti where ti is the time where the i-th failure
strikes, as defined in Algorithm 1. Finally, note that there are
N pairs (zi, zi+1) of consecutive IATs, 1 ≤ i ≤ N .

We start by sampling the failure log and computing quan-
tiles. In Figure 1 we plot the cumulative distribution of IATs
for failure log LANL2. In Figure 1, we use Q = 10 quantiles.
The 10% smallest values constitute the first quantile, or limit
quantile Qlimit, and are between 0 and 2,220 seconds. The
next 10% smallest values (second quantile) are between 2,221
and 6,000 seconds, and so on. By definition, the probability
that an IAT belongs to a given quantile is 1

Q = 0.1. Now,
if we assume (temporal) failure independence, the probability
that both components of a pair (zi, zi+1) of consecutive IATs
belongs to the same given quantile is 1

Q2 , and the expected
number of such pairs is N

Q2 . We need N to be reasonably
large so that this expectation is accurate. Out of the 24 logs
in Table I, we keep only the five LANL logs with N ≥ 1000
(namely LANL 2, 16, 18, 19, 20) and the Tsubame log: see
Table III. For these 6 logs, in Figures 2 to 7, we plot the ratio
of the actual number of pairs in each quantile over the expected
value. This ratio is called the lag plot density [1], [22]. We
expect a log without cascades to exhibit a flat surface up to
a few statistical artefacts. The figures lead to the conclusions
reported in Table III: only log LANL2 contains cascades for
sure, because the ratio for the first quantile is greater than
four times its expected value; maybe LANL20 does too (ratio
between 2 and 3); the other logs do not include any cascade.

Note that another phenomenon can be observed in LANL2
and, to some extent, in LANL20: there is an anti-cascade



Log Number Cascades
of Faults

LANL 2 5351 Yes
LANL 16 2262 No
LANL 18 3900 No
LANL 19 3222 No
LANL 20 2389 Maybe
Tsubame 884 No

Table III: Presence of cascades in large logs.

behavior, where long IATs are followed by other long IATs
more often than expected. We are not able to give any
explanation to this phenomenon.

Altogether, there are indeed some cascades, albeit not very
frequent, in some failure logs. Hence we were wrong to
assume failure independence everywhere. The next question
is whether the knowledge that cascades are present may help
reduce the overhead due to the standard checkpoint/recovery
approach. The rest of the paper is devoted to answering this
question.

In the companion research report [2], we provide three more
lag plots to help the reader understand and assess temporal
correlation in failure logs: a first for an EXP[λ] distribution,
and a second one for a WEIBULL[0.7, λ] IAT distributions: as
expected, there is no cascade in these renewal processes. The
third lag plot is for LANL2 after randomly shuffling the log
IATs: there is no more cascade either!

IV. CASCADE-AWARE CHECKPOINTING

In this section we provide a quantitative assessment of
many algorithms that can be used to improve the classical
periodic checkpointing algorithm, whose period is given by
the Young/Daly formula [25], [8]. We use both the previous
public logs and synthetic logs to generate simulation results.

When playing an algorithm against a log, it is common
practice to have the algorithm learn data from, say, the first
half of the log, and play against the second half of the log.
More precisely, we would start the algorithm from a randomly
generated instant in the second half of the log to avoid bias.
This instant must be not too close to the end of the log to
ensure that there remain enough failures to strike, e.g., any
instant in the thirst quarter of the log would be fine. In the
following, we do not adopt this strategy. Instead, we let the
algorithms learn form the entire log, and replay them from
a randomly chosen instant. This gives a somewhat unfair
advantage to the algorithms, but our goal is to provide an
upper bound of the maximum gains that can be achieved.

A. Periodic algorithms

What can we learn from a log? The Young/Daly checkpoint-
ing algorithm needs to know the checkpoint time C and the
MTBF µlog , and then uses the optimal checkpointing period
T =

√
2µlogC. As already mentioned, one can directly use

µlog = L
N for a log of length L with N failures. However,

inspecting the log for cascades can lead to refined values of
the MTBF:

• Remember that [4] defines two categories of intervals in
the log, normal and degraded, and computes µnormal int

and µdegraded int , the MTBF for each set of intervals.
Typically, µnormal int will be significantly larger than
µlog , and using this value instead of µlog will decrease
the failure-free overhead incurred by checkpointing too
frequently outside the cascades.

• Following the approach in Section III-B, we can di-
vide the log into Q quantiles and separate IATs that
belong to the first quantile Qlimit from the other ones.
IATs that belong to the first quantile Qlimit constitute
the cascades and have mean value µcascade (Q). The
other IATs have mean value µnon−cascade (Q). Just as
µnormal int , µnon−cascade (Q) will be larger than µlog ,
with the same desired impact. We use different values
of |Qlimit| for the simulations: |Qlimit| = 10%, and
|Qlimit| = 5% in this paper, and, in addition, |Qlimit| ∈
{2%, 1%, 0.5%, 0.2%, 0.1%} in the companion research
report [2].

Altogether, we evaluate 4 periodic checkpointing algo-
rithms, which use the period T =

√
2µC, where µ is chosen

from the following:
• Algorithm ΠDaly uses µ = µlog

• Algorithm ΠIntervals uses µ = µnormal int

• Algorithm ΠQuantiles uses µ = µnon−cascade(Q)
• Algorithm ΠBest period uses a brute-force search and re-

turns the best period
For each algorithm, we report the WASTE, defined as the
fraction of time where the platform does not perform useful
work. Experimental values of WASTE are averaged from
many Monte Carlo simulations. As a side note, a first-order
approximation is given by the formula

WASTE =
C

T
+

1

µ
(R+

T

2
) (1)

and is obtained as follows [13]: the first term C
T is the

overhead in a failure free execution, since we lose C seconds
to checkpoint, every period of T seconds. The second term is
the overhead due to failures, which strike every µ seconds in
expectation; for each failure, we lose R seconds for recovery
(letting R = C everywhere) and re-execute half the period
on average. Equation (1) explains that checkpointing algo-
rithms aim at finding the best trade-off between checkpointing
too often (large failure-free overhead) and not often enough
(large overhead after a failure); the waste is minimized when
T =

√
2µC. All this helps understand how WASTE depends

on the value chosen for the MTBF µ.

