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Abstract

The high probability of hardware failures prevents many advanced robots (e.g., legged robots) from being confidently
deployed in real-world situations (e.g., post-disaster rescue). Instead of attempting to diagnose the failures, robots could
adapt by trial-and-error in order to be able to complete their tasks. In this situation, damage recovery can be seen
as a Reinforcement Learning (RL) problem. However, the best RL algorithms for robotics require the robot and the
environment to be reset to an initial state after each episode, that is, the robot is not learning autonomously. In addition,
most of the RL methods for robotics do not scale well with complex robots (e.g., walking robots) and either cannot
be used at all or take too long to converge to a solution (e.g., hours of learning). In this paper, we introduce a novel
learning algorithm called “Reset-free Trial-and-Error” (RTE) that (1) breaks the complexity by pre-generating hundreds
of possible behaviors with a dynamics simulator of the intact robot, and (2) allows complex robots to quickly recover
from damage while completing their tasks and taking the environment into account. We evaluate our algorithm on a
simulated wheeled robot, a simulated six-legged robot, and a real six-legged walking robot that are damaged in several
ways (e.g., a missing leg, a shortened leg, faulty motor, etc.) and whose objective is to reach a sequence of targets in
an arena. Our experiments show that the robots can recover most of their locomotion abilities in an environment with
obstacles, and without any human intervention.
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1. Introduction

During the recent DARPA Robotics Challenge (2015),
many robots had to be “rescued” by humans because of
hardware failures [I], which is paradoxical for robots that
were designed to operate in environments that are too
risky for humans. While these robots could certainly have
been more robust and some falls prevented, even the best
robots will encounter unforeseen situations: hardware fail-
ures will always be a possibility, especially with highly
complex robots in complex environments [2]. For instance,
C. Atkeson et al. report that the Atlas robot they used in
the DARPA Robotics challenge had a “mean time between
failures of hours or, at most, days” [1l [3].

Figure 1: A typical experiment with the Reset-free Trial-and-Error

The traditional method for damage recovery is to first
diagnose the failure, then update the plans to bypass
it [4, Bl [6]. Nevertheless, conceptually, the probability
of failing grows exponentially with the complexity of the
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(RTE) algorithm. A. A 6-legged (hexapod) robot is damaged; i.e.,
missing a leg. B. The robot uses RTE to learn how to compensate
while completing its task and taking into account the environment.
As the robot moves, it improves its performance, i.e., it needs fewer
episodes to reach the next target.

robot (e.g., a Roomba vs a humanoid) and the environ-
ment (e.g., an empty arena vs a post-earthquake building);
accurate diagnosis, therefore, becomes much more chal-
lenging and requires many more internal sensors, which,
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in turn, increase the complexity and the cost of robots.

To overcome these challenges, robots can avoid the di-
agnosis step and directly learn a compensatory behavior
by trial-and-error [7, 8, [@]. In this case, damage recov-
ery is a reinforcement learning (RL) problem in which the
robot has to maximize its performance for the task at hand
in spite of being damaged [10]. The most successful tradi-
tional RL methods typically learn an action-value function
that the agent consults to select the best action from each
state (i.e., one that maximizes long-term reward) [111 [12].
These methods work well in discrete action spaces (and
even better when combined with discrete state spaces),
but robots are typically controlled with continuous inputs
and outputs (see [I3], 10] for detailed discussions on the
issues of classic RL methods in robotics).

As a result, the most promising approaches to RL for
robot control do not rely on value functions; instead, they
are policy search methods that learn parameters of a con-
troller, called the policy, that maps sensor inputs to joint
positions/torque [I3]. These methods make it possible
to use policies that are well-suited for robot control such
as dynamic movement primitives [I4] or general-purpose
neural networks [I5]. In direct policy search, the algo-
rithms view learning as an optimization problem that can
be solved with gradient-based or black-box optimization
algorithms [16]. As they are not modeling the robot itself,
these algorithms scale well with the dimensionality of the
state space. They still encounter difficulties, however, as
the number of parameters which define a policy, and thus
the dimensionality of the search space, increases [13]. In
model-based policy search, the algorithms typically alter-
nate between learning a model of the robot and learning
a policy using the learned model [I7, [18]. As they op-
timize policies without interacting with the robot, these
algorithms not only scale well with the number of param-
eters, but can also be very data efficient, requiring few
trials on the robot itself to develop a policy. They do
not scale well with the dimensionality of the state space,
however, as the complexity of the dynamics tends to scale
exponentially with the number of moving components.

In addition to scaling, another limitation of most of the
current RL methods used in robotics is that after each
trial, the robot needs to be reset to the same state [10, [19].
While this reset is often not a problem for a manipulator,
it prevents mobile robots (e.g., a stranded mobile manip-
ulator or a legged robot) from exploiting this kind of al-
gorithms to recover from damage in real-world situations.
The robot cannot ignore its environment while learning,
which is usually the case, as it may be further damaged
if it makes a wrong decision. For example, if the robot is
in front of a wall and needs to try a new way to move, it
should not try to go forward, but it should select actions
that would make it more likely to move backwards in order
to avoid hitting the wall.

An ideal damage recovery algorithm should therefore (1)
not need any reset between episodes, (2) scale well enough
with respect to the dimensionality of the state/action

space of the robot, so that it can be used for “complex”
robots (e.g., legged robots) with the computing resources
that are typically embedded in modern robots, and (3)
explicitly take into account the environment. The objec-
tive of the present paper is to introduce a reinforcement
learning algorithm that fits these three requirements by ex-
ploiting specific features of the damage recovery problem.

More precisely, we investigate a simplified scenario that
captures these challenges: a waypoint-controlled robot is
damaged in a way that is unknown to its operator (e.g.,
a leg is partially cut or a motor working at half speed);
to get out of the building, the robot must recover its lo-
comotion abilities so that it can reach the waypoints fixed
by its operator. Our objective is to have the robot recover
its locomotive abilities to the maximum extent possible in
the shortest amount of time (Fig. [1). We assume that no
diagnosis is available or that the diagnosis failed, either
because the robot lacks the right sensor or because the
damage is so out of the ordinary that it cannot be prop-
erly diagnosed. For simplicity, we also assume that the
environment is known to the robot; we will discuss pos-
sible extensions of our approach when the environment is
unknown in the discussion section.

Our first source of inspiration is the recently introduced
Intelligent Trial and Error (IT&E) algorithm [7]. This
algorithm is an episodic policy search algorithm that is
specifically designed for damage recovery. It addresses the
scaling challenge by assuming that some high-performing
policies for the intact robot still work on the damaged
robot. While this assumption does not always hold, em-
pirical experiments show that it often holds with highly
redundant robots (e.g., legged robots or humanoids) [7, [§]
because (1) there are often many ways to perform a task,
and (2) the outcomes of behaviors that do not use the dam-
aged parts are similar between the intact and the damaged
robot. Using this assumption, IT&E searches for a diverse
set of high-performing policies before the mission (offline),
then performs the online search, that is, the adaptation to
damage, by searching solely in this lower-dimensional set of
pre-selected policies (using Bayesian optimization) [7]. As
a result, most of the trials required for the policy search
are transferred from the real damaged robot, which can
perform only a few trials, to simulations with the intact
robot, which can perform many more trials, especially on
modern computing clusters. For instance, IT&E allows an
18-DOF hexapod robot to learn to walk after several in-
juries within a dozen episodes [7] and only two minutes of
combined interaction and computation time.

