
HAL Id: hal-01654804
https://inria.hal.science/hal-01654804

Preprint submitted on 4 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulating High Performance Linpack on a Commodity
Server at the Scale of a Supercomputer

Tom Cornebize, Franz C Heinrich, Arnaud Legrand, Jérôme Vienne

To cite this version:
Tom Cornebize, Franz C Heinrich, Arnaud Legrand, Jérôme Vienne. Emulating High Performance
Linpack on a Commodity Server at the Scale of a Supercomputer. 2017. �hal-01654804�

https://inria.hal.science/hal-01654804
https://hal.archives-ouvertes.fr

1

Emulating High Performance Linpack on a
Commodity Server at the Scale of a Supercomputer

Tom Cornebize, Franz C. Heinrich, Arnaud Legrand
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
firstname.lastname@inria.fr

Jérôme Vienne
Texas Advanced Computing Center

Austin, Texas, USA
viennej@tacc.utexas.edu

Abstract—The Linpack benchmark, in particular the High-
Performance Linpack (HPL) implementation, has emerged as
the de-facto standard benchmark to rank supercomputers in the
TOP500. With a power consumption of several MW per hour on
a TOP500 machine, test-running HPL on the whole machine for
hours is extremely expensive. With core-counts beyond the 100,000
cores threshold being common and sometimes even ranging into
the millions, an optimization of HPL parameters (problem size,
grid arrangement, granularity, collective operation algorithms,
etc.) specifically suited to the network topology and performance
is essential. Such optimization can be particularly time consuming
and can hardly be done through simple mathematical perfor-
mance models. In this article, we explain how we both extended
the SimGrid’s SMPI simulator and slightly modified HPL to allow
a fast emulation of HPL on a single commodity computer at the
scale of a supercomputer. More precisely, we take as a motivating
use case the large-scale run performed on the Stampede cluster
at TACC in 2013, when it got ranked 6th in the TOP500. While
this qualification run required the dedication of 6,006 computing
nodes of the supercomputer and more than 120 TB of RAM for
more than 2 hours, we manage to simulate a similar configuration
on a commodity computer with 19 GB of RAM in about 62 hours.
Allied to a careful modeling of Stampede, this simulation allows us
to evaluate the performance that would have been obtained using
the freely available version of HPL. Such performance reveals
much lower than what was reported and which was obtained using
a closed-source version specifically designed by the Intel engineers.
Our simulation allows us to hint where the main algorithmic
improvements must have been done in HPL.

I. INTRODUCTION

The world’s largest and fastest machines are ranked twice
a year in the so-called TOP500 list. Among the benchmarks
that are often used to evaluate those machines, the Linpack
benchmark, in particular the High-Performance Linpack (HPL)
implementation, has emerged as the de-facto standard bench-
mark, although other benchmarks such as HPCG and HPGMG
have recently been proposed to become the new standard.
Today, machines with 100,000 cores and more are common and
several machines beyond the 1,000,000 cores mark are already
in production. This high density of computation units requires
diligent optimization of application parameters, such as prob-
lem size, process organization or choice of algorithm, as these
have an impact on load distribution and network utilization.
Furthermore, to yield best benchmark results, runtimes (such
as OpenMPI) and supporting libraries (such as BLAS) need to
be fine-tuned and adapted to the underlying platform.

Alas, it takes typically several hours to run HPL on the
list’s number one system. This duration, combined with the

power consumption that often reaches several MW for TOP500
machines, makes it financially infeasible to test-run HPL on
the whole machine just to tweak parameters. Yet, performance
results of an already deployed, current-generation machine
typically also play a role in the funding process for future
machines. Results near the optimal performance for the current
machine are hence considered critical for HPC centers and
vendors. These entities would benefit from being able to tune
parameters without actually running the benchmark for hours.

In this article, we explain how to predict the performance of
HPL through simulation with the SimGrid/SMPI simulator. We
detail how we obtained faithful models for several functions
(e.g., DGEMM and DTRSM) and how we managed to reduce the
memory consumption from more than a hundred terabytes to
several gigabytes, allowing us to emulate HPL on a commonly
available server node. We evaluate the effectiveness of our
solution by simulating a scenario similar to the run conducted
on the Stampede cluster (TACC) in 2013 for the TOP500 .

This article is organized as follows: Section II presents the
main characteristics of the HPL application and provides detail
on the run that was conducted at TACC in 2013. Section III
discusses existing related work and explains why emulation (or
online simulation) is the only relevant approach when studying
an application as complex as HPL. In Section IV, we briefly
present the simulator we used for this work, SimGrid/SMPI,
followed by an extensive discussion in Section V about the
optimizations on all levels (i.e., simulator, application, system)
that were necessary to make a large-scale run tractable. The
scalability of our approach is evaluated in Section VI. The
modeling of the Stampede platform and the comparison of our
simulation with the 2013 execution is detailed in Section VII.
Lastly, Section VIII concludes this article by summarizing our
contributions.

II. CONTEXT

A. High-Performance Linpack

For this work, we use the freely-available reference-
implementation of the High-Performance Linpack bench-
mark [1], HPL, which is used to benchmark systems for the
TOP500 [2] list. HPL requires MPI to be available and im-
plements a LU decomposition, i.e., a factorization of a square
matrix A as the product of a lower triangular matrix L and an
upper triangular matrix U . HPL checks the correctness of this
factorization by solving a linear system A · x = b, but only the

2

NB

L

U

A

N

allocate and initialize A
for k = N to 0 step NB do

allocate the panel
factor the panel
broadcast the panel
update the sub-matrix;

Figure 1. Overview of High Performance Linpack

factorization step is benchmarked. The factorization is based on
a right-looking variant of the LU factorization with row partial
pivoting and allows multiple look-ahead depths. The working
principle of the factorization is depicted in Figure 1 and consists
of a series of panel factorizations followed by an update of the
trailing sub-matrix. HPL uses a two-dimensional block-cyclic
data distribution ofA and implements several custom collective
communication algorithms to efficiently overlap communica-
tion with computation. The main parameters of HPL are listed
subsequently:

• N is the order of the square matrix A.
• NB is the “blocking factor”, i.e., the granularity at which HPL

operates when panels are distributed or worked on.
• P and Q denote the number of process rows and the number

of process columns, respectively.
• RFACT determines the panel factorization algorithm. Possible

values are Crout, left- or right-looking.
• SWAP specifies the swapping algorithm used while pivoting.

Two algorithms are available: one based on binary exchange
(along a virtual tree topology) and the other one based on a
spread-and-roll (with a higher number of parallel communi-
cations). HPL also provides a panel-size threshold triggering
a switch from one variant to the other.

