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One Size Does Not Fit All: Implementation Trade-Offs for Iterative Stencil
Computations on FPGAs

Tomofumi Yuki
INRIA / IRISA

Gaél Deest
Univ. Rennes 1 / IRISA

Abstract— Iterative stencils are kernels in various application
domains such as numerical simulations and medical imaging,
that merit FPGA acceleration. The best architecture depends
on many factors such as the target platform, off-chip memory
bandwidth, problem size, and performance requirements.

We generate a family of FPGA stencil accelerators targeting
emerging System on Chip platforms, (e.g., Xilinx Zynq or Intel
SoC). Our designs come with design knobs to explore trade-offs.
We also propose performance models to hone in on the most
interesting design points, and show how they accurately lead to
optimal designs. The optimal choice depends on problem sizes
and performance goals.

I. INTRODUCTION

Iterative stencil computations arise in many application
domains, ranging from medical imaging to numerical sim-
ulation. Since they are computationally demanding, a large
body of work addressed the problem of parallelizing and
optimizing stencils for multi-cores, GPUs, and FPGAs.

Earlier attempts targeting FPGAs showed that the perfor-
mance of such accelerators is a complex interplay between the
raw FPGA computing power, the amount of on-chip memory,
and the performance of the external memory system [1]-[8].
They also illustrate different application requirements. For
example, in the context of embedded vision, designers often
seek the cheapest design achieving real-time performance
constraints (e.g., 4K@60fps). In an exascale context, they
may want to maximize performance (measured in ops-per-
second) for a given FPGA board, while maintaining power
dissipation to a minimum. Therefore, we explore a family of
design options that can accommodate a large set of constraints,
by exposing trade-offs between computing power, bandwidth
requirements, and FPGA resource usage.

We focus on system-level issues. Our aim is not to
provide hand-optimized FPGA implementations. We have
developed a code generator that produces HLS-optimized
C/C++ descriptions of accelerator instances, leaving low-level
decisions to the HLS back-end.Our designs build upon the
tiling transformation, that we use to balance on-chip memory
cost and off-chip bandwidth. The design space we explore
can be characterized by the following design knobs.

« Unrolling Factor: Our accelerators are based on a heavily
pipelined datapath derived from HLS tools. The amount
of fine-grain parallelism in the datapath is configured
through unrolling of the innermost loops.

o Tile Shape: The choice of tile shapes, characterized
by the sizes of a tile in each dimension (possibly not
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tiling some of them), enables trade-offs between on-chip
memory usage and bandwidth consumption.

o« We propose simple analytical models for both per-
formance and area cost to guide the design space
exploration.

The rest of the paper is organized as follows. We introduce
the necessary background in Section II, and describe our
accelerator architecture in Section III. We discuss the perfor-
mance models we use to guide the exploration in Section IV.
Section V describes the result of our extensive design space
exploration on a Zynq board. We discuss related work in
Section VI and conclude in Section VII.

II. BACKGROUND

We introduce the notion of stencil computations, our target
platform, and the core of our approach: loop tiling.

A. Stencil Computations

Iterative stencil kernels are computations that iteratively
update a d-dimensional rectilinear array of size Ny X --- X Ny
(d is typically 2 or 3). Given the initial state of the array A°,
the successive states are computed as:

A1) = update (47 (1(D) -+ A" (fa(D))
where the functions f,. are of the form f, (Z) = 43y, € 79,
i.e., add some constant offset to ; and the function update
defines some arbitrary operation to be performed using the
input values of A’. Note that the update uses the state of the
array from strictly the previous iteration.

AY is assumed to be an input, and 1 <t < T, where T is
the number of iterations, and is application dependent. Simple
image filters may only apply one iteration (7' = 1), but more
complex filters are iteratively applied for larger values of T'

and/or until convergence. This leads to large workloads that
are excellent candidates for hardware acceleration.