B. Bi-periodic algorithms

We compare the following seven bi-periodic algorithms.
Each bi-periodic algorithm uses two different regimens,
namely the normal and degraded regimens, to borrow the
terminology of [4]. In the normal regimen, which is the
regimen by default, the algorithm runs in the absence of
failures, hence uses a larger checkpointing period. In the
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Figure 2: Lag plot for LANL2.
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Figure 3: Lag plot for LANL16.
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Figure 4: Lag plot for LANL18.
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Figure 5: Lag plot for LANL19.

 0
 0.2

 0.4
 0.6

 0.8
 1

IAT(n)
 0

 0.2

 0.4

 0.6

 0.8

 1

IAT(n+1)

 0.25

 0.5

 1

 2

 4

R
at

io
 t

o
 e

x
p
ec

te
d
 v

al
u
e

0.25

0.5

1

2

4

Figure 6: Lag plot for LANL 20.
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Figure 7: Lag plot for Tsubame.

degraded regimen, the algorithm uses a shorter checkpointing
period, to cope with potential cascades.

The seven algorithms differ by several parameters:
• the MTBF value µ used for each regimen, which dictates

the corresponding checkpointing period. In Table IV, we
report the MTBF for the normal regimen µnormal and for
the MTBF for the degraded regimen µdegraded . Again,
the checkpointing period for the normal regimen is T =√

2µnormalC and that for the degraded regimen is T =√
2µdegradedC.

• the criteria used to enter and exit the cascade regimen.
Most algorithms enter the cascade regimen as soon as a
failure strikes, but lazy variants enter the cascade regimen
only after a second failure has struck, and provided that
the IAT belongs to the first quantile Qlimit. All algorithms
exit the degraded regimen when enough time has elapsed
since the last failure. Following [4], we set this timeout
to 2µdegraded .

All these parameters are listed in Table IV. For reference, here
follows a detailed description of each bi-periodic algorithm.
First, we have 3 algorithms based on refined values of the
MTBF:
• BI-ΠIntervals uses µnormal = µnormal int and µdegraded =
µdegraded int for the checkpointing periods, as proposed
by [4]. It enters the degraded mode as soon as a failure
strikes, and exits it with timeout 2µdegraded .

• BI-ΠQuantiles works similarly, but with different MTBF
values. µnormal = µnon−cascade(Q) and µdegraded =
µcascade(Q). These values are computed from the quan-
tiles of the log IATs.

• BI-ΠQuantilesLAZY is a variant of BI-ΠQuantiles where
the degraded mode is entered only after two successive
failures, provided that the second failure strikes shortly
(IAT in first quantile Qlimit) after the first one.

The next 2 algorithms use brute-force search:
• BI-Π-BEST uses a brute-force method for everything: it

computes the waste for all values of µnormal , µdegraded

and timeout value, and retains the best triple. BI-Π-BEST

is agnostic of the cascade detection algorithm; its only
limitation is that it enters the degraded mode after the
first failure.

• BI-ΠQuantilesLAZY-BEST is the lazy variant of
BI-Π-BEST. However, to decide whether to enter
the degraded mode, just as BI-ΠQuantilesLAZY, it needs to
know the quantiles of the distribution to check whether
the IAT of the second failure belongs to the first quantile
Qlimit.

Finally, the last two algorithms are included for reference.
They use oracles that know everything in cascades, including
the future! Specifically:
• BI-ΠQuantilesORACLE uses µnormal = µnon−cascade(Q)

in normal mode, just as BI-ΠQuantiles. However, as soon
as a failure strikes, it knows exactly whether there will
be a cascade, and when the next failures in that cascade
will strike. It can thus checkpoint as late as possible,
completing the checkpoint right before the failure. And
it also knows in advance when the next failure is far
away (IAT not in the first quantile Qlimit), so that it can
immediately switch back to normal mode.

• BI-Π-ORACLE-BEST is the variant of
BI-ΠQuantilesORACLE that tests all possible values
of µnormal in normal mode, not just µnon−cascade(Q). It
behaves exactly the same after a failure. A comparison
with BI-ΠQuantilesORACLE will help assess whether using
µnormal = µnon−cascade(Q) is a good decision or not.

V. SIMULATION RESULTS

A. Simulation setup

In addition to the six large public logs of Table III, we
generate synthetic logs. We first generate failures according
to an Exponential distribution of MTBF µ1 = 3, 600 seconds.
Such an MTBF of 1 hour is much smaller than archive logs
MTBFs in Table III, which are of the order of 10 hours. This
is because we want the waste to be higher for synthetic logs
than for archive logs, so that there is a potential significant gain
with cascade detection. Next we perturb the log by randomly



Algorithm µnormal µdegraded Enter criterion Timeout Exit Criterion
BI-ΠIntervals µnormal int µdegraded int First failure 2µdegraded int

BI-ΠQuantiles µcascade (Q) µnon−cascade (Q) First failure 2µnon−cascade(Q)
BI-Π-BEST Best value for µnormal Best value for µdegraded First failure Best value
BI-ΠQuantilesLAZY µcascade (Q) µnon−cascade (Q) Second failure in first quantile 2µnon−cascade(Q)
BI-ΠQuantilesLAZY-BEST Best value for µnormal Best value for µdegraded Second failure in first quantile Best value
BI-ΠQuantilesORACLE µcascade (Q) Omniscient Omniscient Omniscient
BI-Π-ORACLE-BEST Best value for µnormal Omniscient Omniscient Omniscient

Table IV: Bi-periodic algorithms

generating cascades: after each failure, we generate a cascade
with frequency (probability that this failure is the start of
a cascade) f = 1%, f = 5% or f = 10%. The length
of a cascade, defined as the number of additional failures
generated (thus not counting the original failure), is a random
value between 3 and 5 (we write ` = 3 − 5), or between 3
and 10 (we write ` = 3 − 10). Finally, the failures in the
cascades follow another Exponential distribution of MTBF
µ2 = µ1

ρ , where the ratio ρ is chosen in {10, 100, 1000}.
Altogether, a synthetic log is tagged ’Synth. ρ|f |`’. For
instance, ’Synth. ρ = 100|1%|3− 5’ means that a cascade
is generated every 100 failures in average (f = 1%), with
MTBF 36 seconds, one hundredth of the original distribution
(ρ = 100), and a number of additional failures, not including
the first one, uniformly drawn between 3 and 5. The lag plot
for this log is given in [2] and does show the cascades.