A second source of inspiration is the recent AlphaGo
algorithm that succeeded in beating the European and
World champions in the game of Go [20]. Essentially,
the authors use deep learning to pre-compute default poli-
cies and initial values for a Monte Carlo Tree Search
(MCTS) [21] algorithm that plans (approximately) the
best next action to take. We can draw an analogy in
robotics and pre-compute actions or policies, learn the
model of the robot on-line (the physical robot is damaged)



and use MCTS to select the most promising action. Inter-
estingly, MCTS can also take into account the uncertainty
of the prediction of the model of the environment (e.g.,
when using Gaussian processes for models [22]). Unfortu-
nately, it seems unrealistic to learn a probabilistic model
of the full dynamics of a walking robot (like in [23]) within
a few seconds (or minutes) of interaction time and the on-
board computational power of a typical robot; more impor-
tantly, a probabilistic planner that would plan in the full
controller space is even more computationally demanding.

Our main idea is to adapt the pre-computing part of
IT&E, so that it can be used by a MCTS-based plan-
ner to select the next trial, in place of the Bayesian op-
timization used in IT&E. In addition, we utilize a prob-
abilistic model to learn how to correct the outcome of
each action on the damaged robot and use the MCTS-
based planner in a similar way as in AlphaGo [20] and
the TEXPLORE algorithm [23], but also incorporating the
uncertainty of the model prediction in the search. This al-
lows us to propose a trial-and-error learning algorithm for
damage recovery that can work on a real hexapod robot,
within reasonable computation time (less than 1 minute
between each episode), that does not need any reset be-
tween each episode and takes into account the environ-
ment when learning. We call this new algorithm “Reset-
free Trial-and-Error” (RTE). In this paper, we will show
that RTE performs significantly better than a modified
(improved) version of TEXPLORE in both a simple dif-
ferential drive mobile robot and a hexapod robot locomo-
tion task (in the latter task, we empirically evaluate that
TEXPLORE is not applicable due to the dimensionality
of the action space).

The main contributions of this paper are as follows:

e a novel formulation of robot damage recovery as a
model-based RL problem;

e a novel combination of learning techniques that re-
sembles that of AlphaGo and exploits simulations of
the intact robot to accelerate learning on the physical,
damaged robot;

e extensive experiments in simulation with a damaged
simple differential drive mobile robot and a damaged
hexapod (6-legged) robot, which validate the perfor-
mance of the proposed approach and show that RTE
performs and scales significantly better than TEX-
PLORE;

e experimental validation on a physical, damaged hexa-
pod robot that recovers most of its locomotion abil-
ities and is able to complete its task(s), without any
human intervention.

2. State of the art

2.1. Learning in Robotics
While there is a consensus that robots should be able to
learn new tasks and improve their performance over time,

there is far less agreement on the best place to insert learn-
ing in a robot learning architecture. Many approaches rely
on supervised learning algorithms that learn forward or
inverse models. Once learned, such models can be com-
bined with control or planning algorithms to achieve the
task at hand. A critical aspect of model learning is data
acquisition: supervised learning algorithms need labeled
data, but random babbling is often insufficient to gener-
ate behaviors that are interesting for robots [22] 24]; for
instance, random movements with a robotic arm are un-
likely to generate grasp-like behaviors. Active learning can
alleviate this issue by exploring behaviors that improve the
model “at the right place” [24].

Instead of learning a model, robots can use an RL al-
gorithm to discover how to behave [I0]. Classic RL ap-
proaches, however, are designed for discrete state and ac-
tion spaces [I1], [10], whereas robots almost always have to
solve continuous tasks, for example balancing by control-
ling joint torques [25]. A popular alternative is to view RL
as an optimization of the parameters of a policy [16], which
can be solved with gradient-based methods [26] [10], evolu-
tionary algorithms [27] or other optimization methods like
Bayesian optimization [7], 28, [29]. Nevertheless, most pol-
icy search algorithms require a reset of the environment
and robot, or specific initial states. A few non-episodic
policy search algorithms (that lift these constraints) exist
in the literature [30, 311 B2, B3]. However, even for simple
problems like reaching targets in 2D with a 3-DOF arm,
they still typically require a few hundred samples [30].

Several algorithms combine ideas from model learning
and from RL. In particular, TEXPLORE is a non-episodic
model-based RL algorithm that is based on learning the
transition dynamics of the robot, which are then used by
an MCTS-based planner to select the most promising ac-
tion in the current time step or episode [23]. The anytime
nature of MCTS allows TEXPLORE to stop the planning
procedure when required and thus can even be used for
real-time control. For example, TEXPLORE has success-
fully been used to control a real car in real-time [34]. Nev-
ertheless, TEXPLORE has only been used with determin-
istic models and with discrete action spaces. Moreover,
as the dimensionality of the action space increases, the
performance of MCTS rapidly deteriorates [35], prevent-
ing the use of TEXPLORE in more complex robots. Fi-
nally, learning a full dynamics model of a complex robot
(as empirically evaluated in this paper) cannot be done in
a data-efficient manner [36].

2.2. Fault Tolerance and Recovery in Robotics

Classic approaches to fault tolerance rely on updat-
ing the model of the robot, either directly with self-
diagnosis [37], or indirectly with machine learning [38] [5];
the model is then used for planning and/or control. For
instance, if a hexapod robot detects that one of its legs is
not working as expected, it can stop using it and adapt the
controller to use only the working legs [39]. However, be-
cause of the many perceptual ambiguities on a robot, these
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Figure 2: Overview of Reset-free Trial-and-Error (RTE) algorithm. A. Before deploying the robot, simulations with the intact robot are used
to generate an action repertoire with the MAP-Elites algorithm. B. This repertoire is refined using a probabilistic learning model (Gaussian
processes here — B1). This model is then used as the black-box simulator of a probabilistic planner (Monte Carlo Tree Search here — B2),
which computes and outputs the best action to complete the task taking into account the uncertainty of the model. To better illustrate what
happens in this phase, we “zoom in” and illustrate one simple case (B2-detail). The robot (blue circle) has to reach the target (green circle)
without hitting the obstacles (gray circles) and its model is uncertain. The algorithm explores several alternative paths to the goal (here
only 2 for illustration purposes) and chooses the path that achieves the largest expected return (here we select the red one, as the green one
collides more often). The lines of the same color are sampled from the distribution of choosing the specific action sequence. Once the best
path is selected, the physical damaged robot executes the first action (B3) of the path and updates the repertoire with the new gathered
data. The algorithm then re-explores new ways to reach the goal and the process continues until the task is completed.

approaches need many sensors and/or strong hypotheses
about the kind of possible faults.

An alternative approach is to let a damaged robot learn
a new policy by trial-and-error, which bypasses the need
for a diagnosis [8, [7, @]. In this line of work, the biggest
challenge is to design algorithms that are as data-efficient
as possible, because too many trials may damage the robot
further, and learning must be rapid enough to be useful
in real-world situations. To minimize the number of tri-
als, several algorithms rely on the transferability hypoth-
esis [7, 8]: the behaviors that do not use the damaged
parts are likely to be similar between the damaged and
the undamaged robot, therefore simulations of the intact
robot can help when searching for a new behavior on the
damaged robot. Starting with this hypothesis, the IT&E
algorithm [7] exploits a dynamic simulation of the intact
robot to create a behavior-performance map that predicts
the performance of thousands of different behaviors. If
damage occurs, this map is used as a prior for a Bayesian

optimization algorithm that searches for a compensatory
behavior [40, 29, 28]. Overall, the experimental results
show that IT&E can allow various types of robots (a hexa-
pod robot and an 8-DOF arm) to compensate for many
different injuries in less than 2 minutes [7].

