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Abstract

For both fundamental biology and engineering applications, it is
relevant to investigate how microorganisms adapt to changing envi-
ronmental conditions. In this work, we consider a continuous-time
dynamic problem of resource allocation between metabolic and gene
expression machineries for a self-replicating prokaryotic cell popula-
tion. In compliance with evolutionary principles, the criterion is to
maximize the accumulated structural biomass. In the model, we in-
clude both degradation of proteins into amino acids and recycling of
the latter (i. e., using as precursors again). Based on the analytical
investigation of our problem by Pontryagin’s maximum principle, we
develop a numerical algorithm for approximating the switching curve
of the optimal feedback control strategy. The obtained field of ex-
tremal state trajectories consists of chattering arcs and one steady-
state singular arc. The constructed feedback control law can serve as
a benchmark for comparing actual bacterial strategies of resource al-
location. We also study the influence of temperature, whose increase
intensifies protein degradation. While the growth rate suddenly de-
creases with the increase of temperature in a certain range, the optimal
control synthesis appears to be essentially less sensitive.
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1 Introduction

For both fundamental biology and engineering applications, it is relevant
to investigate how microorganisms adapt to changing environmental condi-
tions [1–3]. In compliance with evolutionary principles, internal regulation
mechanisms of bacteria are expected to maximize appropriate fitness crite-
ria. Indeed, the results of various experimental studies appear to be in good
agreement with the predictions of suitable optimization-based mathematical
models [4–6]. In particular, the widely adopted principle of growth max-
imization (i. e., maximum accumulation of structural biomass) is followed
with rather high accuracy by the ppGpp-based strategy of regulating protein
synthesis in the enterobacterium Escherichia coli [7,8] (ppGpp is a signalling
molecule whose concentration affects synthesis of ribosomal proteins). In
some situations, other optimization objectives can also be biologically rele-
vant [9].

The related models are often represented as problems of optimal allo-
cation of available resources (such as external nutrients transformed into
building blocks for protein synthesis) between different cellular machineries.
This can also be viewed as optimal arrangement of cellular reaction fluxes.
Several studies developed large-scale network modeling frameworks [10–12],
which are essentially numerical. Alternatively, it is possible to propose less
computationally expensive models that focus on smaller amounts of substan-
tial characteristics and allow wider analytical investigation, but still lead to
reasonable and useful conclusions [8,13–16]. This approach is employed in the
current work. Also note that, in comparison with purely steady-state consid-
erations, dynamic modeling perspectives can give more realistic descriptions
of bacterial growth and resource allocation [8, 12,14,15].

The work [8] studied a continuous-time dynamic problem of resource
allocation between metabolic and gene expression machineries for a self-
replicating prokaryotic cell population with the growth maximization crite-
rion. In [17], this model was extended by taking macromolecular degradation
into account. For the sake of simplicity, it was assumed that all degraded
proteins should leave the cells. However, a more realistic situation is the
presence of recycling, i. e., when only some of the monomers appearing as a
result of protein degradation are removed, while the other ones stay in the
cells and are used as precursor metabolites again. Although protein recycling
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has never been explicitly quantified in bacteria to our knowledge, it has been
observed for several hours in Escherichia coli strains with specific amino acid
requirements [18].

In this paper, we extend the dynamic models of [8,17] by including both
degradation and recycling. Important analytical and computational results
for the corresponding growth maximization problem are also obtained. In
particular, we provide a detailed formulation and justification for a numer-
ical method to construct the optimal feedback resource allocation (control)
strategy. The feedback form is useful there not only due to the aim of combin-
ing all possible initial states together but also because it can help to identify,
for instance, the connection with the above-mentioned ppGpp-based strat-
egy in Escherichia coli [7, 8]. Furthermore, such works as [19–22] give us a
biological motivation to study how increases of temperature (which intensify
protein degradation) affect our model and the optimal feedback control law.
A relevant question is whether the bacterial growth maximization strategy
is highly sensitive to temperature in certain ranges or not.

The paper is organized as follows. Section 2 contains the statement of our
dynamic optimization problem with a comprehensive theoretical discussion.
After establishing some auxiliary results in Section 3, we provide the steady-
state analysis in Section 4 and prove the existence of optimal open-loop
control strategies in Section 5. Based on a detailed analytical investigation of
the problem by Pontryagin’s maximum principle [23] in Section 6, we develop
an approach to approximate the switching curve of the optimal feedback
control law in Section 7. Note that the constructed field of extremal state
trajectories consists of chattering arcs and one steady-state singular arc [24,
25]. Section 8 presents the results of numerical simulations, including the
dependence of the optimal control synthesis on temperature. Concluding
remarks are given in Section 9. There are also two appendices. The first
one describes a convenient technique for transforming our model in case of
a temperature change, and the second one tests the numerical method of
Section 7 on classical Fuller problem.