For each archive and synthetic log, we average results over
100 executions. We draw a starting point uniformly between
the beginning of the log and 200µlog seconds before its
end, and we run the simulation during 100µlog seconds, not
counting checkpoint and re-execution overhead. Finally, we
use a wide range of checkpoint values, namely C = 300,
C = 30 and C = 3 seconds, in order to cover the widest
range of scenarios.

B. Waste values

Due to lack of space, we report results only for |Qlimit| =
5%. Values for |Qlimit| ∈ {10%, 2%, 1%, 0.5%, 0.2%, 0.1%}
are available in [2]. Results follow the same trends for all
values of |Qlimit|.

Log statistics are provided in Table V. The column ”Com-
mon faults” reports the percentage of failures that are detected
as belonging to cascades, by both the interval-based and the
quantile-based approaches.

For the waste, we report the improvement or degradation
with respect to the reference periodic checkpointing algorithm
ΠDaly. The color code in Tables VI to VIII is the following:
• Green: Improvement by at least 10%
• Lime: Improvement between 5 and 10%
• Black: Improvement between 0 and 5%
• Pink: Degradation between 0 and 5%
• Red: Degradation larger than 5%

C. Discussion

Overall, the main take-away is that cascade-aware algo-
rithms achieve negligible gains, except for a few scenarios
where the waste is already very low with the standard ΠDaly

approach. This is true even when considering the best scenar-
ios with (i) very short checkpointing time; (ii) high frequency
of cascade failures: and (iii) knowing exactly when the next
cascade failures are going to strike. In fact, small gains could
be achieved only if cascade failures strike both frequently, say
more than 10% of the time after an initial failure, and with
a relatively large MTBF, say, not less than 10% of the log
MTBF. We further discuss these statements in the following.

1) Cascade detection algorithms: Tables VI to VIII
show that both cascade-aware algorithms based on intervals
and on quantiles, are not more efficient than the simple
ΠDaly approach. While the quantile-based approach (ΠQuantiles,
BI-ΠQuantiles, BI-ΠQuantilesLAZY) seems slightly better than
the interval-based approach (ΠIntervals, BI-ΠIntervals), the gain
(or loss) is still within an error margin (most are between -
1% and +1%). Furthermore, as one can see from Tables VI
to VIII, the quantile-based approach seems to perform better
than the interval-based approach: this is because it detects
fewer cascades, hence its MTBF for the normal regimen is
very similar to the one used by ΠDaly.

To better understand why cascade-aware algorithms achieve
little gain, we come back to Equation(1). There are two
sources of waste, one due to checkpointing overhead C

T , and
one due to failures. The intuition is the following: when
there are cascade failures, the work wasted remains low: in
average, it is approximatively the MTBF of the degraded
regimen. Additional (more frequent) checkpointing can reduce
this waste, but can be an overkill too when there is no actual
cascade.

Finally, recall that the MTBF µlog of archive logs is
approximately 10 hours, while it is 1 hour for synthetic logs.
For the latter logs, using ρ = 100 means that µdegraded = 36
seconds, so there is little hope to gain anything except for
C = 3 seconds. In that case, we do achieve some gain, up
to 20%, but the waste was already low, around 5%, with the
standard approach ΠDaly: overall, the absolute diminution of
the waste reduces to 1%.

2) Assessing potential gain: Brute-force algorithms that
search for the optimal MTBF in normal and degraded reg-
imens allow us to quantify the potential gain that could
be achieved with better cascade-aware algorithms. First, we
observe that BI-Π-BEST, that supersedes both BI-ΠIntervals and
BI-ΠQuantiles, is not significantly better than ΠDaly. Second, we
make a similar observation for BI-ΠQuantilesLAZY-BEST, that
supersedes BI-ΠQuantilesLAZY without performing significantly
better. Third, BI-Π-ORACLE-BEST and BI-ΠQuantilesORACLE
perform quite similarly, which is reassuring for the choice of



Log Approach: Intervals Approach: Quantiles
Id Number MTBF MTBF Degraded Faults MTBF Faults Common Number of in Cascades

of faults in hours in hours intervals in cascades in hours in cascades faults cascades MTBF Avg. length Max length
LANL 2 5351 14.14 36.45 25.3% 71.1% 14.92 8.9% 8.9% 194 0.102 2.4 10

LANL 16 2262 21.85 56.19 25.2% 70.9% 23.01 9.2% 9.2% 95 0.113 2.2 5
LANL 18 3900 7.52 17.88 26.0% 68.9% 7.92 9.7% 9.7% 180 0.119 2.1 4
LANL 19 3222 7.87 17.06 26.4% 66.0% 8.30 10.1% 10.0% 158 0.164 2.1 4
LANL 20 2389 13.66 41.46 21.3% 74.1% 14.43 10.0% 10.0% 110 0.093 2.2 5
Tsubame 884 14.78 36.50 23.9% 69.2% 15.57 9.7% 9.7% 41 0.100 2.1 4

Synth. ρ = 10 — 1.00 % — 3-5 3136 0.98 1.99 25.1% 63.1% 1.03 9.5% 9.5% 141 0.017 2.1 4
Synth. ρ = 10 — 1.00 % — 3-10 3182 0.95 1.98 25.0% 64.1% 1.00 9.8% 9.8% 153 0.015 2.0 3
Synth. ρ = 10 — 5.00 % — 3-5 3591 0.85 1.87 22.4% 64.9% 0.89 9.5% 9.5% 160 0.009 2.1 4

Synth. ρ = 10 — 5.00 % — 3-10 4075 0.75 1.77 20.5% 66.2% 0.79 9.6% 9.6% 186 0.006 2.1 4
Synth. ρ = 10 — 10.00 % — 3-5 4133 0.72 1.81 22.2% 69.0% 0.76 9.5% 9.4% 184 0.007 2.1 4

Synth. ρ = 10 — 10.00 % — 3-10 5067 0.59 1.65 19.5% 71.2% 0.62 9.5% 9.5% 229 0.004 2.1 4
Synth. ρ = 100 — 1.00 % — 3-5 3136 0.98 1.99 24.9% 62.9% 1.03 8.0% 8.0% 94 0.006 2.7 6

Synth. ρ = 100 — 1.00 % — 3-10 3182 0.95 1.98 24.6% 63.9% 1.00 7.9% 7.9% 91 0.005 2.8 8
Synth. ρ = 100 — 5.00 % — 3-5 3591 0.85 1.89 21.6% 64.8% 0.89 8.9% 8.9% 139 0.002 2.3 5