2.8. Probabilistic and Sample-Based Planning

Sample-based planning is one of the main philosophies
that addresses the motion planning problem [4I]. The
traditional algorithms in this category are “Rapidly Ex-
ploring Random Trees” (RRT) [42] and “Probabilistic
Roadmaps for path planning in high-dimensional config-
uration spaces” (PRM) [43]. In RRT, a tree is con-
structed incrementally from samples drawn randomly from
the search space and is biased to grow towards big unex-
plored areas of the problem. The basic idea behind PRM
is to take random samples from the configuration space of
the robot, test if they are in the free space, and then use



a local planner to attempt to connect these configurations
to other nearby configurations.

A more recent algorithm that belongs to this category is
Monte Carlo Tree Search (MCTS) [21]. MCTS is a method
for finding optimal decisions in a given domain by taking
random samples in the decision space and building a search
tree according to the results. It has already had a profound
impact on Artificial Intelligence approaches for domains
that can be represented as trees of sequential decisions,
particularly games and planning problems [35], 20].

3. Problem Formulation

Our problem can be cast in the general framework of
Markov Decision Processes (MDP) [1I]. An MDP is a
tuple (S, A, T,r), where S is the state space (continuous
or discrete), A is the action space (continuous or discrete),
T(s¢,a¢,8:41) is the state transition function specifying
the probability of transitioning to state s;y; € S when the
agent takes action a; € A in state s; € S, and r: S = R
is the immediate reward function (which defines the task
of the agent), with r(s;y1) being the immediate reward of
state s;4+1 and sy;4; may contain both internal variables
(such as body position) and external variables (such as
obstacles). The objective of the agent (i.e., the robot)
is to find a deterministic policy 7, i.e., a mapping from
states to actions, a; = 7(s;), that maximizes its expected
discounted return:

JT=E

fjwtr(sm\w] )

t=0

where v € [0,1) is a factor that discounts future rewards.
T and r describe the environmental dynamics and they
are collectively known as the model of the environment. If
the agent has access to this model, it can use a planning
algorithm to find the optimal policy. In this paper, the
transition function 7' is learned and we assume that the
reward function r is known to the robot.

In our setting, the robot needs to execute a sequence of
related tasks G1,Go,...,G,, each of which is a shortest
path problem:

Rgoal if s; = goal(G;)
r(st) = ¢ —Rierm if sy = terminal(G;) (2)
0 otherwise

where Rgoai > 0, Rierm > 0, goal(G;) returns the goal
state of task G;, and terminal(G;) returns a non-goal,
terminal state of task G, e.g., a colliding state. When s; =
goal(G;), the robot finishes task G; and starts executing
task Gi+1.

4. Approach

4.1. Overview

RTE allows robots to “learn while doing” instead of
“learning and then doing”. This is achieved by:

e pre-computing an action repertoire with relatively
low-fidelity simulations (e.g., perfect velocity ac-
tuators) of the intact robot (generated by MAP-
Elites [44], Fig.[2]A) that also (a) creates a mapping
between the task space and the parameters of the low-
level controller and (b) reduces the dimensionality of
the action space;

e using a probabilistic model (Gaussian processes) to
learn how to correct the prediction of the outcome of
each action for the damaged robot (Fig. [2B1);

e re-planning at every episode with a probabilistic plan-
ner (Monte Carlo Tree Search) that selects the next
action to execute, based on the predictions of the
probabilistic model, the uncertainty of those predic-
tions, the environment, the current state of the robot,
and the target state (Fig. [2B2). More specifically, we
solve a path/motion planning problem with uncertain
transitions (Fig. 2—detail). Clearly, the further we
plan into the future, the more uncertain our estimates
will be about where the robot will end up (Fig. [2B2-
detail); therefore, an ideal planner would select the
action that has the best utility (in terms of expected
discounted cumulative reward) by considering these
future estimates (i.e., how close they arrive to the
target, how often they hit obstacles).

In summary, if damage occurs, RTE performs the fol-
lowing loop (Fig. 2B): (1) uses MCTS to select the next
best action from the repertoire to complete the task, (2)
executes the action for a given time duration (e.g., 3 sec-
onds or 100 simulation steps), that is, perform an episode,
(3) updates the Gaussian processes (GPs) to improve the
prediction of the outcome of each action of the repertoire
and (4) repeats (1)-(3) until the task(s) are completed.

4.2. Learning the Action Repertoire

Controllers for complex robots, for instance legged
robots, usually involve numerous parameters, which makes
control policies challenging to learn within a few trials.
We circumvent this issue by using the transferability hy-
pothesis (Sec. and learn, before deploying the robot,
a repertoire of controllers with a simulated intact robot.
The predicted outcomes of the actions will be refined on-
line after each action is executed (i.e., at the end of each
episode) by the damaged robot (Sec. |4.3).

We assume that the robot is controlled by a low-level
controller that is parametrized by a vector 8 € R?. We also
assume that each point in the task space can be described
by a vector a € R"*, which we call an “action descriptor”.
We would like to create a repertoire that covers the task
space as well as possible [7, [45] [40], i.e., to both determine
a good set of actions A and a mapping between A and ©
(A — ©). This mapping also reduces the dimensionality
of the search space since the task space is usually much
lower dimensional than the controller space.



Algorithm 1 MAP-Elites
1: procedure MAP-ELITES
2 (P« 0,00
3 fori=1— G do
4: 6 = random_solution()
5: add_to_repertoire(8, P, ®)
6
7
8
9

> Performance and feature grids
> Initialization: G random 0

fori=1—1do
6 = random _selection(®)
0’ = random_variation(6)
add-to-repertoire(6’, P, ®)
return repertoire and performance (@, P)
10: procedure ADD-TO-REPERTOIRE(O, P, ©®)
11: a = action_descriptor() > Use the forward model
12: p = performance(0) > Use the forward model
13: if P(a) =0 or P(a) < p then > Replace if better
14: P(a)=p
15: O(a)=10

> Main loop, I iterations

If we take a robotic manipulator as an example, the
controller space could be joint positions, the task space
could be the (z,y, z) coordinates of the end-effector, and
the repertoire will map (z, y, z) positions to joint positions,
that is, it would be a discrete representation of the inverse
kinematics of the arm. Nonetheless, while an inverse kine-
matics solver could be used to create a repertoire for a ma-
nipulator, most robots do not have access to such inverse
models. This is true for walking robots, in particular.

As a consequence, instead of using an inverse model,
we learn the action repertoire with an iterative algorithm
called MAP-Elites [44], [7] and a forward model (e.g., a
dynamic simulator). As with the inverse kinematics of re-
dundant manipulators, the mapping from the parameter
space to the task space is typically many-to-one. Thus, we
need to define a performance function to select the best @
for each point of the task space. This performance func-
tion is designed so as to promote certain type of behaviors
(Sec. and does not coincide with the reward function
of the MDP.