• BCAST sets the algorithm used to broadcast the panel of
columns to the other process columns. Legacy versions
of the MPI standard only supported non-blocking point-
to-point communications but did not support non-blocking
collective communications, which is why HPL ships with
in total 6 self-implemented variants to efficiently overlap
the time spent waiting for an incoming panel with updates
to the trailing matrix: ring, ring-modified, 2-ring, 2-
ring-modified, long, and long-modified. The modified
versions guarantee that the process right after the root (i.e.,
the process that will become the root in the next iteration)
receives data first and does not participate further in the
broadcast. This process can thereby start working on the
panel as soon as possible. The ring and 2-ring versions cor-
respond to the name-giving two virtual topologies while the
long version is a spread and roll algorithm where messages
are chopped into Q pieces. This generally leads to better
bandwidth exploitation. The ring and 2-ring variants rely
on MPI_Iprobe, meaning they return control if no message
has been fully received yet and hence facilitate partial over-
lapping of communication with computations. In HPL 2.2
and 2.1, this capability has been deactivated for the long and
long-modified algorithms. A comment in the source code
states that some machines apparently get stuck when there

20 20 2020

6400 nodes

320 switches

8 core switches

Figure 2. The fat-tree network topology of Stampede.

are too many ongoing messages.
• DEPTH controls how many iterations of the outer loop can

overlap with each other.
The sequential complexity of this factorization is flop(N) =

2
3N

3 + 2N2 + O(N) where N is the order of the matrix to
factorize. The time complexity can be approximated by

T (N) ≈
(
2
3N

3 + 2N2
)

P ·Q · w
+ Θ((P +Q) ·N2),

where w is the flop rate of a single node and the second
term corresponds to the communication overhead which is
influenced by the network capacity and by the previously listed
parameters (RFACT, SWAP, BCAST, DEPTH, . . .). After each run,
HPL reports the overall flop rate flop(N)/T (N) (expressed
in GFlop s−1) for the given configuration. See Figure 3 for a
(shortened) example output.

A large-scale execution of HPL on a real machine in order to
submit to the TOP500 can therefore be quite time consuming
as all the BLAS kernels, the MPI runtime, and HPL’s numerous
parameters need to be tuned carefully in order to reach optimal
performance.

B. A Typical Run on a Supercomputer

In June 2013, the Stampede supercomputer at TACC was
ranked 6th in the TOP500 by achieving 5168.1 TFlop s−1 and
was still ranked 20th in June 2017. In 2017, this machine got
upgraded and renamed Stampede2. The Stampede platform
consisted of 6400 Sandy Bridge nodes, each with two 8-core
Xeon E5-2680 and one Intel Xeon Phi KNC MIC coprocessor.
The nodes were interconnected through a 56 Gbit s−1 FDR
InfiniBand 2-level Clos fat-tree topology built on Mellanox
switches. As can be seen in Figure 2, the 6400 nodes are
divided into groups of 20, with each group being connected to
one of the 320 36-port switches (4 Tbit s−1 capacity), which
are themselves connected to 8 648-port “core switches” (each
with a capacity of 73 Tbit s−1). The peak performance of
the 2 Xeon CPUs per node was approximately 346 GFlop s−1,
while the peak performance of the KNC co-processor was about
1 TFlop s−1. The theoretical peak performance of the platform
was therefore 8614 TFlop s−1. However, in the TOP500, Stam-
pede was ranked with 5168 TFlop s−1. According to the log
submitted to the TOP500 (see Figure 3) that was provided
to us, this execution took roughly two hours and used 77 ×
78 = 6, 006 processes. The matrix of order N = 3, 875, 000
occupied approximately 120 TB of memory, i.e., 20 GB per

3

==
HPLinpack 2.1 -- High-Performance Linpack benchmark -- October 26, 2012
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
==

The following parameter values will be used:

N : 3875000
NB : 1024
PMAP : Column-major process mapping
P : 77
Q : 78
PFACT : Right
NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : BlongM
DEPTH : 0
SWAP : Binary-exchange
L1 : no-transposed form
U : no-transposed form
EQUIL : no
ALIGN : 8 double precision words

--

[...]

Peak Performance = 5172687.23 GFlops / 861.25 GFlops per node
==
T/V N NB P Q Time Gflops
--
WC05C2R4 3875000 1024 77 78 7505.72 5.16811e+06
HPL_pdgesv() start time Sun Jun 2 13:04:59 2013

HPL_pdgesv() end time Sun Jun 2 15:10:04 2013

--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0007822 PASSED

Figure 3. HPL output submitted in June 2013 for the ranking of Stampede in
the TOP500.

node. One MPI process per node was used and each node’s
computational resources (the 16 CPU-cores and the Xeon Phi)
must have been controlled by OpenMP and/or Intel’s MKL.

C. Performance Evaluation Challenges

The performance achieved by Stampede, 5168 TFlop s−1,
needs to be compared to the peak performance of the 6,006
nodes, i.e., 8084 TFlop s−1. This difference may be attributed
to the node usage (e.g., the MKL), to the MPI library, to the
network topology that may be unable to deal with the very
intensive communication workload, to load imbalance among
nodes because some node happens to be slower for some reason
(defect, system noise, . . .), to the algorithmic structure of HPL,
etc. All these factors make it difficult to know precisely what
performance to expect without running the application at scale.

It is clear that due to the level of complexity of both HPL and
the underlying hardware, simple performance models (analytic
expressions based on N,P,Q and estimations of platform
characteristics as presented in Section II-A) may be able to
provide trends but can by no means predict the performance
for each configuration (i.e., consider the exact effect of HPL’s
6 different broadcast algorithms on network contention). Addi-
tionally, these expressions do not allow engineers to improve
the performance through actively identifying performance bot-
tlenecks. For complex optimizations such as partially non-
blocking collective communication algorithms intertwined with
computations, very faithful modeling of both the application
and the platform is required. Given the scale of this scenario
(3,785 steps on 6,006 nodes in two hours), detailed simulations
quickly become intractable without significant effort.

III. RELATED WORK

Performance prediction of MPI application through simula-
tion has been widely studied over the last decades, with today’s
literature distinguishing mainly between two approaches: of-
fline and online simulation.

With the most common approach, offline simulation, a time-
independent trace of the application is first obtained on a real
platform. This trace comprises sequences of MPI optimizations
and CPU bursts and can be given as an input to a simulator
that implements performance models for the CPUs and the
network to derive timings. Researchers interested in finding
out how their application reacts to changes to the underlying
platform can replay the trace on commodity hardware at will
with different platform models. Most HPC simulators available
today, notably BigSim [3], Dimemas [4] and CODES [5], rely
on this approach.