Synth. ρ = 100 — 5.00 % — 3-10 4075 0.75 1.79 18.3% 65.7% 0.79 9.4% 9.4% 179 0.001 2.1 4
Synth. ρ = 100 — 10.00 % — 3-5 4133 0.72 1.84 20.2% 68.7% 0.76 9.4% 9.4% 180 0.001 2.1 4

Synth. ρ = 100 — 10.00 % — 3-10 5067 0.59 1.69 15.8% 70.5% 0.62 9.6% 9.6% 231 0.001 2.1 4
Synth. ρ = 1000 — 1.00 % — 3-5 3136 0.98 1.99 24.9% 63.0% 1.03 6.7% 6.7% 54 0.001 3.9 6

Synth. ρ = 1000 — 1.00 % — 3-10 3182 0.95 1.98 24.6% 63.9% 1.00 6.4% 6.4% 45 0.001 4.6 11
Synth. ρ = 1000 — 5.00 % — 3-5 3591 0.85 1.89 21.3% 64.8% 0.89 8.9% 8.9% 138 0.000 2.3 5

Synth. ρ = 1000 — 5.00 % — 3-10 4075 0.75 1.79 18.1% 65.6% 0.79 9.4% 9.4% 178 0.000 2.1 4
Synth. ρ = 1000 — 10.00 % — 3-5 4133 0.72 1.83 19.9% 68.6% 0.76 9.4% 9.4% 180 0.000 2.1 4

Synth. ρ = 1000 — 10.00 % — 3-10 5067 0.59 1.70 15.3% 70.4% 0.62 9.6% 9.6% 231 0.000 2.1 4

Table V: Statistics when |Qlimit| = 5%.

Table VI: Waste (and gain) with C=300s and |Qlimit| = 5%.
Log Periodic algorithms Bi-periodic algorithms Omniscient oracle