Essentially, MAP-Elites discretizes the n,-dimensional
task space to an n,-dimensional grid, and then attempts
to fill each of the cells using a variation-selection loop [44]
7, [47)]. Algorithmically, it starts with G random parame-
ter vectors, simulates the robot with these parameters, and
records both the position of the robot in the task space and
the performance (Algo. |1} 3-5). If the cell is free, then the
algorithm stores the parameter vector in that cell; if it is
already occupied, then the algorithm compares the per-
formance values and keeps only the best parameter vector
(Algo. 10-15). Once this initialization is done, MAP-
Elites iterates a simple loop (Algo. (1} 6-9): (1) randomly
selects one of the occupied cells, (2) adds a random vari-
ation to the parameter vector, (3) simulates the behavior,
(4) inserts the new parameter vector into the grid if it per-
forms better or end-ups in an empty cell (discard the new
parameter vector otherwise).

While MAP-Elites is computationally expensive, it can

be straightforward to parallelize and can run on large clus-
ters before deploying the robot. So far, it has been suc-
cessfully used to generate: behaviors for legged robots [7],
robotic arms [7, [44] and wheeled robots [48,49] [46]; designs
for airfoils [50], as well as for the morphologies of walking
“soft robots” [44]; adversarial images for deep neural net-
works [51]; “innovation engines” which generate images
that resemble natural objects [62]; and 3D-printable ob-
jects using feedback from neural networks trained on 2D
images [53]. MAP-Elites has also been extended to effec-
tively handle task spaces of arbitrary dimensionality [54].

4.8. Learning with Gaussian Processes

MAP-Elites provides not only the set of actions to be
used by the planner, but also a prior on how an action
modifies the state variables, i.e., a mapping from actions to
relative outcomes, f : A — O. Since this prior comes from
a simulator and the simulator uses a model of the intact
robot, it is only an approximation. Therefore, to make the
physical damaged robot perform well, there needs to be a
way to correct this mapping.

To do so, we use n Gaussian Processes (where n is the
number of dimensions of O) with a mean function that
corresponds to the prior provided by MAP-Elites. In other
words, the mapping computed with the simulator serves as
a prior for the GPs.

A GP is an extension of the multivariate Gaussian dis-
tribution to an infinite-dimension stochastic process for
which any finite combination of dimensions will be a Gaus-
sian distribution [55]. For each dimension d = 1...n, it is
a distribution over functions, specified by its mean func-
tion, pq(-) and covariance function, kq(-,-):

fa(a) ~ GP(pa(a), ka(a,a)) (3)

Assuming D¢, = {fi(a1), -+, fa(ar)} is a set of observa-
tions, My(-) is the mean from the simulated prior and o2,
the sampling noise, the GP is computed as follows:

p(fa(a)| Dl a) = N(pa(a),05(a)) (4)
pna(a) = My(a) + kg (Kq+opI) " (DL, — Ma(a14)) (5)
og(a) = ka(a,a) — ky (Kq+05,1) 'kq (6)

where K,; is the kernel matrix with entries Kéj =
kd(ai,aj) and kg = kd(D?:wa)'

4.4. Probabilistic Optimal Planning using MCTS

At the end of each episode, we need to solve an MDP
with an action set that contains thousands of actions in a
continuous state space. Since GPs are probabilistic mod-
els, they provide both a prediction and the uncertainty
associated with each prediction, which can be exploited
by probabilistic planners. Here we use Monte Carlo Tree
Search (MCTS) [21], as it has already been successfully
used to solve (Partially Observable)-MDPs with stochas-
tic transition functions [56] [35], continuous state spaces,
and high branching factors [35] [57].
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Figure 3: The four generic steps of Monte Carlo Tree Search algo-
rithms. The circular nodes represent decision nodes (states from
where actions are selected) and the rectangular nodes represent ran-
dom nodes (state-action pairs where random outcomes can happen).
See [67] for further details. A. The most urgent expandable node
(i.e., one with no previous visits) is selected using a selection pol-
icy. B. The tree is expanded according to the available actions. C.
A rollout is performed from the new node according to the default
policy. D. The rollout result is “backed up” through the selected
nodes.

MCTS is a best-first, sample-based search algorithm for
finding optimal decisions in a given domain by taking ran-
dom samples in the decision space and building a search
tree according to the results. Every state in the search tree
is evaluated by the average outcome of Monte Carlo roll-
outs from that state. These rollouts are typically random
or directed by a simple, domain-dependent heuristic [35].

MCTS (Algo. [2)) is an anytime planning algorithm, i.e.,
it runs until some predefined computational budget (typi-
cally, a time, memory or iteration constraint) is reached, at
which point the search is halted and the best-performing
root action is returned. Four steps are applied per search
iteration:

e SelectionPolicy: Starting at the root node, a child
selection policy is recursively applied to descend
through the tree until the most urgent expandable
node is reached (Fig. [BA).

o FExpansionPolicy: One child node, along with the
state’s associated reward p = r(s), is added to expand
the tree, according to the available actions (Fig. )

Algorithm 2 Generic Monte Carlo Tree Search

1: procedure MCTS-SEARCH(so)

2 while within computational budget do

3 S = Sgo

4 do

5: a = SelectionPolicy(s)

6 Children(s) = Children(s) U (s, a)

7 (s’, p) = ExpansionPolicy(s, a) > see [57]
8 Children(s,a) = Children(s,a) Us'

9: R(s,a)=p
10: s=s¢'
11: while n(s) > 0 and s not a terminal state > n(-)

returns the number of visits of a state

12: A = Rollout(s) > Use GPs (Sec.
13: BackUp(s, A, R)

return BestChild(so)

e Rollout: A rollout is performed from the new node ac-
cording to the default policy to get an estimate value
for this node, A (Fig. ) We do this by constructing
a generative model using the prediction of the GPs.

e BackUp: The rollout result is “backed up” through
the selected nodes to update their statistics (Fig.[3D).

4.5. Reset-free Trial-and-Error Learning Algorithm

Connecting all the pieces together, RTE first gener-
ates an action repertoire with the MAP-Elites algorithm
(Algo. |3} lines 2-3); then, while in mission, it re-plans at
each episode using MCTS and the current belief of the
outcome of the actions (prediction of the GPs), taking
into account the uncertainty of the predictions and poten-
tial final states (e.g., collisions with obstacle) (lines 9-13);
at the end of each episode, the GPs are updated with the
recorded data (lines 14-15).

Algorithm 3 Reset-free Trial-and-Error Learning

1: procedure RTE

2: Create Action Repertoire, A, with MAP-Elites
(Sec.

3: Construct mean function M from MAP-Elites data

4 for i =1 — dim(O) do

5 GP,; : A — O; with M; as prior (Sec.

6: while in mission and stopping criteria not met do

7 RTE-EPISODE(t)

8: t=t+1

9: procedure RTE-EPISODE(t)

10: s¢ = state of robot at time ¢

11:  a;y1 = MCTS-SEARCH(s;) (Sec.

12: f(at41) = execute_action(as+1) > Execute the action

and observe its outcome
13: Di.y1 = { D1, f(ar1)}
14: for i =1 — dim(O) do
15: Update GP; using D§:t+1 (Sec. |4.3)




5. Experimental Setup

We investigate the following scenario: a waypoint-
controlled robot is damaged in a way that is unknown to
its operator (e.g., a leg is partially cut or a motor work-
ing at half speed); to get out of the building, the robot
must recover its locomotion abilities so that it can reach
the waypoints fixed by its operator. As already stated, we
assume that no diagnosis is available or that the diagnosis
failed. In addition, for the sake of simplicity, the envi-
ronment is known to the robot and the robot knows its
position (via a Motion Capture system). The robot has to
reach 30 equidistant target waypoints in an arena with ob-
stacles. We perform these experiments with a differential
drive robot (in simulation) and with a 6-legged (hexapod)
robot (in simulation and with a physical robot).