2 Problem statement

2.1 Dynamical system

Consider a population of self-replicating prokaryotic cells (such as, for exam-
ple, Escherichia coli enterobacteria). Let P,M,R [g] be the total masses of
precursor metabolites (amino acids), metabolic machinery (enzymes involved
in nutrient uptake and conversion into precursors), and gene expression ma-
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Figure 1: Scheme of the model. Metabolic machinery transforms external
substrates (nutrients) into precursors. Gene expression machinery converts
the precursors into macromolecules (proteins), which are involved either in
metabolism or in gene expression itself. Macromolecular degradation also
takes place. The proteins degrade back into precursors, and some of the
latter are removed from the cells, while the other ones are recycled and used
as internal construction units again.

chinery (polymerase, ribosomes), respectively. A scheme of the model (with
the related mass fluxes and catalytic effects) is shown in Fig. 1. Metabolic
machinery transforms external substrates (nutrients) into precursors. Gene
expression machinery converts the precursors into macromolecules (proteins),
which are involved either in metabolism or in gene expression itself. Macro-
molecular degradation also takes place. The proteins degrade back into pre-
cursors, and some of the latter are removed from the cells, while the other
ones are recycled and used as internal construction units again.

Thus, from the mass balance, we arrive at the controlled system of ordi-
nary differential equations

dP (t)

dt
= VM(t) − VR(t) + λMγM M(t) + λRγRR(t),

dM(t)

dt
= (1− α(t))VR(t) − γM M(t),

dR(t)

dt
= α(t)VR(t) − γRR(t),

αmin 6 α(t) 6 αmax, t ∈ [0, T ],

(1)

where the following notations are adopted:

• t [h] is the time variable, T > 0 [h] is a time horizon;
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• VM = VM(t) [g · h−1] and VR = VR(t) [g · h−1] are the rates at which
the precursors are built by metabolism and utilized for gene expression,
respectively;

• γM > 0 [h−1] and γR > 0 [h−1] are the degradation rates for metabolic
and gene expression machineries, respectively;

• λM ∈ [0, 1] and λR ∈ [0, 1] are dimensionless recycling parameters, so
that λM · γM and λR · γR are the resulting recycling coefficients;

• α = α(t) is a dimensionless resource allocation function (control strat-
egy) such that, at any time instant t ∈ [0, T ], α(t) is the proportion of
the precursor mass used for supporting gene expression, and 1 − α(t)
is the proportion for metabolism;

• αmin ∈ [0, 1) and αmax ∈ (αmin, 1] are constants specifying lower and
upper constraints on admissible resource allocation functions.

It is necessary to emphasize some general simplifications on which the
presented model relies. First, only two classes of macromolecules (with the
total masses M and R) are considered. In line with [16], we in fact suppose
that the core sector of macromolecules for cell maintenance [16], sensing and
regulatory mechanisms [26,27], proteolysis [28], etc., is fixed and can thereby
be neglected in our resource allocation problem. Moreover, operating with
P,M,R as with total masses becomes reasonable only under the assumption
that individual cells in the studied population are similar to each other.

The system (1) extends the dynamic models of [8,17] by including degra-
dation rates and recycling terms together (the model of [8] contains no degra-
dation, while the model of [17] considers degradation without recycling).

As in [8, 17], introduce the following new notations:

• all the cells in the considered population are supposed to have the same
constant cytoplasmic density, and β > 0 [L · g−1] is its inverse;

• the quantity

V(t)
def
= β · (M(t) +R(t)) [L] (2)

is interpreted as the structural volume of the cell population (in the
sense of the macromolecules constituting metabolic and gene expression
machineries, so that monomer precursors are not included here);
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• the quantities

p(t)
def
=

P (t)

V(t)
[g · L−1] , r(t)

def
=

R(t)

V(t)
[g · L−1] ,

m(t)
def
=

M(t)

V(t)
=

1

β
− r(t) [g · L−1] ,

vM(t)
def
=

VM(t)

V(t)
[g · L−1 · h−1] , vR(t)

def
=

VR(t)

V(t)
[g · L−1 · h−1]

(3)
are intracellular analogues for P (t), R(t),M(t), VM(t), VR(t), respec-
tively;

• the growth rate of the self-replicating system is defined as the relative
increase in the volume (2), i. e., as

µ(t)
def
=

1

V(t)

dV(t)

dt
= β (vR(t) − γM m(t) − γR r(t))

= β

(
vR(t) + (γM − γR) r(t) − γM

β

)
.

