T. Albring, M. Sagebaum, and N. R. Gauger, Development of a Consistent Discrete Adjoint Solver in an Evolving Aerodynamic Design Framework, 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015.
DOI : 10.2514/6.2015-3355

A. Carle and M. Fagan, ADIFOR 3.0 overview, 2000.

B. Christianson, Reverse accumulation and implicit functions. Optimization Methods and Software, pp.307-322, 1998.

B. Dauvergne and L. Hascoët, The Data-Flow Equations of Checkpointing in Reverse Automatic Differentiation, International Conference on Computational Science, 2006.
DOI : 10.1007/11758549_78

M. Fagan, L. Hascoët, and J. Utke, Data Representation Alternatives in Semantically Augmented Numerical Models, 2006 Sixth IEEE International Workshop on Source Code Analysis and Manipulation, 2006.
DOI : 10.1109/SCAM.2006.11

]. R. Giering, Tangent linear and Adjoint Model Compiler, Users manual, 1997.

R. Giering and T. Kaminski, Generating recomputations in reverse mode AD Automatic Differentiation of Algorithms: From Simulation to Optimization, chapter 33, pp.283-291, 2002.

A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software, vol.1, issue.1, pp.35-54, 1992.
DOI : 10.1080/10556789208805505

A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Number 105 in Other Titles in Applied Mathematics. SIAM, 2008.
DOI : 10.1137/1.9780898717761

L. Hascoët, U. Naumann, and V. Pascual, TBR analysis in reverse mode Automatic Differentiation, Future Generation Computer Systems ? Special Issue on Automatic Differentiation, 2004.

L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, p.2013
DOI : 10.1145/2450153.2450158

L. Hascoët and J. Utke, Programming language features, usage patterns, and the efficiency of generated adjoint code. Optimization Methods and Software, pp.885-903, 2016.

J. Lotz, K. Leppkes, and U. Naumann, dco/c++ -derivative code by overloading in C++, 2011.

U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation, Number 24 in Software, Environments, and Tools. SIAM
DOI : 10.1137/1.9781611972078

J. M. Siskind and B. A. Pearlmutter, Efficient implementation of a higher-order language with built-in ad, AD2016

J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout et al., OpenAD/F, ACM Transactions on Mathematical Software, vol.34, issue.4, pp.1-1836, 2008.
DOI : 10.1145/1377596.1377598

A. Walther and A. Griewank, Getting Started with ADOL-C, Combinatorial Scientific Computing, pp.181-202, 2012.
DOI : 10.1201/b11644-8