ΠDaly ΠIntervals ΠQuantiles ΠBest period BI-ΠIntervals BI-ΠQuantiles BI-Π-BEST BI-ΠQuantilesLAZY BI-ΠQuantilesLAZY-BEST BI-ΠQuantilesORACLE BI-Π-ORACLE-BEST
LANL 2 0.127 0.145 (-14.07%) 0.129 (-1.17%) 0.127 (0.00%) 0.143 (-11.84%) 0.135 (-5.67%) 0.128 (-0.16%) 0.129 (-1.52%) 0.128 (-0.16%) 0.129 (-1.01%) 0.127 (0.01%)
LANL 16 0.100 0.112 (-11.99%) 0.099 (0.90%) 0.100 (0.00%) 0.113 (-12.35%) 0.103 (-2.95%) 0.099 (0.90%) 0.100 (0.54%) 0.099 (0.90%) 0.099 (1.08%) 0.099 (1.08%)
LANL 18 0.175 0.190 (-8.46%) 0.176 (-0.03%) 0.175 (0.06%) 0.194 (-10.79%) 0.186 (-5.92%) 0.175 (0.12%) 0.176 (-0.30%) 0.175 (0.26%) 0.175 (0.18%) 0.175 (0.18%)
LANL 19 0.174 0.187 (-7.09%) 0.173 (0.81%) 0.171 (1.90%) 0.191 (-9.38%) 0.183 (-5.04%) 0.171 (2.08%) 0.174 (0.32%) 0.171 (2.02%) 0.172 (1.31%) 0.170 (2.43%)
LANL 20 0.119 0.137 (-15.45%) 0.118 (1.05%) 0.118 (0.35%) 0.145 (-22.40%) 0.123 (-3.53%) 0.118 (1.05%) 0.118 (0.79%) 0.117 (1.30%) 0.117 (1.25%) 0.117 (1.25%)
Tsubame 0.122 0.139 (-14.62%) 0.122 (-0.75%) 0.121 (0.26%) 0.139 (-14.71%) 0.128 (-5.13%) 0.121 (0.86%) 0.123 (-1.25%) 0.120 (1.43%) 0.122 (-0.49%) 0.120 (0.93%)
Synth. ρ = 10 — 1.00 % — 3-5 0.680 0.727 (-6.97%) 0.686 (-0.86%) 0.679 (0.15%) 0.763 (-12.25%) 0.686 (-0.86%) 0.678 (0.25%) 0.686 (-0.86%) 0.678 (0.25%) 0.682 (-0.28%) 0.674 (0.86%)
Synth. ρ = 10 — 1.00 % — 3-10 0.690 0.741 (-7.41%) 0.687 (0.32%) 0.688 (0.17%) 0.784 (-13.74%) 0.687 (0.32%) 0.686 (0.60%) 0.687 (0.32%) 0.686 (0.60%) 0.686 (0.46%) 0.684 (0.75%)
Synth. ρ = 10 — 5.00 % — 3-5 0.688 0.729 (-5.92%) 0.692 (-0.46%) 0.688 (0.00%) 0.856 (-24.29%) 0.692 (-0.46%) 0.692 (-0.46%) 0.692 (-0.46%) 0.692 (-0.46%) 0.685 (0.46%) 0.680 (1.27%)
Synth. ρ = 10 — 5.00 % — 3-10 0.735 0.751 (-2.19%) 0.729 (0.79%) 0.720 (2.03%) 0.954 (-29.74%) 0.729 (0.79%) 0.721 (1.95%) 0.729 (0.79%) 0.721 (1.95%) 0.707 (3.85%) 0.706 (3.96%)
Synth. ρ = 10 — 10.00 % — 3-5 0.756 0.790 (-4.50%) 0.760 (-0.51%) 0.745 (1.49%) 0.998 (-32.04%) 0.760 (-0.51%) 0.742 (1.88%) 0.760 (-0.51%) 0.742 (1.88%) 0.726 (3.94%) 0.726 (3.94%)
Synth. ρ = 10 — 10.00 % — 3-10 0.813 0.805 (0.95%) 0.798 (1.74%) 0.775 (4.68%) 1.170 (-44.01%) 0.798 (1.74%) 0.774 (4.71%) 0.798 (1.74%) 0.774 (4.71%) 0.746 (8.19%) 0.746 (8.19%)
Synth. ρ = 100 — 1.00 % — 3-5 0.676 0.722 (-6.82%) 0.681 (-0.79%) 0.673 (0.42%) 0.762 (-12.75%) 0.681 (-0.79%) 0.673 (0.51%) 0.681 (-0.79%) 0.673 (0.51%) 0.679 (-0.39%) 0.670 (0.97%)
Synth. ρ = 100 — 1.00 % — 3-10 0.681 0.735 (-7.94%) 0.679 (0.27%) 0.681 (0.01%) 0.781 (-14.75%) 0.679 (0.27%) 0.678 (0.35%) 0.679 (0.27%) 0.678 (0.35%) 0.679 (0.28%) 0.678 (0.35%)
Synth. ρ = 100 — 5.00 % — 3-5 0.663 0.704 (-6.30%) 0.667 (-0.69%) 0.663 (0.00%) 0.843 (-27.19%) 0.667 (-0.69%) 0.667 (-0.69%) 0.667 (-0.69%) 0.667 (-0.69%) 0.667 (-0.73%) 0.660 (0.43%)
Synth. ρ = 100 — 5.00 % — 3-10 0.684 0.705 (-3.02%) 0.681 (0.41%) 0.671 (1.87%) 0.941 (-37.58%) 0.681 (0.41%) 0.672 (1.76%) 0.681 (0.41%) 0.672 (1.76%) 0.671 (1.95%) 0.671 (1.95%)
Synth. ρ = 100 — 10.00 % — 3-5 0.697 0.732 (-5.01%) 0.703 (-0.84%) 0.690 (0.99%) 0.963 (-38.06%) 0.703 (-0.84%) 0.689 (1.16%) 0.703 (-0.84%) 0.689 (1.16%) 0.686 (1.59%) 0.684 (1.84%)
Synth. ρ = 100 — 10.00 % — 3-10 0.706 0.713 (-0.97%) 0.698 (1.11%) 0.677 (4.12%) 1.175 (-66.55%) 0.698 (1.11%) 0.677 (4.08%) 0.698 (1.11%) 0.677 (4.08%) 0.673 (4.67%) 0.673 (4.67%)
Synth. ρ = 1000 — 1.00 % — 3-5 0.675 0.722 (-6.88%) 0.681 (-0.92%) 0.673 (0.36%) 0.761 (-12.76%) 0.681 (-0.92%) 0.672 (0.49%) 0.681 (-0.92%) 0.672 (0.49%) 0.678 (-0.50%) 0.670 (0.84%)
Synth. ρ = 1000 — 1.00 % — 3-10 0.681 0.730 (-7.29%) 0.679 (0.25%) 0.680 (0.07%) 0.781 (-14.77%) 0.679 (0.25%) 0.678 (0.35%) 0.679 (0.25%) 0.678 (0.35%) 0.679 (0.26%) 0.678 (0.36%)
Synth. ρ = 1000 — 5.00 % — 3-5 0.662 0.704 (-6.44%) 0.664 (-0.32%) 0.662 (-0.00%) 0.841 (-27.14%) 0.664 (-0.32%) 0.664 (-0.32%) 0.664 (-0.32%) 0.664 (-0.32%) 0.664 (-0.36%) 0.659 (0.45%)
Synth. ρ = 1000 — 5.00 % — 3-10 0.681 0.700 (-2.84%) 0.677 (0.58%) 0.665 (2.31%) 0.942 (-38.45%) 0.677 (0.58%) 0.666 (2.21%) 0.677 (0.58%) 0.666 (2.21%) 0.665 (2.25%) 0.665 (2.29%)
Synth. ρ = 1000 — 10.00 % — 3-5 0.692 0.730 (-5.48%) 0.697 (-0.78%) 0.682 (1.42%) 0.960 (-38.83%) 0.697 (-0.78%) 0.681 (1.54%) 0.697 (-0.78%) 0.681 (1.54%) 0.676 (2.24%) 0.676 (2.24%)
Synth. ρ = 1000 — 10.00 % — 3-10 0.697 0.697 (-0.04%) 0.686 (1.60%) 0.669 (4.02%) 1.178 (-69.07%) 0.686 (1.60%) 0.669 (3.95%) 0.686 (1.60%) 0.669 (3.95%) 0.663 (4.84%) 0.663 (4.84%)
Avg. 0.557 0.585 (-6.53%) 0.557 (0.07%) 0.550 (1.11%) 0.724 (-26.48%) 0.558 (-1.14%) 0.550 (1.22%) 0.557 (-0.02%) 0.549 (1.25%) 0.547 (1.46%) 0.545 (1.92%)
Weighted Avg. 0.586 0.613 (-5.79%) 0.585 (0.12%) 0.577 (1.34%) 0.778 (-29.24%) 0.587 (-0.90%) 0.577 (1.39%) 0.585 (0.05%) 0.577 (1.41%) 0.573 (1.79%) 0.571 (2.19%)

Table VII: Waste (and gain) with C=30s and |Qlimit| = 5%.
Log Periodic algorithms Bi-periodic algorithms Omniscient oracle