The main limitation of this approach comes from the trace
acquisition requirement. Additionally, tracing an application
provides only information about its behavior at the time of the
run. Even light modifications (e.g., to communication patterns)
may make the trace inaccurate. For simple applications (e.g.,
stencil) it is sometimes possible to extrapolate behavior from
small-scale traces [6], [7] but the execution is non-deterministic
whenever the application relies on non-blocking communica-
tion patterns, which is unfortunately the case for HPL.

The second approach discussed in literature is online simu-
lation. Here, the application is executed (emulated) on top of a
simulator that is responsible for determining when each process
is run. This approach allows researchers to study directly the
behavior of MPI applications but only a few recent simulators
such as SST Macro [9], SimGrid/SMPI [10] and the closed-
source extreme-scale simulator xSim [8] support it. To the best
of our knowledge, only SST Macro and SimGrid/SMPI are not
only mature enough to faithfully emulate HPL but also free
software. For our work, we relied on SimGrid as we have an
excellent knowledge of its internals although the developments
we propose would a priori also be possible with SST Macro.
Emulation of HPL comes with at least two challenges:
• Firstly, the time-complexity of the algorithm is Θ(N3).

Furthermore, Θ(N2) communications are performed, with
N being very large. The execution on the Stampede cluster
took roughly two hours on 6,006 compute nodes. Using only
a single node, a naive emulation of HPL at the scale of the
Stampede run would take about 500 days if perfect scaling is
reached. Although the emulation could be done in parallel,
we want to use as little computing resources as possible.

• Secondly, the tremendous memory consumption and conse-
quent high number of RAM accesses for read/write opera-
tions need to be dealt with.

IV. SIMGRID/SMPI IN A NUTSHELL

SimGrid [10] is a flexible and open-source simulation frame-
work that was originally designed in 2000 to study scheduling
heuristics tailored to heterogeneous grid computing environ-
ments. Since then, SimGrid has also been used to study peer-
to-peer systems with up to two million peers [12] just as
cloud and HPC infrastructures. To this end, SMPI, a simulator

4

based on SimGrid, has been developed and used to faithfully
simulate unmodified MPI applications written in C/C++ or
FORTRAN [11]. A main development goal for SimGrid has
been to provide validated performance models particularly for
scenarios leveraging the network. Such a validation normally
consists of comparing simulation predictions with results from
real experiments to confirm or debunk network and application
models. In [13], we have for instance validated SimGrid’s
energy module by accurately and consistently predicting within
a few percent the performance and the energy consumption of
HPL and some other benchmarks on small-scale clusters (up to
12× 12 cores in [13] and up to 128× 1 cores in [11]).

In this article, we aim to validate our approach through much
larger experiments. This scale, however, comes at the cost of a
much less controlled scenario for real-life experiments since the
Stampede run of HPL was done in 2013 and we only have very
limited information about the setup (e.g., software versions).

A. MPI Communication Modeling

The complex network optimizations done in real MPI imple-
mentations need to be considered when predicting performance
of MPI applications. For instance, message size not only influ-
ences the network’s latency and bandwidth factors but also the
protocol used, such as “eager” or “rendez-vous”, as they are
selected based on the message size, with each protocol having
its own synchronization semantics. To deal with this, SMPI
relies on a generalization of the LogGPS model [11] and sup-
ports specifying synchronization and performance modes. This
model needs to be instantiated once per platform through a care-
fully controlled series of messages (MPI_Send and MPI_Recv)
between two nodes and through a set of piece-wise linear
regressions. Modeling network topologies and contention is
also difficult. SMPI relies on SimGrid’s communication models
where each ongoing communication is represented as a whole
(as opposed to single packets) by a flow. Assuming steady-state,
contention between active communications can be modeled as
a bandwidth sharing problem that accounts for non-trivial phe-
nomena (e.g., RTT-unfairness of TCP, cross-traffic interference
or network heterogeneity [14]). Communications that start or
end trigger re-computation of the bandwidth sharing if needed.
In this model, the time to simulate a message passing through
the network is independent of its size, which is advantageous
for large-scale applications frequently sending large messages.
SimGrid does not model transient phenomena incurred by
the network protocol but accounts for network topology and
heterogeneity.

Finally, collective operations are also challenging, particu-
larly since these operations often play a key factor to an applica-
tion’s performance. Consequently, performance optimization of
these operations has been studied intensively. As a result, MPI
implementations now commonly have several alternatives for
each collective operation and select one at runtime, depending
on message size and communicator geometry. SMPI imple-
ments collective communication algorithms and the selection
logic from several MPI implementations (e.g., Open MPI,
MPICH), which helps to ensure that simulations are as close
as possible to real executions. Although SMPI supports these

facilities, they are not required in the case of HPL as it ships
with its own implementation of collective operations.

B. Application Behavior Modeling

In Section III we explained that SMPI relies on the online
simulation approach. Since SimGrid is a sequential simula-
tor, SMPI maps every MPI process of the application onto a
lightweight simulation thread. These threads are then run one
at a time, i.e., in mutual exclusion. Every time a thread enters
an MPI call, SMPI takes control and the time that was spent
computing (isolated from the other threads) since the previous
MPI call can be injected into the simulator as a virtual delay.

Mapping MPI processes to threads of a single process effec-
tively folds them into the same address space. Consequently,
global variables in the MPI application are shared between
threads unless these variables are privatized and the simulated
MPI ranks thus isolated from each other. Several technical
solutions are possible to handle this issue [11]. The default
strategy in SMPI consists of making a copy of the data segment
(containing all global variables) per MPI rank at startup and,
when context switching to another rank, to remap the data
segment via mmap to the private copy of that rank. SMPI also
implements another mechanism relying on the dlopen function
that saves calls to mmap when context switching.

This causes online simulation to be expensive in terms of
both simulation time and memory since the whole parallel
application is executed on a single node. To deal with this,
SMPI provides two simple annotation mechanisms:
• Kernel sampling: Control flow is in many cases indepen-

dent of the computation results. This allows computation-
intensive kernels (e.g., BLAS kernels for HPL) to be skipped
during the simulation. For this purpose, SMPI supports
annotation of regular kernels through several macros such
as SMPI_SAMPLE_LOCAL and SMPI_SAMPLE_GLOBAL. The reg-
ularity allows SMPI to execute these kernels a few times, es-
timate their cost and skip the kernel in the future by deriving
its cost from these samples, hence cutting simulation time
significantly. Skipping kernels renders the content of some
variables invalid but in simulation, only the behavior of the
application and not the correctness of computation results
are of concern.

• Memory folding: SMPI provides the SMPI_SHARED_MALLOC
(SMPI_SHARED_FREE) macro to replace calls to malloc
(free). They indicate that some data structures can safely be
shared between processes and that the data they contain is
not critical for the execution (e.g., an input matrix) and that
it may even be overwritten. SMPI_SHARED_MALLOC works as
follows (see Figure 4) : a single block of physical memory
(of default size 1 MB) for the whole execution is allocated

virtual
physical

Figure 4. SMPI shared malloc mechanism: large area of virtual memory are
cyclically mapped onto the same physical pages.