- -,

B. Programming FPGA Accelerators

In both the embedded and high performance computing
domains, FPGA platforms are evolving toward hybrid hard-
ware/software platforms, where the FPGA fabric is tightly
coupled to the processor. Examples of such platforms include
the Xilinx Zynq and the Intel SoC, in which the FPGA has
access to the last level cache of the ARM processor.

For such platforms, memory bandwidth and/or latency
constraints must be considered early in the design flow.
Because of the complexity of the platform, it is often
difficult for designers to determine the best architecture, and



manual Design Space Exploration is not realistic. This makes
generative approaches (i.e., automatic generation of domain
specific hardware accelerators) attractive. However, the design
space offered by such approaches is extremely large, and the
use of performance models to drive the exploration stage
becomes necessary.

Since our work focus on system-level issues, we utilize
HLS to derive our hardware accelerator. Specifically, the
state-of-the-art HLS tools provide the ability to (i) synthesize
pipelined datapaths, (ii) expose complex multi-banked on-
chip memory organization in the code, and (iii) abstract away
complex I/O interfaces through the use of a simple API.

C. Farallelizing Stencils on FPGAs

We outline the challenges of implementing stencil on
FPGAs using a running example. This example consists of
a (simplified) Jacobi-style stencil over 2D data, and can be
described using the loop nest shown below.
for (t=1; t<=T; t++)

for (x=1; x<N-1; x++)
for (y=1; y<M-1; y++)

Alt][x][y] = update(A[t-1]I[x]l[y],
Alt-1][x-1][y],A[t-1] [x][y-1]
Alt-1][x+1] [y]l,Alt-1][x][y+1]);

Figure 1 depicts the same kernel, visualizing the iteration
domain, and the inter-iteration dependencies.

Given that the two innermost loops are completely parallel,
accelerating the algorithm on FPGA may seem trivial.
However, stencils can operate on large spatial grids that
are too large to fit in on-chip memory (for example, when
computing the optical flow of a 4K image). It is therefore
necessary to store this data-set in external memory, making
the naive parallelization severely I/O bound.

It is thus necessary to partition the computations into atomic
blocks that are amenable to efficient hardware accelerations
on an FPGA. We achieve this decomposition using loop tiling
that provides two important benefits:

« It improves memory access locality, and eases the use
of on-chip (scratchpad) memory.

o It exposes tile-level wavefront parallelism, which is
well suited for parallelization on multi-core (through

Z_ Jacobi stencil ~\71’:
Fig. 1: Example of illegal loop tiling shapes for 2D stencils,
with a cyclic tile-level dependency along y axis.

OpenMP) or GPUs. We use this parallelism for overlap-
ping computation with accesses to memory.

Tiling consists of partitioning the iteration domain into
regular-shaped (e.g., hyper-parallelepipedic) blocks, called
tiles, so that the computation can be performed by executing
those tiles “atomically,” either sequentially or in parallel.

In contrast to multi-core/GPU targets, we are not interested
in executing tiles in parallel. Our goal is to accelerate the
execution of a single tile by (i) utilizing fine grain parallelism
through unrolling and pipelining, (ii) operating exclusively
from on-chip memory, and (iii) using burst transfers to
fill/flush this on-chip memory with appropriate data from
external memory without causing I/O stalls.

D. Loop Tiling Strategies

Since tiling changes the execution order of operations in the
loop, not every loop tiling is legal. In particular a legal tiling
must guarantee the absence of cyclic dependencies at the tile
level. Figure 1 illustrates this constraint in the case of our
running example, where it can be observed that an orthogonal
(i.e., rectangular) tiling leads to cyclic dependencies between
adjacent tiles.

For stencils, these cycles are caused by the dependencies
(data-flow) flowing both forward and backward on x and y
axes, and this can be resolved using additional transformations.
The idea consists of “skewing” the iteration space along one
(or both) axis to guarantee unidirectional data-flow.

