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An Analytical Model for the Effects of the Spatial
Resolution of Electrode Systems on the Spectrum
of Cardiac Signals
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Felipe Alonso-AtienzaMember, IEEE Nejib Zemzemi

Abstract—It has been suggested that the spatiotemporal char- frequency and the centroid frequency have been analyzed for

acteristics of complex cardiac arrhythmias can be extracté from
the spectrum of cardiac signals. However, the analysis of siple
bioelectric models indicates that the spectrum of cardiacignals
can be affected by the spatial resolution of the electrode syem.
In this study, we derive exact measurement transfer functios
relating the spectrum of cardiac signals to the spatiotemprl
dynamics of cardiac sources and estimate their bandwidthsThe
analysis of the measurement transfer bandwidths for dynantds
with different degrees of spatiotemporal correlation shovs that
as the spatial resolution decreases, the bandwidth of the rasure-
ment transfer function decreases until it reaches a constarvalue.
Moreover, this transition from decreasing to constant valles is
determined by the degree of spatiotemporal correlation of e
underlying cardiac source. Motivated by our analytical reailts,
we investigate in a realistic computer simulation environnent
the impact of additive noise on the accuracy of body-surface
dominant frequency (DF) maps. Our simulation results show
that meaningful DF values are obtained on those locations vére
the analytical measurement transfer bandwidth is wide. Thee
ndings suggest that the accuracy of body-surface DF maps ca
be limited by the low spatial resolution of body-surface eletrode
systems.

Index Terms—Cardiac arrhythmias, dominant frequency, bio-
electric model, spatiotemporal dynamics, spatial resoluon.

I. INTRODUCTION

Spectral analysis plays a prominent role in clinical angl

experimental electrophysiology. In cardiac electropblpgjy,

spectral techniques have been used to study complex airh

mias, such as atrial brillation (AF) [1], [2], [3], [4], [5]
[6], [71, [8], [9] and ventricular brillation (VF) [10], [11],
[12], [13], [14], [15]. A notable example of the applicatiom
spectral analysis in cardiac electrophysiology is the riegpie

known as dominant frequency (DF) mapping, which provid
an estimation of the local activation rate of the myocardiu
The analysis of DF maps of human brillating atria ha

allowed to identify anatomically localized, high-frequen

sites [3], [5], [8]. These high-frequency sites have been h
pothesized to be responsible for driving AF and hence, thé
have been proposed as potential targets for clinical alati
In addition to the DF, other spectral features such as thk pea
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different purposes, for instance for predicting the outeaun
de brillation [10], [11], [12] and for detecting VF [16], [1],
[18].

When developing spectral techniques for analyzing cardiac
arrhythmias, it is of importance to have a clear understandi
of the nature of the spectrum of cardiac signals. A relevant
consideration is how the choice of the electrode system zan a
fect the spectrum of cardiac signals. In clinical and experi-
tal cardiac electrophysiology, there exist a variety otetede
systems with different measurement characteristics.tiagis
electrode systems can be categorized as contact, intracard
non-contact, intracardiac; and body-surface electrodeenys.
Contact, intracardiac electrodes are positioned agaimst t
endocardium and measure the electrical activity of thethear
locally. Non-contact, intracardiac electrodes also pievan
endocardial view of the electrical activity of the heartt bu
they are not positioned directly against the endocardium.
Finally, body-surface electrode systems provide a distew
of the electrical activity of the heart. With such a diveysit
of electrode systems, the question arises how spectra from
different electrode systems relate to each other and to the
underlying cardiac dynamics. In [19], the relationshipnsestn
the spectrum of cardiac signals and the spatial resolutfon o
lectrode systems was investigated. This study showed that
uring cardiac dynamics with a high degree of spatiotenipora
ct%rrelation, low spatial resolutions lead to low-pass tgpec-