5

and shared by all MPI processes. A range of virtual addresses
corresponding to a specified size is reserved and cyclically
mapped onto the previously obtained physical address. This
mechanism allows applications to obtain a nearly constant
memory footprint, regardless of the size of the actual alloca-
tions.

V. IMPROVING SMPI EMULATION MECHANISMS AND
PREPARING HPL

We now present our changes to SimGrid and HPL that were
required for a scalable and faithful simulation. We provide only
a brief evaluation of our modifications and refer the reader in-
terested in details to [15] and our laboratory notebook1. For our
experiments in this section, we used a single core from nodes
of the Nova cluster provided by the Grid’5000 testbed [16]
with 32 GB RAM, two 8-core Intel Xeon E5-2620 v4 CPUs
processors with 2.1 GHz and Debian Stretch (kernel 4.9).

A. Kernel modeling

As explained in Section II-C, faithful prediction of HPL
necessitates emulation, i.e., to execute the code. HPL relies
heavily on BLAS kernels such as dgemm (for matrix-matrix
multiplication) or dtrsm (for solving an equation of the form
Ax = b). An analysis of an HPL simulation with 64 pro-
cesses and a very small matrix of order 30, 000 showed that
roughly 96 % of the time is spent in these two very regular
kernels. For larger matrices, these kernels will consume an
even bigger percentage of the computation time. Since these
kernels do not influence the control flow, simulation time can be
reduced by substituting dgemm and dtrsm function calls with a
performance model for the respective kernel. Figure 5(a) shows
an example of this macro-based mechanism that allows us to
keep HPL code modifications to an absolute minimum. The
(1.029e-11) value represents the inverse of the flop rate for
this computation kernel and was obtained through calibration.
The estimated time for the real kernel is calculated based on the
parameters and eventually passed on to smpi_execute_benched
that advances the clock of the executing rank by this estimate
by entering a sleep state. The effect on simulation time for a
small scenario is depicted in Figure 5(b). On the one hand, this
modification speeds up the simulation by orders of magnitude,
especially when the matrix order grows. On the other hand, this
kernel model leads to an optimistic estimation of the floprate.
This may be caused by inaccuracies in our model as well as by
the fact that the initial emulation is generally more sensitive to
pre-emptions, e.g., by the operating system, and therefore more
likely to be pessimistic compared to a real execution.

B. Adjusting the behavior of HPL

HPL uses pseudo-randomly generated matrices that need to
be setup every time HPL is executed. The time spent on this just
as the validation of the computed result is not considered in the
reported GFlop s−1 performance. We skip all the computations
since we replaced them by a kernel model and therefore, result

1See journal.org at https://github.com/Ezibenroc/simulating_mpi_
applications_at_scale/

#define HPL_dgemm(layout, TransA, TransB, \
M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) ({ \

double expected_time = (1.029e-11)*((double)M)* \
((double)N)*((double)K) + 1.981e-12; \

if(expected_time > 0) \
smpi_execute_benched(expected_time); \

})

(a) Non-intrusive macro replacement.

Kernel modeling ● ●FALSE TRUE

●
●

●

●

●

●

● ● ● ●
●

●

0

500

1000

1500

0 10000 20000 30000 40000

Matrix order

T
im

e
[s

ec
on

ds
]

Simulation time
(P=Q=8, i.e., 64 MPI process)

●

●

●

●

●
●

●

●

●

●

●

●

0

25

50

75

100

0 10000 20000 30000 40000

Matrix order

P
er

fo
rm

an
ce

 [G
flo

p/
s]

Performance estimation
(P=Q=8, i.e., 64 MPI process)

(b) Gain in term of simulation time.

Figure 5. Replacing the calls to computationally expensive functions by a
model allows to significantly reduce simulation time.

validation is meaningless. Since both phases do not have an
impact on the reported performance, we can safely skip them.

In addition to the main computation kernels dgemm and
dtrsm, we identified seven other BLAS functions through pro-
filing as computationally expensive enough to justify a specific
handling: dgemv, dswap, daxpy, dscal, dtrsv, dger and idamax.
Similarly, a significant amount of time was spent in fifteen
functions implemented in HPL: HPL_dlaswp*N, HPL_dlaswp*T,
HPL_dlacpy and HPL_dlatcpy.

All of these functions are called during the LU factorization
and hence impact the performance measured by HPL; however,
because of the removal of the dgemm and dtrsm computations,
they all operate on bogus data and hence also produce bogus
data. We also determined through experiments that their impact
on the performance prediction is minimal and hence modeled
them for the sake of simplicity as being instantaneous.

Note that HPL implements an LU factorization with partial
pivoting and a special treatment of the idamax function that
returns the index of the first element equaling the maximum
absolute value. Although we ignored the cost of this function
as well, we set its return value to an arbitrary value to make the
simulation fully deterministic. We confirmed that this modifi-
cation is harmless in terms of performance prediction while it
speeds up the simulation by an additional factor of ≈ 3 to 4 on
small (N = 30, 000) and even more on large scenarios.

C. Memory folding

As explained in Section IV, when emulating an application
with SMPI, all MPI processes are run within the same simula-
tion process on a single node. The memory consumption of the
simulation can therefore quickly reach several TB of RAM.

Yet, as we no longer operate on real data, storing the whole
input matrix A is needless. However, since only a minimal

https://github.com/Ezibenroc/simulating_mpi_applications_at_scale/
https://github.com/Ezibenroc/simulating_mpi_applications_at_scale/

6

matrix parts indices matrix parts

can be shared can be shared

must not be shared

(a) Structure of the panel in HPL.

initial buffer

current buffer

(b) Reusing panel allocation from an iteration to another.

Figure 6. Panel structure and allocation strategy when simulating.

portion of the code was modified, some functions may still
read or write some parts of the matrix. It is thus not possible to
simply remove the memory allocations of large data structures
altogether. Instead, SMPI’s SHARED_MALLOC mechanism can be
used to share unimportant data structures between all ranks,
minimizing the memory footprint.