We compare three algorithms: (1) RTE, (2) a variant
of RTE where the learning part is removed (i.e., MCTS-
based planning with the original action repertoire — we
call this variant MCTS) and (3) a variant of TEXPLORE
(we call it GP-TEXPLORE — Algo. [4) where: (i) the re-
ward function is known, (ii) we use a variant of MCTS for
continuous action spaces, and (iii) instead of learning the
full transition dynamics, only the relative outcome of each
action is learned. The main difference of GP-TEXPLORE
and RTE is that the latter uses the discrete action space
as defined by the learned repertoire for model learning
and planning, whereas GP-TEXPLORE plans and learns
the model in the full controller space. We also use GPs,
without taking into account the uncertainty, instead of
random forests that are used in the original TEXPLORE
paper [23]. With (2), we try to get closer to a classic plan-
ning algorithm with re-planning after each episode. With
(3) we try to make TEXPLORE better fit our problem
and we expect the original TEXPLORE algorithm to not
work as well as the baseline used here. However, exploring
more in these directions is beyond the scope of this paper.

Algorithm 4 Modified TEXPLORE

: procedure GP-TEXPLORE
for i =1 — dim(O) do
GP; : © — O; 1 controller space to outcome space

1

2

3

4 while in mission and stopping criteria not met do

5: GP-TEXPLORE-EPISODE(¥)

6: t=t+1

7: procedure GP-TEXPLORE-EPISODE(t)

8 s = state of robot at time ¢

9 0,11 = MCTS-SEARCH(s;) (Sec.
controller space

10: f(0:41) = execute_action(0¢41)
and observe its outcome

11: Diggr = {D1, f(0141)}

12: for i =1 — dim(O) do

13: Update GP; using D}, (Sec.

> MCTS in

> Fzecute the action
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Figure 4: A. The velocity-actuated differential drive mobile robot
used in our experiments. B. Repertoire for the simple robot loco-
motion task produced by the MAP-Elites algorithm. This repertoire
maps the 2-D action descriptor (of the 3-D task space) to the 2-D
controller space. Each dot represents a different action (and its z,y
position), while the lines indicate the orientation of the robot at the
end of each behavior. All the behaviors are relative to the zero po-
sition that is located in the middle of the figure and relative to the
forward orientation (line pointing up).

6. Mobile Robot Results

The robot is a classic velocity-actuated differential drive
mobile robot (Fig. [dJA). The state of the robot consists of
the (z,y) position and the orientation 6 of the robot, i.e.,
Smob = [2,9,0]. The robot moves by applying velocities
to the two wheels (viesy and vpigne). We use the libfastsim
library for simulating the robot [27]|H At each episode of
the learning algorithm, the velocity pair is executed for
100 time-steps (for all algorithms).

6.1. Learning the Action Repertoire

The robot’s task is to reach points in Cartesian space
(z,y), therefore MAP-Elites should produce a repertoire
of actions, each of which reaches a different point in the
Cartesian space. Since many controllers can reach the
same position, we select those that make the robot fol-
low a continuous-curvature trajectory and for which the
body points towards the tangent of the overall trajectory
at the end of the behavior. To capture this idea, we set
the MAP-Elites performance of the i, individual to:

pi = |0; — 04 (7)

where 0; is the orientation of the robot and 6, is the de-
sired orientation of the robot at the end of the movement.
To describe the circular trajectories we only need to keep
the (z,y) position of the robot at the end of the movement
(since we can compute the desired angle for any point in

Thttps://github.com/jbmouret/libfastsim
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the 2-D space). In this way we can use a 2-D action de-
scriptor to describe the 3-D task space. The 2-D descriptor
of the 4;;, individual is:

T — Tmin

Y — Ymin
&= [xma:r - xmin’ Ymaz — ymzn] (8)
where Tmin, Tmaz, Ymin and Ymaer are the boundaries of
the reachable space ([—100, 100] units here). We ran MAP-
Elites for 100000 evaluations and we got a repertoire with
331 different actionsﬂ (Fig. ) Our implementation relies
on the Sferes,s [58] library.

6.2. Learning with Gaussian Processes

The GP inputs are the 2-D descriptors of the actions,
and the outputs are predictions of the relative x, y and 6
displacements. To avoid angle discontinuities, instead of
learning the raw angle € we learn the cosf and the sinf.
Thus, we learn a mapping from actions to relative out-
comes:

a— (Ax, Ay, cosAb, sinAf) (9)

We use the Squared Exponential Kernel (SE) as the covari-
ance function [55):

la —a'|]?
k(a,a’) = o2 exp ( - T) (10)

where we set 02, = 0.5 and [ = 1 in the mobile robot
experiments. We also use the limbo C++11 library [59)]
for the GP regression.

Algorithm 5 Simple Progressive Widening

1: procedure SPW-SELECTIONPOLICY (s)
2: if n(s)® > #Children(s) then

>0<a<l1

3: a = sample_action(s) > Sample new action
from s (Sec.

4: else > Choose the action with the best UCT
value [35]

5: a = argmaXacchildren(s) Q(s,a), with

In(n(s))

n(s,a)

Qls.m) = Bos

n(s,a)
return a

6.3. Solving the problem with MCTS

At the end of each episode, we need to solve an MDP
with an action set that contains thousands of actions in
a continuous state space and uncertain transitions (i.e.,
when an action is taken from the same state, the result is
not the same).

In order to solve this problem, we instantiate MCTS
with the following choices:

2MAP-Elites always produces the same repertoire because the
problem is easy. Note that the repertoire for such a simple robot
could be generated with many other methods: here we use MAP-
Elites so that we can demonstrate identical approaches for both the
wheeled and the legged robot.

Selection Policy Simple Progressive Widening (SPW —
Algo. [60) that properly handles cases where the
action space is continuous. We set a = 0.5 and ¢ =
150.

Expansion Policy Double Progressive Widening (DPW
— Algo. [6]) [57] that properly handles cases where the
state space is continuous. We set 5 = 0.6.

Action Sampling Policy We use A* on a simplified
problem to guide the sampling procedure (Sec. [6.4]).

Generative Model We construct a generative model us-
ing the prediction of the GPs:

p(Sev1lse,ar) ~ N (st + f(ar), Xa,) (11)

Default Policy for evaluation Uniformly-distributed
random actions from the repertoire [35].

Best child criterion Greedy selection, i.e., we select the
action that has the maximum average cumulative re-
ward [35].

Reward function Ry, = 100, reward for reaching the
goal, and Ryerp, = 1000, penalty for colliding, for each
target point. We also set the reward discount factor,
v =0.9.

e For the sake of simplicity, we only used circu-
lar obstacles and a circular collision shape for
the robot. Nevertheless, any shapes with the
appropriate collision query functions would be
compatible with our approach, since the reward
function is a black-box to MCTS.