¥rd. Similar conclusions have also been reached by applying

Fourier spatiotemporal analysis to neurophysiology dgyna
[20], [21]. Since electrode systems in close proximity to a
bioelectric source have in general a higher spatial reisoiut
than distant ones, it can be concluded that spectra from in-

r?{sacardiac and body-surface electrode systems reveatelift

aspects of the same underlying cardiac dynamics. Accolyding
when developing spectral techniques for investigatingliear
arrhythmias, it is of importance to consider possible gy
ffects attributable to the measurement characterisfidtheo
&lectrode systems.
Most theoretical studies investigating the nature of the
Spectrum of bioelectric signals, such as [19], [20], [2Byé
focused on simple, idealized models of the volume conductor
the electrode system and the spatiotemporal dynamics of the
bioelectric source. Even though their results can explp@ts
tral features observed experimentally, it is not well uistsod
how they can extrapolate to more complex scenarios. By using



computer simulations, it has been shown that the degreesef sp 1ll. SPECTRAL EFFECTS OF THE SPATIAL RESOLUTION
tiotemporal correlation of complex cardiac dynamics, vahic
guanti es their degree of spatiotemporal organizatioayplan

|tmportant r0|e |22det§gm|rc1)|ggthe te_xtent of r:te”rlﬂ attutable { als. We consider fully-uncorrelated sources, fully-etated
0 measuring [22], [23]. Observations such as these camot D rces and partially-correlated sources. The de nitiofis

accounted for by current theoretical models and hence, tt’\‘ﬁ)f'ly-uncorrelated and fully-correlated sources folldvetdef-

call for a generalized approach to investigate the spectrlﬁ[ﬁions presented in [19] and can be used to model, respec-
of cardiac signals. Here, we develop an analytical approaf i

) ) . ?vely, highly disorganized cardiac arrhythmias, such ane
that considers arb_|trary volume C(_)nductors_, arbitrargtetele types of brillation, and highly regular rhythms, such asss
systems and cardiac dynamics with an arbitrary degree of s

tiot | lati Wi Wtically deri n thm. Partially-correlated cardiac sources are newlpete
iotemporal correlation. We analytically derive measueein 1o o o4 can be used to model complex arrhythmias with some
transfer functions relating the spectrum of cardiac sigal

. . . degree of spatiotemporal organization.
the spatiotemporal dynamics of cardiac sources and base .
n all of the cases, cardiac sources are assumed to have

on them, we obtain an approximation of their measuremeéltuniform local spectrum, so thatw(V:vif) =  a(f).

trar_15fer bandwidths. The measurement tr.an_sfer Ioand\’mtn:'or each family of spatiotemporal dynamics, we rst derive
a single parameter that allows us to guantitatively analiore the measurement transfer functieh(f) relating the local

each type of spatiotemporal dynamics, the spectral emtsspectrum 10 the global spectruBa(f) = H(f) w(f). In

the spatial resolution of the electrode system. We explare %is study, no assumptions on the electrode system and the

analytical results in a realistic simulation environmemijch L
. . volume conductor are made when deriving the measurement
we use to synthesize body-surface frequency maps induce A . s .
. o . . ransfer functions. By lifting the restrictions on the typé
ventricular rhythms with different stimulation rates. .
electrode system and volume conductor, we greatly geamerali
previous studies [19], [20], [21]. In addition, we consider
1. BIOELECTRIC MODEL partially-correlated cardiac sources, which to the besbuof
. . knowledge have not been previously investigated.
Following the approach presented in [19], we rstly de- g P y gat .
. ) . . Based on the measurement transfer function, we obtain
rive an analytical model for the spectrum of cardiac sig; S .
nals. We model cardiac sources as a dipole akV:t) = n estimation of the measurement transfer bandwidth. In the
' ' derivation of the measurement transfer bandwidth, we densi

Jx (Vi t): 3y (v;1): 3, (v;1)]T within a volumeV, wherev is a . _
I[o?:;tior)l in(/( anzjt é((anot)(]as time. A cardiac signs(t) induced an electrode system that measures the source activitynaathi
’ compact volumevy V. We refer toVy, as theresolution

by the dipole eIdJ(v,t% Is expressed as volume and use it to characterize the spatial resolution of