The largest two allocated data structures in HPL are the
input matrix A (with a size of typically several GB per pro-
cess) and the panel which contains information about the sub-
matrix currently being factorized. This sub-matrix typically
occupies a few hundred MB per process. Although using
the default SHARED_MALLOC mechanism works flawlessly for
A, a more careful strategy needs to be used for the panel.
Indeed, the panel is an intricate data structure with both
ints (accounting for matrix indices, error codes, MPI tags,
and pivoting information) and doubles (corresponding to a
copy of a sub-matrix of A). To optimize data transfers, HPL
flattens this structure into a single allocation of doubles (see
Figure 6(a)). Using a fully shared memory allocation for the
panel therefore leads to index corruption that results in classic
invalid memory accesses as well as communication deadlocks,
as processes may not send to or receive from the correct
process. Since ints and doubles are stored in non-contiguous
parts of this flat allocation, it is therefore essential to have a
mechanism that preserves the process-specific content. We have
thus introduced the macro SMPI_PARTIAL_SHARED_MALLOC that
works as follows: mem = SMPI_PARTIAL_SHARED_MALLOC(500,
{27,42 , 100,200}, 2). In this example, 500 bytes are al-
located in mem with the elements mem[27], . . . , mem[41] and
mem[100], . . . , mem[199] being shared between processes (they
are therefore generally completely corrupted) while all other
elements remain private. To apply this to HPL’s panel data-
structure and partially share it between processes, we only had
to modify a few lines.

Designating memory explicitly as private, shared or partially
shared helps with both memory management and overall perfor-
mance. As SMPI is internally aware of the memory’s visibility,
it can avoid calling memcopy when large messages containing
shared segments are sent from one MPI rank to another. For
fully private or partially shared segments, SMPI identifies and
copies only those parts that are process-dependent (private) into
the corresponding buffers on the receiver side.

HPL simulation times were considerably improved in our
experiments because the panel as the most frequently trans-
ferred datastructure is partially shared with only a small part
being private. The additional error introduced by this technique
was negligible (below 1 %) while the memory consumption
was lowered significantly: for a matrix of order 40, 000 and 64
MPI processes, the memory consumption decreased from about
13.5 GB to less than 40 MB.

D. Panel reuse

HPL mallocs/frees panels in each iteration, with the size of
the panel strictly decreasing from iteration to iteration. As we
explained above, the partial sharing of panels requires many
calls to mmap and introduces an overhead that makes these
repeated allocations / frees become a bottleneck. Since the
very first allocation can fit all subsequent panels, we modified
HPL to allocate only the first panel and reuse it for subsequent
iterations (see Figure 6(b)).

We consider this optimization harmless with respect to sim-
ulation accuracy as the maximum additional error that we
observed was always less than 1 %. Simulation time is reduced
significantly, albeit the reached speed-up is less impressive than
for previous optimizations: For a very small matrix of order
40, 000 and 64 MPI processes, the simulation time decreases
by four seconds, from 20.5 sec to 16.5 sec. Responsible for
this is a reduction of system time, namely from 5.9 sec to
1.7 sec. The number of page faults decreased from 2 million
to 0.2 million, confirming the devastating effect these alloca-
tions/deallocations would have at scale.

E. MPI process representation (mmap vs. dlopen)

We already explained in Section IV-B that SMPI supports
two mechanisms to keep local static and global variables private
to each rank, even though they run in the same process. In this
section, we discuss the impact of the choice.
• mmap When mmap is used, SMPI copies the data segment

on startup for each rank into the heap. When control is
transferred from one rank to another, the data segment is
mmap’ed to the location of the other rank’s copy on the
heap. All ranks have hence the same addresses in the virtual
address space at their disposition although mmap ensures
they point to different physical addresses. This also means
inevitably that caches must be flushed to ensure that no data
of one rank leaks into the other rank, making mmap a rather
expensive operation.

• dlopen With dlopen, copies of the global variables are still
made but they are stored inside the data segment as opposed
to the heap. When switching from one rank to another,
the starting virtual address for the storage is readjusted
rather than the target of the addresses. This means that each
rank has distinct addresses for global variables. The main
advantage of this approach is that caches do not need to be
flushed as is the case for the mmap approach, because data
consistency can always be guaranteed.

Impact of choice of mmap/dlopen The choice of mmap or
dlopen influences the simulation time indirectly through its

7

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

512

1,024

2,048

4,096

0

10

20

30

40

0e+00 1e+06 2e+06 3e+06 4e+06

Matrix rank

S
im

ul
at

io
n

tim
e

(h
ou

rs
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

512
1,024

2,048
4,096

0

5

10

15

0e+00 1e+06 2e+06 3e+06 4e+06

Matrix rank
M

em
or

y
co

ns
um

pt
io

n
(g

ig
ab

yt
es

)

Number of processes ● ● ● ●512 1,024 2,048 4,096

Figure 7. Time complexity and memory consumption are linear in the number
of processes but remain mildly quadratic with matrix rank.

impact on system/user time and page faults, e.g., for a matrix of
order 80, 000 and 32 MPI processes, the number of minor page
faults drops from 4 412 047 (with mmap) to 6880 (with dlopen).
This results in a reduction of system time from 10.64 sec (out of
51.47 sec in total) to 2.12 sec. Obviously, the larger the matrix
and the number of processes, the larger the number of context
switch during the simulation, and thus the higher the gain.

F. Huge pages

For larger matrix orders (i.e., N larger than a few hundred
thousand), the performance of the simulation quickly deterio-
rates as the memory consumption rises rapidly.

We explained already how we fold the memory in order
to reduce the physical memory usage. The virtual memory,
on the other hand, is still allocated for every process since
the allocation calls are still executed. Without a reduction of
allocated virtual addresses, the page table rapidly becomes too
large to fit in a single node. More precisely, the size of the page
table containing pages of size 4 KiB can be computed as:

PTsize(N) =
N2 · sizeof(double)

4, 096
· sizeof(pointer)

This means that the addresses in the page table for a matrix
of order N = 4, 000, 000 consume PTsize(4, 000, 000) =
2.5× 1011 bytes, i.e., 250 GB on a system where double-
precision floating-point numbers and addresses take 8 bytes.
Thankfully, the x86-64 architecture supports several page sizes,
known as “huge pages” in Linux. Typically, these pages are
around 2 MiB (instead of 4 KiB), although other sizes (2 MiB
to 256 MiB) are possible as well. Changing the page size
requires administrator (root) privileges as the Linux kernel
support for hugepages needs to be activated and a hugetlbfs
file system must be mounted. After at least one huge page has
been allocated, the path of the allocated file system can then be
passed on to SimGrid. Setting the page size to 2 MiB reduces
drastically the page table size. For example, for a matrix of
order N = 4, 000, 000, it shrinks from 250 GB to 0.488 GB.

VI. SCALABILITY EVALUATION

In Section V we explained the problems we encountered
when trying to run a large-scale simulation on a single node

and how we solved them. For the most part, we identified and
eliminated bottlenecks one after another while simultaneously
making sure that the accuracy of our performance prediction
was not impacted. Certainly, the main goal was to reduce the
complexity from O(N3) + O(N2 · P · Q) to something more
reasonable. The O(N3) was removed through skipping most
computations. Ideally, since there are N/NB iterations (steps),
the complexity of simulating one step should be decreased to
something independent of N . SimGrid’s fluid models, used
to simulate communications, do not depend on N . Therefore,
the time to simulate a step of HPL should mostly depend on
P and Q. Yet, some memory operations on the panel that
are related to pivoting are intertwined in HPL with collective
communications, meaning that it is impossible to completely
get rid of the O(N) complexity without modifying HPL more
profoundly.