Algorithm 6 Double Progressive Widening

1: procedure DPW-EXPANDPOLICY (s, a)

2 if n(s,a)? > #Children(s,a) then >0<p <1
3 Draw s’ from p(s'[s, a) > see Eq.
4: p=r(s)

5 else

6 Choose s’ € Children(s,a) with prob %
7 p=r(s) ‘

return [s, p]

To make the search faster, we implemented root par-
allelization in MCTS [61] with 4 parallel trees giving a
budget of 5000 iterations to each. This implementation is
available in our C++14 lightweight MCTS libraryﬂ

6.4. Guiding MCTS using A* on a simplified problem
MCTS traditionally samples actions randomly. To

speed up the process, we first discretize the space and cre-
ate a grid map; then, we simulate a virtual point robot

Shttps://github.com/resibots/mcts


https://github.com/resibots/mcts

Figure 5: The environment used for the mobile robot task (800 x 800
units). The radii of the robot and the obstacles are the same (20
units).

with 8 actions (one for each neighboring cell — allowing
diagonal moves) and solve the path planning problem us-
ing A*. Solving this simplified task requires very little
computation. We use the optimized path to calculate an
approximate desired direction for the next MCTS action.
Next, we sample N (100 in our case) random actions from
the repertoire and return the one that best matches this
direction. Note that we are using the prediction of the
GPs to decide which action we should choose. This simple
procedure has the desirable effect of reducing the running
time of MCTS (less than 40 — 50 s to choose the next ac-
tion), without sacrificing the quality of the returned ac-
tions. We use this “trick” because our problem is path-
planning, but similar tricks can be used in other problems.
More generic approaches would be the Blind Value action
sampling or the continuous Rapid Action Value Estima-
tion (cCRAVE) [62].

6.5. Ezxperimental results

A damaged velocity-controlled differential drive robot
(the right wheel’s velocity command is halved) has to reach
30 random equidistant sequential targets in an arena with
an obstacle in the middle (Fig.[5). The scenario is repli-
cated 50 times for statistics.

We count the number of episodes (100 steps of sim-
ulation with the same velocity commands) required by
the different algorithms to reach each target. The re-
sults show that RTE requires significantly fewer episodes
(22.28 episodes, 25" and 75" percentiles [21.4,22.9]) to
reach each target than the re-planning baseline (32.12
episodes, [30.17,34.97]) and GP-TEXPLORE (26.03
episodes, [25.37,26.9]) (Fig. [6).

Further analysis shows that the median number of
episodes to reach each target decreases over time (until it
reaches a steady value) when the robot uses RTE or GP-
TEXPLORE, whereas it stays constant with MCTS alone
(Fig. [7). Furthermore, after the first target RTE is able
to correct its repertoire and outperforms GP-TEXPLORE
although the latter is capable of planning in the full action
space.
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Figure 6: Comparison between RTE, GP-TEXPLORE and MCTS-
based planning — Differential drive robot simulation results. A dam-
aged velocity-controlled differential drive robot (the right wheel’s
velocity command is halved) has to reach 30 random equidistant
sequential targets. We replicated the scenario 50 times. RTE signif-
icantly outperforms (lower is better) both the re-planning baseline
and GP-TEXPLORE. The number of stars indicates that the p-value
of the Mann-Whitney U test is less than 0.05, 0.01, 0.001 and 0.0001
respectively.

We also performed the following evaluation test. We
use the repertoire created by MAP-Elites with the intact
robot and solve the same scenario (using MCTS as the
planner — no model learning, no variance). We repli-
cate the scenario 50 times and take the median number
of episodes required to reach a target. We then compute
the percentage of the recovered capabilities using RTE,
GP-TEXPLORE and MCTS-based planning. The results
show that RTE recovers more locomotion capabilities than
GP-TEXPLORE (Table[I); RTE is able to recover around
63% of the original capabilities, whereas GP-TEXPLORE
only recovers around 54%. Using only the repertoire gen-
erated with MAP-Elites and planning with MCTS is even
worse, leading to only around 44% of recovered capabili-
ties. These results justify (1) that the repertoire itself is
not enough for the robot to recover its abilities and (2) that
using prior information (i.e., the repertoire) combined with
learning (RTE) is beneficial compared to learning from
scratch (GP-TEXPLORE).

Finally, we observed that in this simple task, RTE and
GP-TEXPLORE produce fairly similar paths, with the
ones produced by RTE being slightly safer (i.e., not too
close to the obstacles — Fig. . In addition, both RTE
and GP-TEXPLORE produce faster and safer paths than
the MCTS baseline (Fig. [§). We also observed that the
MCTS baseline often got stuck at the walls of the arena.



Table 1: Recovered locomotion capabilities - Wheeled Robot Task

Intact \ RTE \ GP-TEXPLORE \ MCTS

Recovered capabilities

Episodes per target RTE GP-TEXPLORE | MCTS
14.08 [ 22.28 | 26.03 | 3212 [ 63.20% 54.10% 43.85%
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Figure 7: Median number of episodes to reach each target for a typ-
ical run of the algorithm for the mobile robot task. Over time, the
robot using RTE or GP-TEXPLORE is able to reduce the number
of required episodes to reach the next target (bottom lines), whereas
MCTS alone uses a constant number of episodes (top line). Fur-
thermore, RTE is able to correct its repertoire after the first target
and outperforms GP-TEXPLORE, although the latter is capable of
planning in the full action space. Most of the variance comes from
the fact that the random targets are equidistant, but not of the same
difficulty. The thick lines represent the medians over 50 runs and the
shaded regions the 25" and 75" percentiles.

7. Hexapod Robot Results

Each leg of the hexapod robot that we used in our ex-
periments has 3 degrees of freedom (DOF). This makes a
total of 18-DOF for the whole robot. Nevertheless, since
we are focusing on a path planning task, the state of the
robot we are interested in consists of the (z,y) position
and the yaw angle 6 of the center of mass (COM) of the
robot, i.e., Speza = [%,y,0]. The hexapod robot task and
the simple mobile robot task share the same experimental
setup and parameters, with the main differences between
them being the following;:

e In order to produce periodic gaits for the hexapod,
we do not control the robot in joint space, but use a
low-level controller (Sec. [7.1]).

e The reachable space bounds for MAP-Elites are
[—2,2] meters and we set [ 0.03 for the expo-
nential kernel for the GP regression. In addition,
to avoid depending on a specific repertoire, we ran
MAP-Elites twice for 100000 evaluations, leading to
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Figure 8: Sample trajectories of RTE, GP-TEXPLORE and MCTS
in the mobile robot task. In this simple task, RTE and GP-
TEXPLORE do not differ a lot (although RTE produces safer and
slightly faster paths — Fig@ and produce higher performing paths
than the MCTS baseline.

two distinct repertoires with about 1500 different ac-
tions each (Fig. [9). The hexapod is simulated using
the DART simulatorf]

7.1. Parametric Low-level Controller

The low-level controller is the same as in [7, 45]. It is in-
tentionally kept simple, so that this paper can focus on the
learning algorithm. The angular position of each degree of
freedom is governed by a periodic function I' parametrized
by its amplitude v, its phase ¢, and its duty cycle 7 (the
duty cycle is the proportion of one period in which the
joint is in its higher position). This function is a square
signal of frequency 1Hz, amplitude v, and duty cycle 7. A
Gaussian filter is applied on the signal in order to remove
sharp transitions, and it is then shifted according to the
phase ¢. The position of the third joint of each leg is the
opposite of the position of the second one, so that the last
segment is always vertical. This results in 36 real-valued
parameters. Different values for these parameters can pro-
duce diverse gaits, from purely quadruped gaits to classic
tripod gaits. At each episode of the learning algorithm,
the low-level controller is executed for 3 seconds with the
specified parameters (for all algorithms).

4https://dartsim.github.io
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Figure 9: Repertoires for hexapod locomotion produced by the MAP-Elites algorithm. These repertoires map the 2-D action descriptor (of
the 3-D task space) to the 36-D controller space. Each dot represents a different action (and its z,y position), while the lines indicate the
orientation of the robot at the end of each behavior. All the behaviors are relative to the zero position that is located in the middle of the

figures and relative to the forward orientation (line pointing up).