) ) the electrode system. By denoting the sizesVgpf and V

s(t) = v LT (I(vit)dv; @ by respectivelyjViy j and jVj, we will say that the spatial
resolution is high whenevgiy,j | V], whereas it is low
whereL(v) = [Ly(v);Ly(v);L-(V)]" is the sensitivity dis- wheneveijVyj'j Vj.
tribution of the electrode system. The sensitivity disttibn
L (v) describes the ability of the electrode system to measure
a single dipole located atand is determined by the characterA- Fully-uncorrelated sources
istics of both the volume conductor and the electrode system|n a fully-uncorrelated source with uniform local spectrum

For a given frequencyf, let an(v;w;f) denote the the cross-spectrum between two dipole components is de ned
cross-spectrum between two dipole componéiiw;t) and as

In this section, we analyze the effects of the spatial reso-
lution of electrode systems on the spectrum of cardiac sig-

Jp(wit), wherea;b 2 fx;y;zg andvi;w 2 V. The power a(Viw;f) = ap(f) (v w); (4)
spectrumS(f ) of cardiac signak(t) can be decomposed into
nine cross-spectrum componess (f ), where () is the delta function. By substituting (4) into (3),
X we can identify the measurement transfer functitey (f ):
S(f) = San(f ); 2 z
ab2f xy;z g Heu (f) = Lap(v; v)dv: (5)
which can be expressed as ) Y )
z Equation (5) shows that the measurement transfer function

Hey (f) is constant over the frequency domain. Hence, the

San(f) = v v Lap(Vi W) an(v;w: f)dvw: (3) measurement transfer bandwidW g is

In (3), we use the de nitiorL ap(v; W) = La(V)Lp(w). Given BWgy = 1: (6)
a dipole locationvg 2 V, ap(Vo;Vo;f) describes the local
dynamics of the cardiac source gt Hence we will refer to
ab(V; v; ) as the sourcéocal spectrumBY contrast,Say(f)
describes the dynamics of the cardiac source globally, at an a fully-correlated source, the activity of one dipole can
spatial scale that is determined by, (v; w). Accordingly, we be expressed as a delayed version of the activity of any
will refer to Syp(f ) as theglobal spectrum other dipole. Let (v;w) denote the time-delay between the

B. Fully-correlated sources



activities of dipoles at locationg andw. The cross-spectrum
between dipole components can be expressed as

ab(Viw;f) = ap(f)exp[ j2f (v;w)]: (7)

Based on (v;w), we de neg( ) as the density function of
time-delays withinV. In other words, the density function
o( ) quanti es the frequency that a pair of dipoles with time-
delay is observed within/. By substituting (7) into (3), the
following expression for the measurement transfer fumctio
Hec (f) can be identi ed (see Appendix):

Hec () = Hg(f) HL(f); (8)

where denotes convolutiort¢(f ) is the Fourier transform
of g( ) andH_ (f) is a function ofL g(v;w) and (v;w).
By assuming that the sensitivity distribution of the elede
system is concentrated on the resolution volumg, the
measurement transfer bandwidhVgc can be approximated

Fig. 1. Realistic geometry of the heart and torso used in ooulations.

by
BWec ' km =0 ; (9) Given a source characterized by a correlation lerdgth the
wheredy is the average distance between two dipole$yn relationship K
andky is a proportionality constant. dv = dc K—M (13)
C
C. Partially-correlated sources can be used to approximately identify in a simple way the

i spatial resolution beyond which the measurement transfer
We de ne the cross-spectrum between two dipole COMPBandwidthBWpe saturates.

nents in a partially-correlated source as

a(viw;f) = a(f)exp[ j2f (viw)] (10)

he [ (v;w)l; o . .

We used a realistic simulation environment to analyze the
wherehc [ (v;w)] is the cross-spectrum decay and determingpectrum of cardiac signals measured by body-surface elec-
the correlation lengthilc from which the correlation volume trode systems. In our simulation environment, cardiac/agti
Ve can be obtained. By substituting (10) into (3), the meavas simulated by using a detailed model for the cardiac actio
surement transfer functiodpc (f) can be expressed as (se@otential and cardiac propagation, which was incorporiatted
Appendix) a 3D realistic anatomical model of the heart and the torso.