Although our goal was to model and simulate HPL on the
Stampede platform, we decided to conduct a first evaluation
on a similar, albeit non-existing, platform comprising 4,096 8-
core nodes interconnected through a 〈2; 16, 32; 1, 16; 1, 1〉 fat-
tree topology built on ideal network links with a bandwidth of
50 GB/ sec and a latency of 5 µ sec. We ran simulations with
512; 1, 024; 2, 048 or 4, 096 MPI processes and with matrices
of orders 5× 105, 1× 106, 2× 106 or 4× 106. The impact of
the matrix order on total makespan and memory is illustrated in
Figure 7. With all previously described optimizations enabled,
the simulation with the largest matrix took close to 47 hours and
consumed 16 GB of memory whereas the smallest one took 20
minutes and 282 MB of memory. One can also see that, when
the matrix order (N) is increased, memory consumption and
simulation time both grow slightly quadratic as the amount of
matrix elements is N2 and the number of steps of the algorithm
also linearly.

Moreover, all the simulations spend less than 10 % of their
execution time in kernel mode, which means the number of
system calls is reasonably low.

VII. MODELING STAMPEDE AND SIMULATING HPL

A. Modeling Stampede

1) Computations: Each node of the Stampede cluster com-
prises two 8-core Intel Xeon E5-2680 8C 2.7 GHz CPUs and
one 61-core Intel Xeon Phi SE10P (KNC) 1.1 GHz accelerator
that is roughly three times more powerful than the two CPUs
and can be used in two ways: either as a classical accelerator,
i.e., for offloading expensive computations from the CPU, or by
compiling binaries specifically for and executing them directly
on the Xeon Phi. While the accelerator’s 8 GiB of RAM are
rather small, the main advantage of the second approach is that
data does not need to be transferred back and forth between the
node’s CPUs and the accelerator via the x16 PCIe bus.

The HPL output submitted to the TOP500 (Figure 3) does
not indicate how the KNC was used. However, because of
the values assigned to P and Q, we are certain that only a
single MPI process per node was run. For this reason, it is
likely that the KNC used as an accelerator. With Intel’s Math
Kernel Library (MKL), this is effortless as the MKL comes with
support for automatic offloading for selected BLAS functions.

8

CPU (CPU) KNC (PHI)
Coefficient [sec /Flop] Intercept [sec] Coefficient [sec /Flop] Intercept [sec]

DGEMM 1.029× 10−11 2.737× 10−2 1.981× 10−12 6.316× 10−1

DTRSM 9.882× 10−12 4.329× 10−2 1.954× 10−12 5.222× 10−1

#define HPL_dtrsm(layout, Side, Uplo, TransA, Diag, M, N, alpha, A, lda, B, ldb) ({ \
double expected_time; \
double coefficient, intercept; \
if((M) > 512 && (N) > 512) { \

coefficient = (double)SMPI_DTRSM_PHI_COEFFICIENT; \
intercept = (double)SMPI_DTRSM_PHI_INTERCEPT; \

} else { \
coefficient = (double)SMPI_DTRSM_CPU_COEFFICIENT; \
intercept = (double)SMPI_DTRSM_CPU_INTERCEPT; \

} \
if((Side) == HplLeft) { \

expected_time = coefficient*((double)(M))*((double)(M))*((double)(N)); \
} else { \

expected_time = coefficient*((double)(M))*((double)(N))*((double)(N)); \
} \
expected_time += intercept \
if(expected_time > 0) \

smpi_execute_benched(expected_time); \
})

Figure 8. Modeling automatic offloading on KNC in MKL BLAS kernels.

Figure 9. Modeling communication time on
stampede. Each color is manually adjusted
and corresponds to a different synchroniza-
tion mode (eager, rendez-vous,...).

Unfortunately, we do not know which MKL version was used
in 2013 and therefore decided to use the default version used
on Stampede in the beginning of 2017, i.e., version 11.1.1.
The MKL documentation states that, depending on the matrix
geometry, the computation will run on either all the cores of
the CPU or exclusively on the KNC. In the case of DGEMM,
the computation of A = α · A + β · B × C with A,B,C
of dimensions M × K, K × N and M × N , respectively, is
offloaded onto the KNC whenever M and N are both larger
than 1280 whileK is simultaneously larger than 256. Similarly,
offloading for DTRSM is used when both M and N are larger
than 512, which results in a better throughput but incurs a
higher latency. The complexity for DGEMM is always of the
order of M · N · K (M · N2 for DTRSM) but the model that
describes the time it takes to run DGEMM (DTRSM) is very different
for small and large matrices. The table in Figure 8 indicates
the parameters of the linear regression for the four scenarios
(DGEMM or DTRSM and CPU or Phi). The measured performance
was close to the peak performance: e.g., for DGEMM on the
Phi reached 2/1.981× 10−12 = 1.009 TFlop s−1. Since the
granularity used in HPL (see Figure 3) is 1024, all calls (except
for maybe the very last iteration) are offloaded to the KNC. In
any case, this behavior can easily be accounted for by replacing
the macro in Figure 5(a) by the one in Figure 8.

2) Communications: We unfortunately do not know for sure
which version of Intel MPI was used in 2013, so we decided
to use the default one on Stampede in May 2017, i.e., version
3.1.4. As explained in Section IV, SMPI’s communication
model is a hybrid model between the LogP family and a
fluid model. For each message, the send mode (e.g., fully
asynchronous, detached or eager) is determined solely by the
message size. It is hence possible to model the resulting per-
formance of communication operations through a piece-wise
linear model, as depicted in Figure 9. For a thorough discus-
sion of the calibration techniques used to obtain this model,
see [11]. As illustrated, the results for MPI_Send are quite
stable and piece-wise regular, but the behavior of MPI_Recv is

surprising: for small messages with a size of less than 17 420 B
(represented by purple, blue and red dots), one can observe
two modes, namely “slow” and “fast” communications. “Slow”
operations take twice longer and are much more common
than the “fast” ones. We observed this behavior in several
experiments even though both MPI processes that were used in
the calibration were connected through the same local switch.
When observed, this “perturbation” was present throughout the
execution of that calibration. Having taken into consideration
that small messages are scarce in HPL, we eventually decided
to ignore this phenomenon and opted to use the more favorable
scenario (fast communications) for small messages. We believe
that the impact of our choice on the simulation accuracy is
minimal as primarily large, bulk messages are sent that make
use of the rendez-vous mode (depicted in dark green).