Skewing only along the z or y axis enables tiling along
that dimension; we refer to this strategy as partial oblique
tiling. We illustrate this approach in Figure 2, where it is
applied along y and ¢ axis. This results in incomplete tiles,
which we must pad with fake iterations to reuse the same
accelerator as full tiles. Another consequence is that the on-
chip memory requirement is not fully controlled, since one
of the tile dimensions (along x) is the full domain size. This
approach may not be suited to stencils with large spatial
domain, on target platforms with limited on-chip memory.

Another strategy is to use skewing along both x and y axes.
Then, it becomes possible to tile along all three dimensions
x, Y, and ¢, and we will refer to this strategy as fully oblique
tiling (see Figure 3). The use of combined skewing results
in significantly more incomplete tiles compared to partial
oblique tiling. On the other hand, it is now possible to have

Tile level
dependencies - <
" Tile parallel *
wavefront

Fig. 2: Tllustration of partial tiling for a 2D jacobi



Fig. 3: Illustration of full oblique tiling for a 2D Jacobi

full control on the tile memory footprint (and therefore on
on-chip memory requirements).

The two aforementioned tiling strategies are based on
hyperplane partitioning and result in parallelepipedic tiles,
however it is also possible to use more complex shapes. For
example, the overlapped tiling approach uses trapezoid/pyra-
mid shaped tiles to avoid dependence violations in exchange
for redundantly computing some values in each tile. However
it also enables concurrent start of tiles (i.e., tiles within a
same time step can start concurrently, which is not the case
when using oblique tiling). This is valuable when taking
advantage of tile level parallelism, but is often not required
for acceleration on a single FPGA.

We summarize the characteristics of the various tiling
strategies (discussed more in Sections V and VI) in Table 1.

III. ARCHITECTURAL DESIGN SPACE

We now present our accelerators, and show how their
design parameters address the concerns raised in Section II.

A. Overview of the Architecture

Our proposed accelerator is implemented as a bus master
device on the AXI4 bus, using HP ports to access external
memory. Although we mostly discuss Zynq in this paper,
our design is portable to other platforms with AXI. Our
implementation decouples memory accesses from execution
through macro pipelining at the tile level. This is achieved
through Vivado HLS DATAFLOW pragma: inputs to the next
tile are fetched while the current one is being processed,
as shown in Figure 4, where the hardware accelerator is
decomposed into a three stage macro-pipeline.

We obtain a family of accelerators (see Figure 5) that
operate on a series of tile coordinates, corresponding to a
wavefront of independent tiles, computed as a single hardware
call. The host program running on the ARM processor is in
charge of sequencing the execution of wavefronts, but can
also be used as processing element.

B. Overview of the Execution Datapath

Each tile is computed in a single sweep using a deeply
pipelined datapath. The depth, A, of the pipeline depends
on the target operating frequency provided by the user. We
use 143 Mhz as the target frequency for both the IP and the

void top (T arr_in,
#pragma HLS DATAFLOW
fifo fin, fout;

T arr_out) {

// Read Actor
for (int i=0; i<N; i++)
#pragma HLS PIPELINE
fin.write(arr_in[i]);

// Compute Actor
fout.write(fin.read() * 2);

// Write Actor
for (int i=0; 1i<N; i++)
#pragma HLS PIPELINE
arr_out[i] = fout.read();

}

Fig. 4: Use of the DATAFLOW directive to implement
computation / communication overlapping.

Off-chip
memory
controller

AX14, 32b-wide
@143MHz

- (Erot
Execute H Write
Actor Actor
—[Fo ]

Fig. 5: Diagram of the architecture.

AXI4 bus, as this is the highest frequency supported by both
SDSoC and the AXI interconnect (limited to 150 MHz).

The entire set of operations in a tile is pipelined with
Initiation Interval of one. In terms of input C code to HLS,
this pipelining is realized by coalescing the entire loop nest
that iterate over computations in a tile, and pipelining the
resulting loop. The updates within a single time step are
independent of each other and can be fed to the datapath every
cycle, provided that the data is available. Pipelining across
time steps require that the results from the previous time step
have exited the pipeline before its use. The constraints over
tile shapes are later discussed in Section III-D.