The 3D realistic anatomical model was obtained from the

Hpc(f)= He(f) Hq(f) HL(); a1 segmentation and discretization of CT scan images of a 43

where Hc(f) is the Fourier transform ohc( ). If we Y&&rs old woman. The resulting geometry model (Figure 1)
assume that the sensitivity distribution is concentratedhe Consisted of triangular meshes of 5842 and 5742 nodes for

resolution volumeVy , the measurement transfer bandwidtf® heart and the torso domains, respectively. This compute
BWpc can be approximated by simulation environment allowed us to obtain the potentals

the body surface from the cardiac transmembrane potentials

IV. COMPUTER SIMULATIONS

BWpc ' Km =0y + Kc=0c: (12)

whereK ¢ is a proportionality constant. Equation (12) predicta. Numerical model
that the measurement transfer bandwidth decreases with in- ) . . . .
creasing resolution volumes until it reaches a saturatwntp 1) Model of action potential: Cardiac electrical activity

beyond which it remains constant. This behaviour depen@s the cell level was simulated by using the ten Tusscher
on the size of the resolution volumiVy j, relative to the model of the action potential of human ventricular cells][24

size of the correlation volumgVcj. Given a source with a 1he témporal dynamics of the transmembrane potentaie
correlation volume of sizgVcj and a correlation lengtdc, described by the differential equation

if jVM] ] ch, then dM dC and BWpc ' Kwm :dw . dv 1

By contrast, whenjViyj | Vcj, then dy dc and i f(v;t)= C—(lion (v;t) + 1st(1)); (14)
BWpc ' Kc=dc, i.e. the transfer bandwidth saturates and m

remains constant irrespectivejdfy j. Hence, from a measure-wheret denotes timel o, is sum over all ionic currents de-
ment perspective, a partially-correlated source wouldeapp ned in the ten Tusscher moddlg; is the external stimulation
correlated fofViy j j Vcjanduncorrelated fgvyj j Vcj. current, andCy, is the membrane capacity.



2) Model of cardiac tissue:Cardiac tissue behaves as a
functional syncytium at the macroscopic level. We model
cardiac tissue as an excitable medium 2 R3 in which
the propagation of the membrane potential v(ry ;t), with
rs 2 4, is mathematically described according to the so-
called monodomain formalism, which is formulated as the
following reaction-diffusion equation

v .
@:rD (rv)+ f(v;t) in y; (15)
ot
with the no- ux boundary condition
@v
— =0 on@+n; (16)
@
where D is the harmonic mean of the intracellular and the
o (a) (b)
extracellular conductivity tensorf); andDe,
Fig. 2. Wavefront generated by stimulating the ventricidgex (a) 10 ms
D = D; (Di + De) lDe; and (b) 25 ms after the stimulation of the ventricular apex.

@ y is the boundary of 4y andn denotes its normal. The 8
initial conditions forv and the model state variables were
obtained at the recovery phase of the transmembrane paiten
after stimulating the tissue durif@min at1 Hz and the value
of the conductivity tensoD was set to obtain a conduction
velocity of approximatelypOcm=s.

3) Model of voltage recordings at the body surface:
According to the Volume Conductor Theory [25], the electric
potential registered by an electrode placed atwithin the
torso surface 1 is given by

7k

Average Dominant Frequency [Hz]

z 2L
1 rD (rv(rug;t)
t(rrit) = d 17
(rr:t) 4co | R(ru;rr) : an . ‘ ‘ ‘ I
0 5 10 15 20 25
where R(ry;rt) = jjrt  ryjj is the distance from the SNR [dB]

.Source |OC<'.;1t|0n pOIht’H_ .to the observation pointr, Co Fig, 3. Impact of noise on the average body-surface DF vatweehch
is the medium conductivity (assumed homogeneous and §§{u|ated stimulation rate.