Furthermore, we configured SMPI to use Stampede’s net-
work topology, i.e., Mellanox FDR InfiniBand technology with
56 Gbit s−1, setup in a fat-tree topology (see Figure 2). We
assumed the routing was done through D-mod-K [17] as it is
commonly used on this topology.

3) Summary of modeling uncertainties: For the compiler,
Intel MPI and MKL, we were unable to determine which
version was used in 2013, but decided to go for rather optimistic
choices. The models for the MKL and for Intel MPI are close
to the peak performance. It is plausible that the compiler
managed to optimize computations in HPL. While it is true that
most of these computations are executed in our simulations,
they are not accounted for. This allows us to obtain fully
deterministic simulations without harming the outcome of the
simulation as these parts only represent a tiny fraction of the
total execution time of HPL. A few HPL compilation flags (e.g.,
HPL_NO_MPI_DATATYPE and HPL_COPY_L that control whether
MPI datatypes should be used and how, respectively) could not
be deduced from HPL’s original output on Stampede but we
believe their impact to be minimal. Finally, the HPL output
reports the use of HPL v2.1 but the main difference between
v2.1 and v2.2 is the option to continuously report factorization

9

Simulation
 (Fat Tree)

Simulation
 (No Contention)

●

●

●

●

●

●

●

●

●

●●

●

Top 500 performance
(5.168 TeraFlop/s)

●

0e+00

2e+06

4e+06

0e+00 1e+06 2e+06 3e+06 4e+06

Matrix rank

G
F

lo
p/

s
Performance of HPL

Figure 10. Performance prediction of HPL on Stampede using SimGrid.

progress. We hence decided to apply our modifications to the
later version of HPL.

With all these modifications in place, we expected the pre-
diction of our simulations to be optimistic yet close to results
obtained by a real life execution.

B. Simulating HPL

1) Performance Prediction: Figure 10 compares two simu-
lation scenarios with the original result from 2013. The solid
red line represents the HPL performance prediction as obtained
with SMPI with the Stampede model that we described in the
previous section. Although we expected SMPI to be optimistic,
the prediction was surprisingly much lower than the TOP500
result. We verified that no part of HPL was left unmodeled
and decided to investigate whether a flaw in our network
model that would result in too much congestion could explain
the performance. Alas, even a congestion-free network model
(represented by the dashed blue line in Figure 10) only results
in minor improvements. In our experiments to model DGEMM
and DTRSM, either the CPU or the KNC seemed to be used at
one time and a specifically optimized version of the MKL may
have been used in 2013. Removing the offloading latency and
modeling each node as a single 1.2 TFlop s−1 node does not
sufficiently explain the divide between our results and reality.

2) Performance Gap Investigation: In this section, we ex-
plain our investigation and give possible reasons for the afore-
mentioned mismatch (apparent in Figure 10). With SMPI, it is
simple to trace the first iterations of HPL to get an idea of what
could be improved (the trace for the first five iterations can be
obtained in about 609 seconds on a commodity computer and is
compressed about 175 MB large). Figure 11 illustrates the very
synchronous and iterative nature of the first iterations: One can
identify first a factorization of the panel, then a broadcast to all
the nodes, and finally an update of trailing matrix. More than
one fifth of each iteration is spent communicating (although
the first iterations are the ones with the lowest communication
to computation ratio), which prevents HPL from reaching the
Top500 performance. Overlapping of these heavy communi-
cation phases with computation would improve performance
significantly. The fact that this is almost not happening can

Figure 11. Gantt chart of the first two iterations of HPL. Communication states
are in red while computations are in cyan. Each communication between two
process is represented with a white arrow, which results in very cluttered white
areas.

be explained by the look-ahead DEPTH parameter that was
supposedly set to 0 (see Figure 3). This is quite surprising as
even the tuning section of the HPL documentation indicates that
a depth of 1 is supposed to yield the best results, even though
a large problem size could be needed to see some performance
gain. We discussed this surprising behavior with the Stampede-
team and were informed that the run in 2013 was executed
with an HPL binary provided by Intel and probably specifically
modified for Stampede. We believe that some configuration
values have been hardcoded to enforce an overlap of itera-
tions with others. Indeed, the shortened part (marked “[. . .]”)
in Figure 3 provides information about the progress of HPL
throughout iterations and statistics for the panel-owning process
about the time spent in the most important parts. According to
these statistics, the total time spent in the Update section was
9390 sec whereas the total execution time was 7505 sec, which
is impossible unless iterations have overlapped.

The broadcast and swapping algorithms use very heavy com-
munication patterns. This is not at all surprising since for a ma-
trix of this order, several hundred megabytes need to be broad-
cast. Although the output states that the blongM algorithm was
used it could be the case that another algorithm had been used.
We tried the other of the 6 broadcast algorithms HPL comes
with but did not achieve significantly better overall perfor-
mance. An analysis of the symbols in the Intel binary revealed
that another broadcast algorithm named HPL_bcast_bpush was
available. Unlike the others, this new algorithm relies on non-
blocking sends, which could contribute to the performance
obtained in 2013. Likewise, the swapping algorithm that was
used (SWAP=Binary-exchange) involves communications that
are rather long and organized in trees, which is surprising as
the spread-roll algorithm is recommended for large matrices.

We do not aim to reverse engineer the Intel HPL code. We
can, however, already draw two conclusions from our simple
analysis: 1) it is apparent that many optimizations have been
done on the communication side and 2) it is very likely that
the reported parameters are not the ones used in the real
execution, probably because these values were hardcoded and
the configuration output file was not updated accordingly.

10

VIII. CONCLUSIONS

Studying HPC applications at scale can be very time- and
resource-consuming. Simulation is often an effective approach
in this context and SMPI has previously been successfully
validated in several small-scale studies with standard HPC ap-
plications [11], [13]. In this article, we proposed and evaluated
extensions to the SimGrid/SMPI framework that allowed us to
emulate HPL at the scale of a supercomputer. Our application of
choice, HPL, is particularly challenging in terms of simulation
as it implements its own set of non-blocking collective opera-
tions that rely on MPI_Iprobe in order to facilitate overlapping
with computations.

More specifically, we tried to reproduce the execution of
HPL on the Stampede supercomputer conducted in 2013 for
the TOP500, which involved a 120 TB matrix and took two
hours on 6,006 nodes. Our emulation of a similar configuration
ran on a single machine for about 62 hours and required less
than 19 GB of RAM. This emulation employed several non-
trivial operating-system level optimizations (memory mapping,
dynamic library loading, huge pages) that have since been
integrated into the last version of SimGrid/SMPI.