Our datapath can be further configured to perform an
arbitrary number of stencil updates per cycle, simply by un-
rolling the innermost loop by a fixed factor before coalescing.
Adjusting this factor allows us to control the computational
intensity of our IP.

The execute actor takes advantage of reuse of input data
and intermediate results within a tile. We apply a technique
similar to the one by Cong et al. [9] to minimize local memory
usage and to avoid memory bank conflicts, but using HLS
arrays instead of explicit FIFOs, which necessitates dealing
with the initialization of these arrays for each tile.

This can be achieved in two ways (i) by increasing the
number of memory ports in the on-chip memory to parallelize
the initialization (i.e., without performance overhead), or (ii)
by inserting wait-states to serialize the initialization phase.
We use the latter as on-chip memory is a scarce resource.

This overhead comes from what we call the halo regions.



TABLE I: Qualitative analysis of existing approach to accelerate stencil on FPGAs. Non-tiled refers to versions where the
data-set either fully fit in on-chip memory, or is communicated to/from external memory at every sweep. However, these
versions may still benefit from sophisticated data-reuse along the spatial dimensions.

Approach vs. non-tiled non-tiled partial oblique | full oblique | overlapped
characteritics on-chip [6] | off-chip [5], [9] tiling [10] tiling (ours) tiling [7]
Domain size scalability XX v X v v
Off-chip memory bandwidth constraints v XX v v v
Computational overhead
(redundant or useless computations) 4 4 X xx XXX

Some values used by a tile come from neighboring tiles. For
stencils, these values are always adjacent to the tile. The
compute actor scans these regions for initialization, adding
cycles where the datapath is only propagating data. Because
the halos are d dimensional (tiles are d + 1), the overhead
diminishes as tile size increases.

C. Overview of the Read/Write Actors

The read actor streams in input data to the execute actor,
and the write actor streams out results from the execution
actor. These actors perform burst accesses to external memory
through the AXI4 interface. We use a custom data layout,
which we omit for space reasons, to ensure that most of the
memory accesses are contiguous’.

We take special care to minimize idle time and maximize
bus occupation to get as close as possible to the maximum
achievable bandwidth (600 MB/s with 32 bit bus width). Up

to four HP ports on the Zynq can be used concurrently.

D. Design Parameters

Our approach aims at exposing relevant design knobs to
drive the design space exploration. These knobs are:

o The choice of the Unrolling Factor (UF). The datapath
performs UF updates, and hence the value of UF
determines the amount of parallelism. Increasing this
factor will boost the maximum throughput that can be
attained, but will also raise bandwidth requirement to
keep feeding the datapath.

The choice of this parameter is mostly driven by
the throughput requirement. Larger values give higher
throughput, but increase area cost.

o The choice of the tile sizes (Sp, S1,.S2) is also critical, as
tile shape determines data locality. Tile sizes control the
trade-off between off-chip bandwidth requirement and
on-chip memory usage. Larger sizes reduce bandwidth
requirement, but increase on-chip data storage.

Larger tile sizes also reduce the overhead due to halo
regions, further improving throughput.

o The use of partial oblique tiling can be beneficial since
it has fewer partial tiles, but at the cost of increased
on-chip memory requirements.

10ur approach is based on tile-face projections along canonical axes. It
comes at a small overhead cost, as some values are mapped to multiple
faces, but reduces all tile inputs/outputs to d + 1 contiguous segments.

We require that S5 is evenly divisible by UF to avoid
complex controls arising from cases where only a subset
of the unrolled iterations are valid computations. The tile
sizes in the spatial dimensions are constrained to have more
iterations than the pipeline depth: S; X % > A.

IV. PERFORMANCE MODELING

The parameters above expose a huge design space to be
explored. In this section we present a performance model to
guide the exploration of this space.