to 1S=m), and v(ry;t) is the solution of (15). Using a

nite element approach, equation (17) can be extended to an . .
arbitrary number of recording sites as Body-surface spectra were estimated by applying Welch's

method to the noisy potentials induced at each torso latatio
()= A v(t) (18) Estimated spectra were used to obtain DF values as de ned

in [26]. The signal processing pipeline that de nes the DF

whereA is the so-called transfer matrix that linearly relates,qists of three stages, namely band-pass ltering at 40 to
the transmembrane potential distribution at the heart efes 250 Hz. recti cation and ’naIIy low-pass Itering with a 20-

v(t) to the body-surface potentials at the torso elemer(ty. |y, ooff. It is worth noting that recti cation is a non-liae
operation that produces new frequency components, some of
B. Analysis of body-surface spectra which lie outside the passband de ning the rst ltering gta

In addition, we used our analytical results derived in Sercti

In our simulation environment, we generated three uniform to estimate the measurement transfer bandwidth at each
spatiotemporal dynamics by stimulating the ventriculagxap Eorso location

at, respectively, 1 Hz, 2 Hz and 3 Hz. As shown in Figur
2, the generated dynamics consisted of plane wavefronts .

emanating from the ventricular apex with a frequency equét Simulation results

to the stimulation rate. By using (18) we obtained the time- The DF values obtained at the ventricles were uniform
varying body-surface potential distribution(t) induced by and consistent with the simulated stimulation rates, ngmel
the simulated transmembrane potentidt). White gaussian 1 Hz, 2 Hz and 3Hz. However, the DF values obtained
noise was added to body-surface potentials to analyze them the body-surface potentials differed from the undedy
impact of noise on the estimation of the DF. We includestimulation rates in the presence of noise. Figure 3 shows fo
in our analysis signal-to-noise ratios (SNR) ranging frono 1 each stimulation rate the average DF value as a functioneof th
25 dB. SNR. For low SNR, the average DF value was biased towards



0 5 10 15 20 [Hz] 0 5 10 15 20 [Hz]

Fig. 4. DF values for a stimulation rate of 1 Hz and SNR of (a)B5(d) 10 Fig. 6. DF values for a stimulation rate of 3 Hz and SNR of (a)g(d) 10
dB and (c) 15 dB. dB and (c) 15 dB.

responding to a stimulation rate of respectively 1 Hz, 2 Hz
and 3Hz, for three increasing SNR values. These distribatio
of body-surface DF values are dif cult to explain without
a mathematical framework relating the spectrum of cardiac
signals to the underlying cardiac spatiotemporal dynantics
our simulations, the distribution of body-surface DF valire
noisy scenarios revealed a clear pattern. Two regions dmeild
identi ed in all cases. The rst region was an approximately
belt-shaped area surrounding the torso and connecting the
left shoulder with the right ilium. Within this region, DF
values were uniform and numerically close to the underlying
stimulation rate. The actual shape and width of this regias w
different for different SNR values. Speci cally, we obsed/
that the higher the SNR the wider the belt. However, for low
SNR values, this region was restricted to the left shoultiee.
area of the torso outside this belt-shaped region constitut
the second region and within it, DF values appeared to be
randomly distributed. Because of the dependence of thehwidt
of the belt on the SNR, higher SNR values led to more
uniform body-surface DF values that were consistent with th

0 5 10 15 20 [Hz] underlying stimulation rate.
Fig. 5. DF values for a stimulation rate of 2 Hz and SNR of (a)B5(d) 10 Our mathematical forma}lism allowed us to explain the k_JOdy'
dB and (c) 15 dB. surface DF maps shown in Figures 4, 5 and 6. According to

our formalism, the spectrum of body-surface signals can be
expressed as a low-pass ltered version of the spectrumeat th
higher values, whereas for higher SNR values, the average f¥sue level. Figure 7 shows the measurement transfer band-
approached the underlying stimulation rates of 1 Hz, 2 Hz amgdths at each site of the torso for a stimulation rate of 2 Hz.
3 Hz, respectively. Therefore, our simulations suggedtttiea Similar distributions for the measurement transfer bauittwi
quality of the estimation of DF values can be affected by theere obtained for stimulation rates of 1 Hz and 3 Hz. Figure
presence of noise. 7 shows that the measurement transfer bandwidth values were
Figures 4, 5 and 6 show the body-surface DF maps caret uniform over the torso, with some regions suffering more



By obtaining DF maps of the brillating atria [3], [5], [8],
anatomically localized, high-frequency sites have beentid

ed, which supports the idea of the existence of AF drivers.
Other spectral features such as the organization index (Ol)
[1] and the multivariate organization index (MOI) [6] have
also been proposed to quantify the degree of spatiotemporal
organization of AF.