ΠDaly ΠIntervals ΠQuantiles ΠBest period BI-ΠIntervals BI-ΠQuantiles BI-Π-BEST BI-ΠQuantilesLAZY BI-ΠQuantilesLAZY-BEST BI-ΠQuantilesORACLE BI-Π-ORACLE-BEST
LANL 2 0.037 0.042 (-13.64%) 0.038 (-0.86%) 0.037 (0.49%) 0.041 (-10.60%) 0.040 (-5.91%) 0.037 (0.40%) 0.038 (-1.54%) 0.037 (0.75%) 0.037 (0.06%) 0.037 (1.29%)
LANL 16 0.030 0.033 (-11.25%) 0.030 (0.04%) 0.030 (0.67%) 0.033 (-10.43%) 0.030 (-1.89%) 0.029 (2.34%) 0.030 (0.92%) 0.029 (1.45%) 0.030 (1.02%) 0.029 (1.73%)
LANL 18 0.050 0.055 (-9.85%) 0.049 (0.52%) 0.050 (0.10%) 0.054 (-9.13%) 0.054 (-8.43%) 0.049 (1.40%) 0.050 (-0.02%) 0.049 (1.02%) 0.049 (2.16%) 0.049 (2.32%)
LANL 19 0.049 0.052 (-6.11%) 0.048 (1.99%) 0.049 (1.08%) 0.053 (-6.93%) 0.052 (-5.90%) 0.048 (2.46%) 0.049 (1.59%) 0.048 (2.49%) 0.047 (4.45%) 0.047 (4.55%)
LANL 20 0.035 0.040 (-13.47%) 0.035 (0.17%) 0.035 (1.12%) 0.042 (-20.95%) 0.037 (-4.93%) 0.034 (2.33%) 0.035 (0.03%) 0.035 (1.50%) 0.035 (1.14%) 0.035 (1.14%)
Tsubame 0.035 0.040 (-15.42%) 0.037 (-5.64%) 0.035 (-0.00%) 0.040 (-15.53%) 0.037 (-6.30%) 0.035 (0.32%) 0.037 (-6.65%) 0.035 (0.83%) 0.036 (-4.46%) 0.034 (1.56%)
Synth. ρ = 10 — 1.00 % — 3-5 0.150 0.158 (-5.72%) 0.152 (-1.22%) 0.149 (0.23%) 0.167 (-11.57%) 0.157 (-4.74%) 0.149 (0.79%) 0.152 (-1.13%) 0.148 (1.18%) 0.148 (1.05%) 0.147 (1.71%)
Synth. ρ = 10 — 1.00 % — 3-10 0.154 0.162 (-5.38%) 0.154 (-0.09%) 0.152 (0.81%) 0.172 (-12.20%) 0.162 (-5.71%) 0.153 (0.54%) 0.153 (0.11%) 0.152 (0.74%) 0.150 (2.01%) 0.150 (2.58%)
Synth. ρ = 10 — 5.00 % — 3-5 0.158 0.164 (-3.71%) 0.159 (-0.49%) 0.158 (0.00%) 0.188 (-18.71%) 0.168 (-6.02%) 0.158 (-0.12%) 0.160 (-0.95%) 0.158 (0.18%) 0.151 (4.68%) 0.148 (6.28%)
Synth. ρ = 10 — 5.00 % — 3-10 0.168 0.177 (-5.44%) 0.167 (0.33%) 0.166 (1.33%) 0.205 (-21.92%) 0.167 (0.33%) 0.167 (0.40%) 0.167 (0.33%) 0.167 (0.83%) 0.152 (9.44%) 0.151 (9.92%)
Synth. ρ = 10 — 10.00 % — 3-5 0.177 0.184 (-4.27%) 0.175 (1.32%) 0.172 (2.59%) 0.210 (-18.70%) 0.175 (1.32%) 0.173 (2.22%) 0.175 (1.32%) 0.172 (3.02%) 0.154 (13.18%) 0.153 (13.57%)
Synth. ρ = 10 — 10.00 % — 3-10 0.191 0.205 (-7.66%) 0.190 (0.53%) 0.190 (0.66%) 0.244 (-27.87%) 0.190 (0.53%) 0.189 (1.16%) 0.190 (0.53%) 0.187 (2.20%) 0.154 (19.02%) 0.154 (19.02%)
Synth. ρ = 100 — 1.00 % — 3-5 0.148 0.156 (-5.59%) 0.150 (-1.42%) 0.148 (0.12%) 0.166 (-12.13%) 0.150 (-1.42%) 0.146 (0.88%) 0.150 (-1.42%) 0.146 (0.88%) 0.148 (-0.10%) 0.147 (0.47%)
Synth. ρ = 100 — 1.00 % — 3-10 0.150 0.158 (-5.50%) 0.150 (0.19%) 0.149 (0.74%) 0.171 (-13.60%) 0.150 (0.19%) 0.149 (0.75%) 0.150 (0.19%) 0.149 (0.75%) 0.150 (0.27%) 0.149 (0.83%)
Synth. ρ = 100 — 5.00 % — 3-5 0.149 0.153 (-2.71%) 0.150 (-0.64%) 0.148 (0.43%) 0.184 (-23.43%) 0.150 (-0.64%) 0.148 (0.62%) 0.150 (-0.64%) 0.148 (0.62%) 0.149 (-0.17%) 0.147 (1.26%)
Synth. ρ = 100 — 5.00 % — 3-10 0.152 0.156 (-2.26%) 0.152 (0.12%) 0.150 (1.46%) 0.202 (-32.72%) 0.152 (0.12%) 0.150 (1.77%) 0.152 (0.12%) 0.150 (1.77%) 0.150 (1.93%) 0.150 (1.93%)
Synth. ρ = 100 — 10.00 % — 3-5 0.159 0.159 (-0.28%) 0.156 (2.22%) 0.153 (4.01%) 0.206 (-29.60%) 0.156 (2.22%) 0.153 (3.94%) 0.156 (2.22%) 0.153 (3.94%) 0.150 (5.41%) 0.150 (5.41%)
Synth. ρ = 100 — 10.00 % — 3-10 0.161 0.163 (-1.07%) 0.160 (0.79%) 0.153 (4.81%) 0.244 (-51.34%) 0.160 (0.79%) 0.152 (5.80%) 0.160 (0.79%) 0.152 (5.80%) 0.149 (7.20%) 0.149 (7.20%)
Synth. ρ = 1000 — 1.00 % — 3-5 0.147 0.156 (-5.85%) 0.149 (-1.22%) 0.147 (0.25%) 0.166 (-12.30%) 0.149 (-1.22%) 0.146 (0.79%) 0.149 (-1.22%) 0.146 (0.79%) 0.148 (-0.17%) 0.147 (0.44%)
Synth. ρ = 1000 — 1.00 % — 3-10 0.149 0.158 (-5.77%) 0.149 (0.01%) 0.148 (0.62%) 0.170 (-13.97%) 0.149 (0.01%) 0.149 (0.56%) 0.149 (0.01%) 0.149 (0.56%) 0.149 (0.03%) 0.149 (0.58%)
Synth. ρ = 1000 — 5.00 % — 3-5 0.147 0.150 (-2.02%) 0.148 (-0.69%) 0.146 (0.80%) 0.182 (-23.50%) 0.148 (-0.69%) 0.147 (0.47%) 0.148 (-0.69%) 0.147 (0.47%) 0.148 (-0.50%) 0.145 (1.31%)
Synth. ρ = 1000 — 5.00 % — 3-10 0.149 0.153 (-2.50%) 0.149 (0.04%) 0.147 (1.35%) 0.200 (-33.82%) 0.149 (0.04%) 0.147 (1.59%) 0.149 (0.04%) 0.147 (1.59%) 0.147 (1.26%) 0.147 (1.43%)
Synth. ρ = 1000 — 10.00 % — 3-5 0.155 0.155 (-0.10%) 0.152 (2.05%) 0.149 (3.77%) 0.202 (-30.50%) 0.152 (2.05%) 0.149 (4.08%) 0.152 (2.05%) 0.149 (4.08%) 0.148 (4.37%) 0.148 (4.75%)
Synth. ρ = 1000 — 10.00 % — 3-10 0.154 0.156 (-1.28%) 0.153 (0.90%) 0.147 (4.44%) 0.239 (-55.42%) 0.153 (0.90%) 0.146 (5.30%) 0.153 (0.90%) 0.146 (5.30%) 0.145 (5.82%) 0.145 (5.82%)
Avg. 0.127 0.133 (-5.70%) 0.127 (-0.04%) 0.125 (1.33%) 0.158 (-21.54%) 0.129 (-1.89%) 0.125 (1.70%) 0.127 (-0.13%) 0.125 (1.78%) 0.122 (3.30%) 0.121 (4.05%)
Weighted Avg. 0.134 0.139 (-5.15%) 0.133 (0.20%) 0.131 (1.53%) 0.168 (-23.36%) 0.135 (-1.55%) 0.131 (1.87%) 0.133 (0.12%) 0.131 (1.98%) 0.127 (4.08%) 0.126 (4.64%)