A. Asymptotic Performance

The important metric to model is the number of stencil
updates per cycle?, computed as follows:

TileVolume(So X Sl X Sg)
TileCycles

where TileCycles denote the number of cycles it takes to
execute a tile. Assuming that the communication is overlapped
with computation, this is the slower of the number of
cycles spent for computing, CompCycles, and spent for
communicating, CommCycles:

UpdatesPerCycle =

TileCycles = max(CompCycles, CommCycles)

This is the asymptotic performance of our design that is
reached when the problem size is large enough to make
the overhead at the boundaries (where the computation and
communication are not fully overlapped) negligible.

1) Performance of the Compute Actor: The compute actor
is centered around a pipelined datapath that computes, in
steady-state, UF updates per cycle. In addition to the tile
volume, the compute actor scans the boundary halo regions
to fetch input data. Representing the extend of the halo in the
d-th data dimension as hg, the number of times the compute
actor datapath is invoked per tile is:

UF
Since the initiation interval is always 1 for our design, the

total number of cycles that it takes to execute the compute
actor, assuming all inputs are ready, is given by:

CAVolume = So x (S1 + 1) x {52 i hﬂ

CompCycles = CAVolume + Depth — 1

2Note that UpdatesPerCycle is a direct proxy to throughput, which is
UpdatesPerCycle x FlopsPerUpdate x Frequency.



where Depth is the pipeline depth of the compute actor
datapath. The pipeline depth, determined by the HLS tool
during RTL generation, is a function of the update formula
and synthesis frequency, but not tile size or unrolling factor.

2) Communication Modeling: 1t is critical to make use of
burst communication to maximize bandwidth utilization. We
ensure that almost all memory transfers permit burst accesses
using a custom memory layout. Furthermore, the concurrent
use of four HP ports completely hides the latency of burst
transfers. Hence, modeling the communication cost can be
simplified to modeling the data volume.

The data volume to be communicated is exactly the halo
regions of a tile. This can be computed as:

d d
CommVolume = H (Si + hi) — H S;
i=0 i=0
When the data element is one word, Comm Volume directly
translates to the number of transfer cycles: CommCycles.

B. Modeling the Area Cost

Precise modeling of the area cost can be extremely
challenging, and is heavily influenced by the HLS tool.
However, it is not difficult to make a relative comparison
among design points in our parameter space.

We expect that the unrolling factor and the tile face volumes
both have linear relationships with area: UF with LUTs/DSPs
and tile faces with on-chip buffer requirement.

We use the sum of the utilization rates of Slice/BRAM/DSP
as area metric (see Section V). In order to capture the
interaction between UF and tile sizes, and to relate these
values to area metrics, we used linear regression to compute,
respectively, two functions:

Cap = aqp x UnrollFactor + bqp,

Cmem = OGmem X CommVolume + bmem

Cap models datapath cost and Cpem On-chip memory cost.
Parameters a_, b are inferred by the regression tool. The
sum of utilization rates for Slice and DSP is a function of
UF, and BRAM usage is a function of parameters affecting
communication volume. We only needed a few samples (three
or four, one per power-of-two unroll factors up to the largest
factor that fits on the board) to learn the area model. The
RMSE was between 4% and 7% for the response variable
(sum of utilization rates) that range from 30 to 130.

V. VALIDATION AND DISCUSSION

As mentioned in Section I, we have developed a tool that
take a stencil kernel specification as input. Our code generator
builds on polyhedral compilation tools (namely the Integer
Set Library [11]) to generate the tiled loops, and python
scripts for generating the communication actors.

We emphasize that our goal is not necessarily to present a
design with the highest throughput, but rather to show that
we are able to select the “right size” for a given context.
We have generated a series of design using different tile
sizes, unrolling factors and tiling modes (full and partial).

TABLE II: Number of floating-point operations, and pipeline
depth for one update of the kernels.

Kernel ﬂOpS Pipeline depth
Jacobi 2D 1 x,4 4+ 43
Anisotropic Diffusion | 9 X, 17 4, 2 /, 9 exp 87

Each of these designs were automatically generated from
the design parameters and synthesized using Xilinx SDSoC
2016.3, targeting the ZC706 board with an XC7Z045 Zynq
chip. The target frequency for all designs was 142.86 MHz.