The downside of scaling this high is a less well-controlled
scenario. The reference run of HPL on Stampede was done
several years ago and we only have very limited information
about the setup (e.g., software versions and configuration), but
a reservation and re-execution on the whole machine was im-
possible for us. We nevertheless modeled Stampede carefully,
which allowed us to predict the performance that would have
been obtained using an unmodified, freely available version
of HPL. Unfortunately, despite all our efforts, the predicted
performance was much lower than what was reported in 2013.
We determined that this discrepancy comes from the fact that a
modified, closed-source version of HPL supplied by Intel was
used in 2013. We believe that some of the HPL configuration
parameters were hardcoded and therefore misreported in the
output. A quick analysis of the optimized HPL binary con-
firmed that algorithmic differences were likely to be the reason
for the performance differences.

We conclude that a large-scale (in)validation is unfortunately
not possible due to the modified source code being unavailable
to us. We claim that the modifications we made are minor and
are applicable to that optimized version. In fact, while HPL
comprises 16K lines of ANSI C over 149 files, our modifi-
cations only changed 14 files with 286 line insertions and 18
deletions.

We believe being capable of precisely predicting an applica-
tion’s performance on a given platform will become invaluable
in the future to aid compute centers with the decision of whether
a new machine (and what technology) will work best for a
given application or if an upgrade of the current machine should
be considered. As a future work, we intend to conduct similar
studies with other HPC benchmarks (e.g., HPCG or HPGMG)
and with other top500 machines. From our experience, we
believe that a faithful and public reporting of the experimental
conditions (compiler options, library versions, HPL output,
etc.) is invaluable and allows researchers to better understand
of these platforms actually behave.

IX. ACKNOWLEDGEMENTS

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr). We warmly our TACC colleagues for their support
in this study and providing us with as much information as they
could.

REFERENCES

[1] A. Petitet, C. Whaley, J. Dongarra, A. Cleary, and P. Luszczek, “Hpl -
a portable implementation of the high-performance linpack benchmark
for distributed-memory computers,” http://www.netlib.org/benchmark/
hpl, February 2016, version 2.2.

[2] H. W. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon, The TOP500:
History, Trends, and Future Directions in High Performance Computing,
1st ed. Chapman & Hall/CRC, 2014.

[3] G. Zheng, G. Kakulapati, and L. Kale, “BigSim: A Parallel Simulator for
Performance Prediction of Extremely Large Parallel Machines,” in Proc.
of the 18th IPDPS, 2004.

[4] R. M. Badia, J. Labarta, J. Giménez, and F. Escalé, “Dimemas: Predicting
MPI Applications Behaviour in Grid Environments,” in Proc. of the
Workshop on Grid Applications and Programming Tools, Jun. 2003.

[5] M. Mubarak, C. D. Carothers, R. B. Ross, and P. H. Carns, “Enabling par-
allel simulation of large-scale hpc network systems,” IEEE Transactions
on Parallel and Distributed Systems, 2016.

[6] X. Wu and F. Mueller, “ScalaExtrap: Trace-based communication ex-
trapolation for SPMD programs,” in Proc. of the 16th ACM Symp. on
Principles and Practice of Parallel Programming, 2011, pp. 113–122.

[7] L. Carrington, M. Laurenzano, and A. Tiwari, “Inferring large-scale
computation behavior via trace extrapolation,” in Proc. of the Workshop
on Large-Scale Parallel Processing, 2013.

[8] C. Engelmann, “Scaling To A Million Cores And Beyond: Using Light-
Weight Simulation to Understand The Challenges Ahead On The Road
To Exascale,” FGCS, vol. 30, pp. 59–65, Jan. 2014.

[9] C. L. Janssen, H. Adalsteinsson, S. Cranford et al., “A simulator for
large-scale parallel architectures,” International Journal of Parallel and
Distributed Systems, vol. 1, no. 2, pp. 57–73, 2010, http://dx.doi.org/10.
4018/jdst.2010040104.

[10] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[11] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. S. Still-
well, and F. Suter, “Simulating mpi applications: the smpi approach,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 8,
pp. 2387–2400, Feb. 2017.

[12] M. Quinson, C. Rosa, and C. Thiéry, “Parallel simulation of peer-to-peer
systems,” in Proc. of the 12th IEEE/ACM Intl. Symposium on Cluster,
Cloud and Grid Computing, Ottawa, Canada, 2012.

[13] F. C. Heinrich, T. Cornebize, A. Degomme et al., “Predicting the Energy
Consumption of MPI Applications at Scale Using a Single Node,” in
Proc. of the 19th IEEE Cluster Conference, 2017. [Online]. Available:
https://hal.inria.fr/hal-01523608

[14] P. Velho, L. Schnorr, H. Casanova, and A. Legrand, “On the Validity of
Flow-level TCP Network Models for Grid and Cloud Simulations,” ACM
Transactions on Modeling and Computer Simulation, vol. 23, no. 4, p. 23,
Oct. 2013.

[15] T. Cornebize, “Capacity Planning of Supercomputers: Simulating MPI
Applications at Scale,” Master’s thesis, Grenoble INP ; Université
Grenoble - Alpes, Jun. 2017. [Online]. Available: https://hal.inria.fr/
hal-01544827

[16] D. Balouek, A. Carpen-Amarie, G. Charrier et al., “Adding virtualization
capabilities to the Grid’5000 testbed,” in Cloud Computing and Services
Science, ser. Communications in Computer and Information Science,
I. Ivanov, M. Sinderen, F. Leymann, and T. Shan, Eds. Springer
International Publishing, 2013, vol. 367.

[17] E. Zahavi, “D-mod-k routing providing non-blocking traffic for shift
permutations on real life fat trees,” in Proc. of the ????, 2010.

https://www.grid5000.fr
https://www.grid5000.fr
http://www.netlib.org/benchmark/hpl
http://www.netlib.org/benchmark/hpl
http://dx.doi.org/10.4018/jdst.2010040104
http://dx.doi.org/10.4018/jdst.2010040104
https://hal.inria.fr/hal-01523608
https://hal.inria.fr/hal-01544827
https://hal.inria.fr/hal-01544827

	Introduction
	Context
	High-Performance Linpack
	A Typical Run on a Supercomputer
	Performance Evaluation Challenges

	Related Work
	SimGrid/SMPI in a nutshell
	MPI Communication Modeling
	Application Behavior Modeling

	Improving SMPI Emulation Mechanisms and Preparing HPL
	Kernel modeling
	Adjusting the behavior of HPL
	Memory folding
	Panel reuse
	MPI process representation (mmap vs. dlopen)
	Huge pages

	Scalability Evaluation
	Modeling Stampede and Simulating HPL
	Modeling Stampede
	Computations
	Communications
	Summary of modeling uncertainties

	Simulating HPL
	Performance Prediction
	Performance Gap Investigation

	Conclusions
	Acknowledgements
	References