Table VIII: Waste (and gain) with C=3s and |Qlimit| = 5%.
Log Periodic algorithms Bi-periodic algorithms Omniscient oracle

ΠDaly ΠIntervals ΠQuantiles ΠBest period BI-ΠIntervals BI-ΠQuantiles BI-Π-BEST BI-ΠQuantilesLAZY BI-ΠQuantilesLAZY-BEST BI-ΠQuantilesORACLE BI-Π-ORACLE-BEST
LANL 2 0.012 0.013 (-11.94%) 0.011 (0.21%) 0.011 (0.83%) 0.013 (-10.41%) 0.012 (-5.73%) 0.011 (1.35%) 0.011 (0.22%) 0.011 (1.29%) 0.011 (2.12%) 0.011 (2.41%)
LANL 16 0.009 0.011 (-14.17%) 0.009 (-0.07%) 0.009 (0.54%) 0.010 (-11.20%) 0.010 (-5.63%) 0.009 (1.40%) 0.009 (0.07%) 0.009 (1.33%) 0.009 (1.98%) 0.009 (2.97%)
LANL 18 0.015 0.017 (-10.27%) 0.015 (0.42%) 0.015 (0.00%) 0.016 (-9.06%) 0.016 (-8.00%) 0.015 (2.74%) 0.015 (-0.12%) 0.015 (1.79%) 0.015 (2.67%) 0.015 (3.54%)
LANL 19 0.015 0.016 (-8.82%) 0.015 (0.28%) 0.015 (1.05%) 0.016 (-8.50%) 0.016 (-10.12%) 0.015 (1.95%) 0.015 (-0.35%) 0.015 (0.95%) 0.014 (2.99%) 0.014 (3.32%)
LANL 20 0.011 0.012 (-13.00%) 0.011 (0.99%) 0.011 (1.97%) 0.013 (-19.57%) 0.011 (-4.22%) 0.010 (3.00%) 0.011 (0.50%) 0.011 (2.07%) 0.010 (3.05%) 0.010 (3.05%)
Tsubame 0.011 0.012 (-7.71%) 0.011 (-0.29%) 0.011 (4.63%) 0.012 (-11.97%) 0.012 (-6.89%) 0.011 (3.16%) 0.011 (-1.44%) 0.011 (3.36%) 0.011 (1.98%) 0.011 (5.33%)
Synth. ρ = 10 — 1.00 % — 3-5 0.043 0.045 (-4.94%) 0.043 (0.03%) 0.043 (-0.00%) 0.048 (-11.18%) 0.047 (-8.41%) 0.043 (0.90%) 0.043 (-0.63%) 0.043 (0.99%) 0.043 (0.85%) 0.042 (2.72%)
Synth. ρ = 10 — 1.00 % — 3-10 0.044 0.046 (-5.49%) 0.044 (-0.67%) 0.044 (0.45%) 0.049 (-11.10%) 0.047 (-6.36%) 0.043 (1.10%) 0.044 (-1.10%) 0.043 (1.29%) 0.043 (2.07%) 0.042 (3.46%)
Synth. ρ = 10 — 5.00 % — 3-5 0.045 0.049 (-8.40%) 0.045 (0.22%) 0.045 (0.16%) 0.053 (-15.87%) 0.049 (-7.95%) 0.045 (1.79%) 0.046 (-0.92%) 0.045 (1.01%) 0.042 (7.75%) 0.042 (8.41%)
Synth. ρ = 10 — 5.00 % — 3-10 0.048 0.052 (-8.30%) 0.048 (-0.13%) 0.048 (0.37%) 0.058 (-20.35%) 0.050 (-5.20%) 0.047 (1.20%) 0.048 (-0.66%) 0.047 (1.18%) 0.042 (12.02%) 0.042 (12.39%)
Synth. ρ = 10 — 10.00 % — 3-5 0.050 0.055 (-9.60%) 0.050 (-0.11%) 0.050 (0.05%) 0.059 (-18.86%) 0.053 (-5.20%) 0.049 (1.83%) 0.050 (-0.63%) 0.049 (1.45%) 0.042 (15.22%) 0.042 (15.22%)
Synth. ρ = 10 — 10.00 % — 3-10 0.054 0.061 (-11.63%) 0.055 (-0.69%) 0.054 (0.00%) 0.068 (-24.08%) 0.057 (-4.02%) 0.053 (1.90%) 0.055 (-0.92%) 0.054 (0.79%) 0.043 (20.70%) 0.043 (21.94%)
Synth. ρ = 100 — 1.00 % — 3-5 0.043 0.045 (-4.56%) 0.043 (0.07%) 0.043 (0.00%) 0.048 (-11.46%) 0.045 (-5.20%) 0.042 (0.42%) 0.043 (-0.11%) 0.042 (1.01%) 0.043 (0.01%) 0.042 (1.93%)
Synth. ρ = 100 — 1.00 % — 3-10 0.043 0.045 (-4.71%) 0.043 (-0.80%) 0.043 (0.61%) 0.049 (-13.07%) 0.045 (-3.47%) 0.043 (0.68%) 0.043 (-0.73%) 0.043 (1.17%) 0.043 (0.52%) 0.042 (1.94%)
Synth. ρ = 100 — 5.00 % — 3-5 0.044 0.045 (-4.09%) 0.044 (0.28%) 0.043 (0.51%) 0.052 (-19.78%) 0.044 (-1.47%) 0.044 (0.28%) 0.043 (0.33%) 0.043 (1.20%) 0.042 (3.93%) 0.042 (4.68%)
Synth. ρ = 100 — 5.00 % — 3-10 0.045 0.047 (-4.55%) 0.045 (0.55%) 0.044 (2.06%) 0.058 (-28.60%) 0.046 (-0.90%) 0.045 (1.53%) 0.045 (0.66%) 0.044 (3.24%) 0.042 (7.34%) 0.042 (7.34%)
Synth. ρ = 100 — 10.00 % — 3-5 0.047 0.049 (-4.26%) 0.047 (-0.09%) 0.046 (1.28%) 0.059 (-26.69%) 0.047 (-1.42%) 0.046 (1.88%) 0.047 (0.21%) 0.045 (3.48%) 0.043 (8.97%) 0.042 (9.25%)
Synth. ρ = 100 — 10.00 % — 3-10 0.050 0.050 (-0.19%) 0.050 (-0.18%) 0.048 (3.13%) 0.070 (-41.47%) 0.050 (-0.18%) 0.047 (4.71%) 0.050 (-0.18%) 0.047 (5.47%) 0.043 (13.32%) 0.043 (14.11%)
Synth. ρ = 1000 — 1.00 % — 3-5 0.042 0.044 (-4.12%) 0.042 (-0.18%) 0.042 (-0.00%) 0.047 (-11.95%) 0.043 (-1.72%) 0.042 (0.09%) 0.042 (-0.19%) 0.042 (0.53%) 0.043 (-0.85%) 0.042 (1.18%)
Synth. ρ = 1000 — 1.00 % — 3-10 0.043 0.045 (-5.02%) 0.043 (-0.72%) 0.042 (0.60%) 0.048 (-13.50%) 0.043 (-0.72%) 0.042 (0.78%) 0.043 (-0.72%) 0.042 (0.79%) 0.043 (-0.65%) 0.042 (0.79%)
Synth. ρ = 1000 — 5.00 % — 3-5 0.042 0.044 (-3.61%) 0.042 (0.39%) 0.042 (0.63%) 0.051 (-21.67%) 0.042 (0.39%) 0.042 (0.39%) 0.042 (0.39%) 0.042 (0.45%) 0.042 (1.13%) 0.041 (1.81%)
Synth. ρ = 1000 — 5.00 % — 3-10 0.043 0.044 (-3.80%) 0.042 (0.46%) 0.042 (2.19%) 0.057 (-32.79%) 0.042 (0.46%) 0.042 (1.75%) 0.042 (0.46%) 0.042 (1.75%) 0.042 (1.98%) 0.042 (1.98%)
Synth. ρ = 1000 — 10.00 % — 3-5 0.044 0.045 (-4.02%) 0.044 (0.23%) 0.043 (2.12%) 0.057 (-30.84%) 0.044 (0.23%) 0.043 (2.37%) 0.044 (0.23%) 0.043 (2.37%) 0.042 (3.24%) 0.042 (3.24%)
Synth. ρ = 1000 — 10.00 % — 3-10 0.045 0.044 (0.96%) 0.044 (0.53%) 0.042 (4.95%) 0.068 (-51.43%) 0.044 (0.53%) 0.043 (4.28%) 0.044 (0.53%) 0.043 (4.28%) 0.043 (3.89%) 0.042 (4.85%)
Avg. 0.037 0.039 (-6.51%) 0.037 (0.03%) 0.037 (1.17%) 0.045 (-19.81%) 0.038 (-3.80%) 0.036 (1.73%) 0.037 (-0.21%) 0.036 (1.80%) 0.035 (4.84%) 0.034 (5.74%)
Weighted Avg. 0.039 0.041 (-6.26%) 0.039 (0.04%) 0.038 (1.16%) 0.048 (-21.43%) 0.040 (-3.49%) 0.038 (1.80%) 0.039 (-0.16%) 0.038 (1.88%) 0.036 (5.59%) 0.036 (6.37%)