The increasing interest in applying spectral techniques to
analyze complex arrhythmias has come hand-in-hand with
the need to improve our understanding of the nature of
cardiac spectrum. Some authors have contributed to dlagify
the meaning of cardiac spectrum from a signal processing
perspective [27], [28]. In [19] a measurement perspectigs w
adopted and a mathematical formalism was developed for
investigating the bioelectric nature of cardiac spectriims
formalism allowed to express the spectrum of cardiac sgynal
in terms of the spatiotemporal dynamics of cardiac sources

15 20 25 30 3 40 [HZ and the sensitivity distribution of the electrode systemy .aB-
Fig. 7. Measurement transfer bandwidth analytically ofedifor a stimula- @lyzing this connection, it was shown that when the undedyi
tion rate of 2 Hz. dynamics are fully correlated, low spatial resolutiongdi¢a

low-pass type cardiac spectra. The main take-home message
of [19] was that the effects of measuring needs to be taken int

aggressive low-pass ltering effects than others. Spedliyg X . ) X :
. . consideration when analyzing the spectrum of cardiac gna
the region around the left shoulder presents bandwidthegalu . . .
Here, we have generalized those previous analytical re-

reaching 40 Hz and a belt connecting left shoulder to rigghlts by considering arbitrary volume conductors and elec-
ilium with high bandwidth values is clearly visible. This y 9 y

non-uniform distribution of bandwidth values resembles thtrOde s_ystems, and card|§1 ¢ sources with arpltrary degrees
f spatiotemporal correlation. We have analytically dediv

distribution of DF values shown in Figures 4, 5 and 6 an%easurement transfer functions and bandwidths relatieg th

indeed explains them. Since the signal processing techniqu . . . .
de ning the DF uses a rst stage of band-pass ltering thepectrum of cardiac signals to the spatiotemporal dynamics

. . : : of cardiac sources. Our analysis shows that the measurement
ability to extract physiologically meaningful DF values sva

i A ) ]transfer bandwidth can be expressed in terms of the degree
more compromised in sites with a low measurement trans

. . ) ; of spatiotemporal correlation of the cardiac source and the
bandwidth. Therefore, in a noisy environment only thosasre . . . .
Gatlal resolution of the electrode system. This relatigns

were the measurement transfer bandwidth was high provi 1% allowed us to make the following prediction about the

meaningful DF values. Therefore, for a given SNR value, . . !
. ! effects of the spatial resolution on the spectrum of cardiac
bandwidth threshold value can be de ned only above whic . . . .
Ignals. By increasing the resolution volume, the bandwidt

meaningful DF values can be obtained. This bandwidth thres : : o
. . . 0f the measured cardiac signal decreases until it reaches a
old decreases as the SNR increases, producing the widenin . : .
- . : ot beyond which it saturates. Bandwidth saturation czcu

of the belt containing meaningful DF values, in other word

: . L . . whenever the resolution volume of the electrode system is
extending the region within which meaningful DF values “arger than the correlation volume of the cardiac source
be found. g . : . . ) '

We have illustrated in a simulation environment how DF
maps can be distorted as a consequence of the ltering sffect
attributable to measuring. By simulating a regular, fagthim,