7.2. Sitmulation results

We count the number of episodes (3s actions) required to
sequentially reach 30 equidistant (distance of 3.5m) ran-
dom targets. We investigate 3 different types of damage, 2
different environments (one with flat terrain and one with
rough terrain), and 2 different action repertoires (Fig. .
Each scenario is replicated 50 times for statistics.

The results show that RTE requires significantly fewer
episodes to reach each target than the re-planning base-
line (Fig. . Interestingly, RTE is able to reach the target
points in the rough terrain scenario even though the action
repertoire is learned on a flat terrain. This illustrates the
capacity of RTE to compensate for unforeseen situations
(i.e., damage and unmodeled terrain). Nevertheless, we
observe slightly deteriorated performance and bigger dif-
ferences between the MAP-Elites archives. This of course
makes sense as the repertoires might have converged to
different families of behaviors or one of them might be
over-optimized for the flat terrain.

On the other hand, GP-TEXPLORE was not able to
solve the task: with a budget of around 600 total episodes
(due to computation time of GPs), it did not succeed in
reaching a target (the robot would be reset to the next
target position every 100 episodes). This is because learn-
ing a full dynamics model of a complex robot cannot be
done with a few samples (i.e., less than 1000-2000 [36]).

The results show that as the number of episodes in-
creases, the robot that uses GP-TEXPLORE gets closer
to the target, but cannot reach it when provided with a
budget of 100 episodes (Fig. . On the contrary, the
robot with RTE reaches the target in a small number
of episodes (around 10 episodes in Fig. . Moreover,
the robot that uses MCTS (the re-planning baseline) is
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still able to reach the target, but requires more episodes
(around 20 episodes in Fig. . These results show that
the pre-computed repertoire breaks the complexity of the
problem and makes it tractable, but refining the repertoire
is essential for damage recovery (or to handle the reality
gap as illustrated below).

Further analysis shows that the median number of
episodes to reach each target decreases over time when
the robot uses RTE, whereas it stays constant with MCTS
alone (Fig. [12)). After the first few targets (2-4), RTE is
able to make the robot reach each target in around 30s
compared to MCTS alone that needs around 50 — 60 s.

We also use the repertoire created by MAP-Elites with
the intact robot to solve the same additional scenarios
that were presented in the mobile robot case. We repli-
cate the scenarios 50 times and take the median number
of episodes required to reach a target. We then compute
the percentage of the recovered capabilities using RTE and
MCTS-based planning for all the damage conditions in the
flat and the rough terrain environments. The results show
that RTE is able to almost always recover more than 60%
of the original capabilities (see Tables [2| and [3). These
results are consistent with both the flat and the rough ter-
rain evaluations. This demonstrates the robustness and
the capacity of our approach to adapt to unforeseen situa-
tions. In addition, using the repertoire alone with MCTS
planning is not enough for the robot to recover its capa-
bilities as in half of the scenarios it fails to recover more
than 60% of the original capabilities and always recovers
less than RTE.

Finally, we observed that RTE produces paths that
are faster and safer than the MCTS baseline (Fig. [13)).
While GP-TEXPLORE cannot reach the target, it does
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Figure 10: Comparison between RTE, GP-TEXPLORE and MCTS-based planning — Hexapod robot simulation results. We investigate 3
different kinds of damage (A - middle leg shortening, B - back leg shortening, C - back leg shortening and middle leg removal), 2 different
environments (D and E) and 2 different action repertoires. We replicated each scenario 50 times. The task is to reach 30 random equidistant
sequential targets (distance of 3.5m). RTE outperforms the re-planning baseline (lower is better). GP-TEXPLORE was not able to solve
the task. The number of stars indicates that the p-value of the Mann-Whitney U test is less than 0.05, 0.01, 0.001 and 0.0001 respectively.

Table 2: Recovered locomotion capabilities - Hexapod Robot Task (Flat terrain scenarios)

Flat terrain scenarios Intact ‘ RTE ‘ MCTS Recovered capabilities

Episodes per target RTE MCTS

Damage 1 (Fig. |10jA) 9.93 11.5 77.52% 66.96%

Repertoire #1 | Damage 2 (Fig.[10B) 7.70 10.22 12.28 75.37% 62.69%
Damage 3 (Fig. 1_00) 13.37 17.6 57.61% 43.75%

Damage 1 (Fig. [L0A) 9.12 11.17 78.10% 63.76%

Repertoire #2 | Damage 2 (Fig. EB) 7.12 11.58 14.35 61.44% 49.59%
Damage 3 (Fig. |10[C) 11.75 18.6 60.57% 38.26%

Table 3: Recovered locomotion capabilities - Hexapod Robot Task (Rough terrain scenarios)

Rough terrain scenarios Intact ‘ RTE ‘ MCTS Recovered capabilities

Episodes per target RTE MCTS
Damage 1 (Fig. |L0JA) 12.5 13.02 | 73.84% 65%

Repertoire #1 | Damage 2 (Fig. [10B) 9.23 12.4 13.52 | 74.44% 68.29%

Damage 3 (Fig. [10C) 17.78 | 21.15 | 51.90% 43.64%

Damage 1 (Fig. EA) 10.63 12.60 80.41% 67.86%

Repertoire #2 | Damage 2 (Fig.|10B) 8.55 14.4 16.63 59.38% 51.40%

Damage 3 (Fig. [10C) 13.95 | 21.33 | 61.29% 40.10%

get closer to the target point as the number of episodes in- ments. This is probably due to the fact that the transition

creases (Fig. [13|and Fig.[L1)). It is worth noting that GP- ~ model cannot be accurately learned with a few data points,
TEXPLORE takes actions that produce small displace- owing to the high dimensionality (36D) of the action space.
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Figure 11: Comparison between RTE, GP-TEXPLORE and MCTS-
based planning — Hexapod robot simulation results. We measure
the distance to the 5th target of RTE and GP-TEXPLORE as the
number of episodes increases for the damage in Fig. [[0]C, environ-
ment #1 (Fig. ) and the second repertoire. RTE clearly outper-
forms GP-TEXPLORE and the re-planning baseline; the robot with
RTE reaches the target in about 10 episodes, whereas with MCTS it
needs more than 20 episodes and with GP-TEXPLORE is not able to
reach the target even after 100 episodes. The lines represent medians
over 50 runs and the shaded regions the 25" and 75t" percentiles.

As a consequence, the MCTS planner chooses actions that
have already been selected. Since the search space is big
and the first actions are selected almost randomly (there is
no previous information), it is highly unlikely that taking
these actions will actually lead to meaningful behaviors.

7.8. Physical robot results

We then evaluate RTE on the physical robot with a sin-
gle damage (right middle leg removed — Fig. [14), in two
environments (with and without a central obstacle) and
the first action repertoire; the robot is required to reach
10 and 5 targets for each environment respectively, and
the distance between the targets is 2v/2m. Each scenario
is replicated 5 times. The environment (location of the ob-
stacles) and the robot are tracked with an external motion
capture system (Optitrack).