Unlike many prior work, our performance numbers are
obtained from actual accelerators instances running on the
target FPGA platform. Hence, our results account for all
performance degradation issues related to bus interconnect
and/or external memory.

We validate our work on two different stencil kernels:
Jacobi 2D and Anisotropic diffusion. Jacobi 2D is a standard
example for stencils that have relatively few number of
operations, and is strongly bandwidth constrained. Anisotropic
diffusion is an iterative smoothing filter, which is much
more compute-intensive. The characteristics of their update
operations are summarized in Table II.

In this section, we abbreviate a design as Syx51x52_UF.
The area cost is the sum of utilization rates for Slicess/BRAM-
s/DSPs, and takes a value between 0 and 300. The target
board has 54650 slices, 545 BRAM tiles, and 900 DSPs.

A. Jacobi 2D

We use four target performances; 1, 2, 4, and 8GFlop/s;
to illustrate the trade-offs exposed by our design knobs. A
number of design points that have the desired performance
with different tile shapes were synthesized. Linear regression
for the area model used the following four design points:
4x16x16_2, 8x16x32_4, 32x32x32_8, and 64x64x64_16.

Figure 6a summarizes the area and throughput of the
resulting designs, as well as those predicted by the model.
One thing that is clearly visible in the figure is that the
performance model is quite accurate. Almost all points are on
the target GFlop/s based on the model. The largest divergence
from model is 7% (16x120x240_12).

The area result is also in agreement with the model. There
are some interchanges when compared to the predicted ranks,
which is due to powers-of-two tile sizes. When the tile size
in a dimension is a power of two, the control logic can be
significantly simplified. This favors powers-of-two tile sizes
over slightly smaller tile sizes with less buffer usage.

In most cases, using the smallest UF is also area efficient.
However, there are some cases where using higher UF
can be beneficial. Design points such as 8x60x180_6 and
16x120x240_12 are examples of these cases. This is explained
by the diminishing returns from increasing the tile sizes.
Increasing the tile sizes improves performance in two ways:
by improving locality, and by reducing the overhead of the
halo regions. Once tiles are large enough that data locality is
sufficient to keep the datapath busy (i.e., the accelerator is
no longer I/O-bound), further performance comes only from
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Fig. 6: Predicted and measured area/throughput of the two benchmarks. Area metric is the sum of utilization rates for LUTs,
BRAMSs and DSPs. The labels are placed next to measured values (circles), with a line segment connecting each point to its
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overhead reduction. The above designs are in such situations,
where the performance target is at the limit of what can be
achieved by the given UF: larger tile sizes have to be used
to meet the goal. Our performance model can identify these
situations and point to better designs.

We report the resource usage for the best performing
designs for each target performance in Table Illa.

B. Anisotropic Diffusion

We use four target performance levels: 4, 8, 12, and 16
GFlop/s. A number of design points that have the desired
performance with different tile shapes were synthesized. The
area model is learnt with the following points: 2x16x32_1,
4x16x32_2, and 16x16x32_4. The area-throughput trade-off is
summarized in Figure 6b, and Table IIIb reports the detailed
resource usage for the best performing designs.

We do not repeat the same discussion as in Jacobi 2D
case; all of them applies to anisotropic diffusion as well.
One key difference is that the importance of BRAM is much
less significant compared to Jacobi 2D. This is because the
arithmetic intensity of this kernel is high (37 floating-point
operations, including 9 exponentiation), and not much data
locality is needed to keep the accelerator busy.

C. Comparison with Earlier Work

It would be interesting to directly compare our design
with earlier work. However, this is not practical due to the
availability of the implementation and the FPGA platform
used in prior work. We are still able to compare the system-
level characteristics of a large subset of prior work that are
within the family of designs covered in our work.