The heart is a bioelectric organ formed by coupled, exaitablve have synthesized cardiac transmembrane potentials and
cells that collectively give rise to spatiotemporal dynesni body-surface potentials. Our simulations show that theybod
The spatiotemporal characteristics of cardiac dynamies csurface potentials can be expressed as a low-pass version of
be related to the function of the heart and, because of th#ie transmembrane potentials and that the associatedidter
bioelectric nature, they can also manifest in signals nreasuin general different at each torso site. These results are ac
by electrode systems. This results in a relationship betweeurately predicted by our formalism. The Itering attrilalie
cardiac function and signal features, which forms the bakisto measuring can in turn affect body-surface DF values. This
the analysis of cardiac signals. However, although thitiet- distortion is more apparent in noisy environments, alttnoing
ship can be straightforward for simple, regular spatioterap theory it could also happen in noise-free scenarios.
dynamics such as the heart during sinus rhythm, it can be vernyOur results indicate that, in general, spectral features of
intricate for complex ones such as cardiac brillation. cardiac signals cannot be translated per se into specitcfea

Signal processing techniques based on spectral analyas haf the underlying spatiotemporal dynamics without careful
been developed in cardiac electrophysiology to study cermplconsideration of the effects of the process of measurement.
arrhythmias. One of the main applications of spectral aisly Measurands, in our case spectral features, are after aflede
is the characterization of the spatiotemporal dynamics lef Aby the measuring process itself. Hence, the interpretation

V. DISCUSSION AND CONCLUSION



of a spectral feature such as the peak frequency would darrelation is needed. Current mapping approaches obtain
principle not be the same for intracardiac signals and faiybo DF values at each torso location by solely analyzing the
surface signals, since intracardiac and body-surfacdretée signal recorded at the actual location. Interestingly, ybod
systems de ne a different measuring process. In the contexirface potentials can be jointly analyzed to produce an
of DF mapping, different choices of electrode systems haimirect estimation of the degree of spatiotemporal catieh.
been used to obtain cardiac signals. These include seqyen€onsequently, based on our formalism we can conclude that
contact, intracardiac electrodes [2], [3], [4], [5], [8]om improved DF estimations could be obtained by analyzing the
contact, intracardiac electrode arrays [29], [9] and bodgignal at the location of interest jointly with signals from
surface electrode arrays [30], [31], [32], [7], [33]. Based neighboring locations, as information about the undedyin
our formalism, when using body-surface electrode systerdsgree of spatiotemporal correlation would be potentially
we would expect to obtain distorted versions of the spectirecorporated. Finally, even though our study focuses odiaar
provided by intracardiac systems, since their spatialluism arrhythmias, our analytical results could be applied toepth
is lower. Therefore, the DF maps obtained by intracardiddoelectric signals, such as encephalography (EEG) sgnal
mapping should be expected to be different from the DF maBpectral analysis is one of the most important tools in EEG
obtained by body-surface mapping, even when the underlyismydies and it has been long recognized that EEG and cor-
arrhythmias are highly regular. tical source activity will in general exhibit different siiea

The measurement transfer functions and bandwidths dBi]. Our study provides a quantitative framework to also
tained in this paper for uncorrelated, fully-correlatedd aninvestigate the spectrum of EEG signals. Specically, our
partially-correlated cardiac rhythms, have been deriveadyd- main conclusion that the spatiotemporal characteristidhe
ically from well-established bioelectric models. Howewaren underlying rhythm plays an important role in the nal lterg
though the derived measurement transfer functions aret exawduced by measuring, can be of importance in EEG studies.
and not approximations, the extent of their impact on humamterestingly, recently proposed methods for analyzingsSEE
cardiac spectra would need to be further assessed. Realisigjnals leverage spatial relationships between EEG sites f
computer simulation environments such as the one usedfriequency recognition. In [35] spatial Iters are built roEEG
this paper, provide an excellent framework for systembgica training datasets to provide reference signals which aeele
exploring our mathematical formalism. Computer simulatiofor frequency recognition in steady-state visual evoketkipo
approaches have been used in previous studies to investigets. Their results show that the proposed method improves
the spectra of cardiac rhythms with complex spatiotempoifaéquency recognition, compared to conventional methbds t
dynamics [22], [23], and the analysis of their simulatiosules do not use any spatial information. This supports the take-
agree with our analytical claims, which relate the bandiwidhome message that by incorporating prior knowledge about
of cardiac signals with the spatial resolution of the eledér the underlying degree of spatiotemporal correlation, spec
system and the correlation volume of the underlying cardiéeatures can potentially be extracted with higher accuracy
source. Further validations in clinical settings are néhaless