The results show that RTE needs fewer episodes to
reach each target (Environment 1: 13.0 episodes, 25t
and 75" percentiles [12.0,14.0], Environment 2: 18.0
episodes, [14.0,19.0]) than MCTS alone (Environment 1:
28.0 episodes, [24.0,31.0], Environment 2: 25.0 episodes,
[24.0,43.0]) (Fig. [I5). These results are consistent with
the simulations, but learning makes a bigger difference in
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Figure 12: Median number of episodes to reach each target for a
typical run of the algorithm in the hexapod task (in simulation — for
damage in Fig. IZOp, environment #1 Fig. and the second action
repertoire). Over time, the robot using RTE is able to reduce the
number of required episodes to reach the next target (bottom line),
whereas MCTS alone uses a constant number of episodes (top line).
Most of the variance is due to the random targets being equidistant,
but not of the same difficulty. The thick lines represent the medians
over 50 runs and the shaded regions the 25" and 75t percentiles.
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Figure 13: Sample trajectories of RTE, GP-TEXPLORE and MCTS
in the simulated hexapod robot task. RTE produces faster and safer
(i-e., not too close to the obstacles) paths than the MCTS baseline.
GP-TEXPLORE cannot reach the target within a budget of 100
episodes, but does get closer to the target (as validated in Fig.

the physical robot case. This is because the algorithm
has to deal with the reality gap in addition to the dam-
age in the physical robot case. Finally, as in the simu-
lated experiments, RTE produces safer and faster paths
than the MCTS baseline (Fig. [I6). The robot with the
MCTS baseline tended to get stuck in the obstacle and



Figure 14: Physical damaged hexapod robot. The middle right leg
is removed.

struggle to get out of it and continue. A demonstra-
tion of our approach on the real robot is available at
https://youtu.be/IqtyHFrb3BU.

8. Discussion and Conclusion

[43

With robots, like with many complex systems, “we
should not wonder if some mishap may happen, but rather
ask what one will do about it when it occurs” [63]. This
advice is especially important if we want to be able to
send advanced and expensive robots into dangerous places
like a destroyed nuclear plant [64], even with tele-operated
robots. In such situations, a damaged robot would greatly
benefit from last-resort algorithms that would allow it to
come back to its operators.

The RTE learning algorithm makes it possible for robots
to overcome such failures without the need for resets and
human intervention. We successfully tested it on a simple
mobile robot and on a hexapod robot that were damaged
in several ways. Unlike most previous work, our algorithm
does not require the robot to be returned to the same
position after each trial: the robot learns autonomously,
while taking into account its environment (obstacles). To
our knowledge, this learning algorithm is one of the first
algorithms that allows a physical legged robot to learn
to walk without any human intervention, especially when
there are obstacles.

The main limitation of RTE is that it chooses the opti-
mal action for the damaged robot among the actions that
were found offline with a different model. As a conse-
quence, it is very likely that there exist better actions for
the damaged robot in the full controller space, but RTE
cannot use them. Nonetheless, this approximation seems
to be sufficient in our experiments (i.e., the robot was able
to complete its tasks) and it is one of the reasons why RTE
scales significantly better than traditional RL approaches.
In addition, it seems possible to periodically analyze the
data collected (e.g., once a day), update the original sim-
ulation, and re-generate the repertoire.

It is important to highlight that RTE is not a policy
search method, like PILCO [I7] or Black-DROPS [I§]:
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RTE uses an approximate planner (MCTS) to derive a pol-
icy given the current model which, in turn, allows the robot
to collect samples from the environment, refine the model,
and thereby improve the policy, that is, the planner. Thus,
the online phase of RTE can be seen as an on-policy,
model-based RL procedure. In addition, the first phase
of RTE (MAP-Elites), learns “elementary behaviors” (ac-
tions) in simulation, which are similar to parametrized
policies or movement primitives [14]. Nevertheless, the
first phase of RTE does not only do that, but also creates
a mapping from the high-dimensional controller space to
the lower-dimensional task space, which proves to be ben-
eficial when dealing with complex robots.

Ultimately, RTE should run continuously on the robot
to compensate for potential wear or damage, that is, it
should be a continuous learning, rather than a damage re-
covery, algorithm. However, the current version has a bot-
tleneck: the computational complexity of the prediction of
the GPs is cubic in the number of samples, which prevents
the robot from using more than a few hundred episodes.
A potential solution is reducing the query time of GPs by
using a time-window and/or using sparse GPs [65] or lo-
cal GPs [66]. Another solution is to replace the GPs with
neural networks and take advantage of the recent advances
in neural networks with uncertain predictions [67].

In these first experiments, we assumed that the robot
had perfect knowledge of its position and of the environ-
ment, which made it possible to cast our problem to an
MDP. The next step is to relax this assumption and let
the robot discover its environment with a SLAM algo-
rithm [68]. In this case, we could look at the problem
from two different perspectives: (1) still treat the problem
as an MDP and take into account the uncertainty of the
map in the planning phase (MCTS), (2) treat the prob-
lem as a POMDP (Partially Observable MDP) and try
to solve it with MCTS [56]. The first perspective might
not be enough to solve the problem (i.e., the robot would
struggle to execute good plans), whereas the second one
will increase the computation time of MCTS.

Furthermore, here we assumed that the outcome of each
action is independent of the state it was taken in, which
is the case for mobile robots when (1) the robot can be
stopped to take a decision and (2) the terrain does not
change dramatically. Nevertheless, RTE was able to cope
with cases where this assumption did not really hold; in
particular, the hexapod was able to walk on rough terrain,
even though the action repertoire was optimized for flat
terrain. In future work, we will look at this in greater
depth, and try to relax these assumptions. For example,
we could produce priors that are state-dependent and learn
the full transition model and/or the reward function.

In this work, we chose to use MCTS for the planning
phase of our approach, because it has been successfully
used in the context of RL [56, 35, 23] and because it
makes no assumptions about the dynamics/model of the
system. This allows us to incorporate prior knowledge
about the problem [20] and to use actions of any type,
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Figure 15: Comparison between RTE and MCTS-based planning — Physical hexapod robot experiments.
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different environments and 1 action repertoire. We replicated each scenario 5 times. The task is to reach 10 and 5 random equidistant
(2\/§ m) sequential targets for the environment #1 and #2 respectively. RTE needs on average between 1.39 and 2.33 times fewer episodes
to reach each target. The results are statistically significant (Mann-Whitney U test p < 0.05).

Figure 16: Sample trajectories of RTE and MCTS in the physical
hexapod robot task. RTE comes up with faster and safer paths than
the MCTS baseline to reach the goal point. The robot with the
MCTS baseline tended to get stuck in the obstacle and struggle to
get out of it and continue.

as we did in our work. Nevertheless, traditional sample-
based planners, like RRT, could provide more accurate so-
lutions and/or be faster in some cases. In future work, we
will investigate and experiment with different probabilistic
planners.

Lastly, while we performed our experiments with a
legged and a mobile robot, the algorithm introduced here
is general enough to be extended to many other robots
and tasks. For instance, it could be employed on an arm
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mounted on a mobile platform that had incurred damage
(e.g., a blocked joint). In this case, the algorithm will learn
a mapping between the (x,y,z) position of the end-effector
and the joint /wheel positions, similarly to how it learned a
mapping between the (x,y) position of the hexapod robot
and the parametric controller. After each trial, the robot
might be in a different position relative to the target ob-
ject (e.g., a door knob), but thanks to RTE, it should not
have to go back to its starting position to try a different
behavior.

Appendix

For the mobile robot experiments, the threshold for
reaching a target was 20 units (the same as the radius
of the robot). For the hexapod experiments, the thresh-
old for reaching a target was 0.25m in simulation and
0.2m for the physical robot. The source code of the
experiments can be found at https://github.com/resibots/
chatzilygeroudis_2018_rte.
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