The non-tiled variants [5], [6], [9] (recall Table I) may
be viewed as designs with tile size in the time dimension
set to 1, and the remaining dimensions equal to the problem
size. These designs do not exploit temporal locality, and
are not suited for iterative stencils. They can give similar
performance to other designs only for small problem sizes,

where the entire data fit on chip. We have implemented a
few non-tiled designs to highlight the scalability issue of
non-tiled designs. Attaining 1GF/s with Jacobi 2D kernel for
256 x 256 image uses 25% of the available BRAM, and the
limit is reached with 512 x 512 using 95% of the BRAM.

Partial tiling [10] is an attractive alternative for small
problem sizes. We implemented this strategy and compared
to fully tiled cases. Figure 7 illustrates the trade-offs between
the two approaches. Partial tiling is beneficial for relatively
small problem sizes with moderate performance requirements.
For anisotropic diffusion, it scales to larger problem sizes
because its operations are much more compute-intensive, and
the tile sizes in the remaining dimensions can be kept small
and still have sufficient data locality.

We did not implement overlapped tiling, because the
overhead due to redundant computation is too significant
(e.g., 367% with 12 x 12 x 12 tiles). For 2D data stencils, it
is a cubic function of tile size, and so tile shapes must be
thin and flat tiles to limit the overhead. This approach may
be more attractive for platforms with higher bandwidth.

D. Additional Considerations

We have extensively discussed the trade-offs of different
design choices in this section. There are other factors that can
also influence the trade-off, including the frequency of the
compute actor, and the overhead of different tiling strategies.

In this work, all the designs were synthesized at the
same frequency (143 MHz) on a single clock domain. The
communication and computation parts could use independent
clocks, allowing the compute actor to reach higher frequencies
than the 150 MHz limit of the AXI bus.

Padding the domain with dummy computations to execute
incomplete tiles in hardware has an impact on overall
performance that depends on tile size, problem size, and tiling
strategy. This impact can be relatively important with full
tiling (e.g., 10.09% dummy iterations with 4 x 16 x 16_2 tiles
on a 50 x 512 x 512 domain) and is smaller with partial tiling



TABLE III: Resource usage of the kernels, selecting the best design for each performance target in Figure 6.

(a) Jacobi 2D

Design Slices | BRAMs | DSP48E
2 x 32 x 32, UF=2 9663 27 66
8 x 16 x 32, UF=4 11123 30 104
16 x 32 x 64, UF=8 | 13148 57 180
34 x 70 x 70, UF=14 | 18103 126 372

for the same performance target (2.63% with 2 x 16 x 512_2
with the same domain size).

Finally, we only considered single-field stencils with Jacobi-
style dependences operating on 32-bit floating-point data.
Our generator could be easily extended to Gauss-Seidel
dependence patterns and multi-field stencils such as FDTD.
The use of fixed-point or custom floating-point arithmetic
opens further trade-offs involving accuracy.

All these factors influence throughput and/or area, and will
impact the specific trade-offs and performance modeling. The
scalability illustrated in Figure 7 is mostly unaffected, and the
key message—that there is no single design that works
best in all cases—is expected to hold. We make the case
with an important subset of the design space.

VI. RELATED WORK

Two bodies of related work are relevant: (i) tiling in
compilers and (ii) FPGA stencil accelerators.

Tiling in Compilers: Tiling is a classical loop transforma-
tion used in various contexts [12], [13]. Since maximizing
the parallelism in a program often does not equal to best
performance, tiling is also used for extracting coarse-grained
parallelism. The state-of-the-art automatic parallelizers (e.g.,
[14]) also use tiling based parallelization as its core strategy.

Tiling is known to be one of the most important transfor-
mations for many classes of programs, including stencils.
Due to the importance of stencil computations, and its
regular dependence pattern, other variants of tiling have been
proposed [15], [16]. One of the main issues addressed in
these work is the problem of load imbalance. Parallelization
of standard tiling combined with loop skewing have different
degrees of parallelism at each parallel wave-front (which
is visible in Figure 2). Allowing concurrent start by more
complex tiling and/or by performing redundant computations
is one of the main goals of the other variants.