µnon−cascade(Q) as the MTBF in normal regimen. Overall,
the results show that a significant gain is possible only
for the latter two algorithms equipped with an omniscient
oracle: when entering a cascade, BI-Π-ORACLE-BEST and
BI-ΠQuantilesORACLE checkpoint right on time before the
failures. Even so, one can see that the gains are very limited.

The only case where the gain becomes larger is when (i)
the degraded MTBF is not too small in front of the log MTBF,
i.e., when ρ = 10, and (ii) the proportion of failures that turn
out to be actual cascade failures is large, i.e., when f = 10%.
In that case, the maximal potential gain is 8% with C = 300,
19% with C = 30 and 22% with C = 3 (the latter two values
leading to small absolute gains, because the waste with ΠDaly

is small in these cases). However, this scenario may not be
realistic, because (i) cascade failures, as their name merely
indicates, are expected to strike within a few instants, hence
µdegraded will likely be less than one minute; and (ii) cascades
are expected to be (more or less) rare events, so experiencing
large values of f will probably never happen in practice.

VI. CONCLUSION

In this paper, we have revisited failure temporal indepen-
dence. Recent work [4] has proposed a cascade-detection
method, and we have shown that their approach was incon-
clusive. Then we have introduced a new approach based on
pairs of consecutive IATs, and we have been able to put in
evidence the presence of cascade failures. A few publicly
available failure logs do contain cascades.

In a second step, we have discussed the usefulness of
cascade-aware checkpointing algorithms. For this, we have
used both public and synthetic logs. We used the latter to
explicitly create “artificial” cascades. We have shown that
current cascade-aware bi-periodic checkpointing algorithms
are not really more efficient than the standard periodic check-
pointing approach that considers failures to be independent.
Finally, by using a brute-force search over all possible bi-
periodic algorithms and considering omniscient oracles that
know exactly when cascade failures will strike, we have
shown that only insignificant gain should be expected from
designing future cascade-aware checkpointing algorithms. The
conclusion is that we can wrongly, but safely, assume failure
independence!
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