essential to assess the extent of the ltering effectskattable APPENDIXA
to measuring in real-world scenarios. In order to carry oJtHE MEASUREMENT TRANSFER FUNCTION DURING FULLY
a clinical assessment of our analytical predictions, a#ra AND PARTIALLY -CORRELATED DYNAMICS

diac and body-surface recordings need to be simultaneously et us start off by considering a bioelectric source with
recorded during different types of arrhythmias, so thatét@ partially-correlated dynamics and uniform local spectriy
tionship between local and global spectra i.e. the measmemsubstituting (10) into (3), its measurement transfer fiomct
transfer function, can be identi ed for each type of arrmth. Hpc (f ), can be expressed as
Previous clinical studies have indeed recorded simultasigo

intracradiac and body-surface signals to empirically stigate E' pc(f)= (19)
DF maps during AF [7], [34]. One of the main conclusions Lap(v;w)e 127 (VUWhe [ (v; w)]dvdw
of these studies is that body-surface DF mapping is able to Y

capture regional differences in atrial activation ratesirdy Let us de neg(L 4»; ) as the joint density function of the pairs
AF. Interestingly, the results presented in [34] seem ticai@ of valuesfL a(v;w); (v;w)g for v;w 2 V. By applying
that there is a systematic difference between the bodwsarfBayes Theorem, the joint density functigil .p; ) can be
and intracardiac DF values and that this difference preseekpressed as
a non-uniform distribution over the torso. These obseovesti 9(Lap; )= 9(Lapj )a( ) (20)
agree with our analytical results and might be explained
suitable measurement transfer functions.

A better understanding of the actual ltering effects of meaL v
suring can help in devising new signal processing techsique* * /" . . .
for analysing cardiac arrhythmias. One consequence of g Y mtegratlng with drespect ta and and using (20),
prediction that the extent of Itering depends on the degre@ ) can be expressed as
of spatiotemporal correlation of the underlying dynamics. [ Elpc (f)= 7
(12)], is that in order to compensate for such Itering effec 1 P2 1 , _
a prior estimation of the degree of cardiac spatiotemporal ) e he ()a( ) ) Labg(Lanj )dLapd :

t\)zélhere d(Lapj ) is the conditional density function of
ab(V;w) given (v;w), andg( ) is the density function of

(21)



The integral [8]

Z,4

Lan( 0) = Lang(Labj o)dLab (22)
corresponds to the mean value lof,(v; w) for all pairs of
locationsf v; wg such that (v;w) = o.

By using the de n%ion (22) in (21) we nally obtain

. he(1)9( )Lan( )d
He(f) Hg(f) Ho(f) (23)

whereHc (), Hg(f) andH_ (f ) are, respectively, the Fourier(11]
transforms of the functiortsc ( ), g( ) andL 5»( ). By setting
hc( ) = 1, the measurement transfer function during fully-
correlated dynamicdiigc (f ), can be readily obtained.
Finally, the bandwidth ofHc(f) is inversely related to
the degree of spatiotemporal correlation at the sourcegtwhi
can be quantied by the correlation lengttlc, whereas [13]
H (f) H_(f) is inversely related to the scale of the mea-
surement, which can be quanti ed by the lengkh . Hence, [14]
the bandwidthBWpc of the measurement transfer function
Hpc (f) can be approximated by

BWpc ' Kpy =0y + Kc=d; (24)

whereK y andK ¢ are proportionality constants. Furthermore,
if dc '1 (dc ! O0) the source becomes fuIIy-correIate(ﬂm]
(respectively, fully-uncorrelated). This is mirrored inet de-
pendence of the measurement transfer bandwidth dgthif
dc !'1  (dc ! 0), thenBWpc ! Ky =dy (respectively,
BWpc 11 ).

El

g 12f [10]

Hec (f)
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