Another body of work around stencil computations have
developed domain specific languages and compilers special-
ized for stencils [17]-[19]. These work also employ variations
of tiling combined with additional optimizations.

At the high-level, we use the parallelism identical to
those utilized by tiling-based parallelizers. However, targeting
FPGAs poses different challenges at the lower levels, such
as pipelining and on-chip communications through FIFOs.

We have not explored other variations of tiling in this work.
This is yet another direction that enriches the design space,
and is expected to further complicate the exploration.

(b) Anisotropic Diffusion

Design Slices | BRAMs | DSP48E
2 x 16 x 32, UF=1 | 12675 29 138
4x16 x 32, UF=2 | 17119 30 248
8 x 16 x 30, UF=3 | 22961 32 375
16 x 16 x 32, UF=4 | 26000 37 468

Area Cost Comparison of Full and Partial Tiling

full

partial (256)
partial (1024)
partial (4096) —

joom

100 120 140

80
I

Utilization Rate
(sum of UR for Slice/BRAM/DSP)
60
|

40

20
I
does not fit

aniso  aniso  aniso
8GF/s 12GF/s 16GF/s

aniso
4GF/s

jacobi
8GFI/s

jacobi
4GF/s

jacobi
1GF/s

jacobi
2GF/s
Fig. 7: Area cost comparison between full and partial tiling
for each performance target. The different bars for partial
tiling corresponds to the size of the untiled dimension, which
is the size of the problem that can be executed. Fully tiled
designs scale to any problem size. Jacobi 2D with partial
tiling for 4GF/s target (UF=8) used 99% of the BRAMs, and
8GF/s target (UF=16) could not fit when So = 4096.

Stencil Computations on FPGAs: There have been several
ad-hoc implementations of FPGA hardware accelerators
targeting stencil-like algorithms, such as optical flow estima-
tion [5] and/or FDTD [1], [2]. All these approaches focused
on exposing parallelism within the innermost loop, while
exploiting data reuse within a stencil sweep through pipeline.
None of these earlier attempts did try to take advantage of
data reuse along the time dimension, although several work
acknowledge that off-chip memory traffic ends up being the
main performance bottleneck when the whole data-set does
not fit in FPGA on-chip memory.

Some of the FPGA implementations do perform a form
of tiling [7], [20], although they do not use the name tiling.
These work use a variant of tiling (known as overlapped
tiling [16]) that redundantly computes the boundaries of the
tiles to avoid frequent communications with the neighboring
tiles. However, overlapped tiling over 2D data significantly
increases both the amount of redundant computation and extra
I/0. Luzhou et al. [6] also use a form of tiling to implement
stencil computations on FPGA. However, the tiling applied in
this work is only for the spatial dimensions. Their approach
is only applicable when the problem size is small and fits
on-chip memory.

There is also another body of work that focus on a



different class of stencil applications where the number of
time iterations are small [8], [9], [21]. Many image processing
applications only make one pass over the image, but multiple
of these filters may be composed to form an image processing
pipeline. Our work is not directly applicable to this type of
stencils, because our design relies on the temporal reuse
present in time-iterated stencils to manage off-chip accesses.

VII. CONCLUSIONS AND PERSPECTIVES

We showed how to synthesize a family of FPGA accel-
erators for stencil computations (our tools are available as
open source?). Our approach builds upon loop transformations
(tiling, skewing) and covers a large design space.

Our work opens up an interesting perspective. In the
exascale era, energy is the dominant performance metric,
and an exponentially increasing fraction of future generation
chips will remain “dark” (powered off) or “dim” (in low-
power mode). Therefore, accelerators will dominate exascale
processors, and compiling to such a fabric is in important
challenge. Our work can be generalized towards this.

Programs mapped to accelerators will be asymptotically
compute bound: the total number of operations performed
is at least one polynomial degree larger than the volume of
data accessed by the program. Also, the accelerator hardware
is resource constrained in computation and storage: it can
only perform/store a small fraction of the operations/data of
the program. Our design methodology, and associated design
space exploration are well suited here.
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