(4)

Then the system (1) takes the form

dp(t)

dt
= vM(t) − vR(t) +

λMγM
β

− (λMγM − λRγR) r(t)

− β p(t)

(
vR(t) + (γM − γR) r(t) − γM

β

)
,

dr(t)

dt
= α(t) vR(t) − γR r(t)

− β r(t)

(
vR(t) + (γM − γR) r(t) − γM

β

)
,

αmin 6 α(t) 6 αmax, t ∈ [0, T ]

(5)

(the number of differential equations is decreased from 3 to 2 due to the third
representation in (3)).

According to [8,17], the rate of precursor synthesis is catalyzed by metabolic
machinery and determined as the linear function

vM(t) = eM ·m(t) = eM ·
(

1

β
− r(t)

)
, (6)
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while the rate of protein synthesis is catalyzed by gene expression machinery
and specified through the classical Michaelis–Menten law:

vR(t) = kR · r(t) ·
p(t)

KR + p(t)
. (7)

Here eM > 0 [h−1] is the constant environmental input reflecting the con-
centration and quality of external substrates, whereas kR > 0 [h−1] and
KR > 0 [g · L−1] are respectively the rate and half-saturation constants for
protein synthesis. Note that (6) is a particular form of the Michaelis–Menten
law for the case when the environmental input

eM(t)
def
= kM ·

s(t)

KM + s(t)
(8)

almost does not change and can therefore be treated as a constant parameter.
In (8), kM > 0 [h−1] and KM > 0 [g · L−1] are respectively the rate and half-
saturation constants for metabolism, while s(t) is the nutrient concentration
in the medium. It is reasonable to suppose eM = const if s(t) ≈ const or if
s(t)� KM (the latter means that the substrates are available in excess).

Now let us rescale the model in order to simplify its mathematical inves-
tigation. By using the new dimensionless variables

t̂
def
= kR · t, p̂

(
t̂
) def

= β · p(t), r̂
(
t̂
) def

= β · r(t) (9)

and constants

T̂
def
= kR · T, EM

def
=

eM
kR

, K
def
= β ·KR,

ΓM
def
=

γM
kR

, ΓR
def
=

γR
kR

,

(10)
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the system (5) can be transformed into

dp̂
(
t̂
)

dt̂
=
(
1− r̂

(
t̂
))
EM −

p̂
(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
)

+ λMΓM − (λMΓM − λRΓR) r̂
(
t̂
)

− p̂
(
t̂
) ( p̂ (t̂) r̂ (t̂)

K + p̂
(
t̂
) + (ΓM − ΓR) r̂

(
t̂
)
− ΓM

)
,

dr̂
(
t̂
)

dt̂
= α

(
t̂
) p̂ (t̂) r̂ (t̂)
K + p̂

(
t̂
) − ΓR r̂

(
t̂
)

− r̂
(
t̂
) ( p̂ (t̂) r̂ (t̂)

K + p̂
(
t̂
) + (ΓM − ΓR) r̂

(
t̂
)
− ΓM

)
,

αmin 6 α
(
t̂
)
6 αmax, t̂ ∈

[
0, T̂

]
.

(11)

The initial conditions are fixed as

p̂(0) = p̂0, r̂(0) = r̂0. (12)

2.2 Optimal control problem

In compliance with [8, 13–15, 17], we adopt the hypothesis that regulation
mechanisms in the cells are aimed at maximizing the accumulation of struc-
tural biomass under current environmental conditions. For our model, this
leads to the criterion

T∫
0

µ(t) dt =

T̂∫
0

µ̂
(
t̂
)
dt̂ −→ max

α(·)
,

µ̂
(
t̂
) def

=
µ(t)

kR
=

p̂
(
t̂
)
r̂
(
t̂
)

K + p̂
(
t̂
) + (ΓM − ΓR) r̂

(
t̂
)
− ΓM .

(13)

Here the maximum is searched over all admissible open-loop control strate-

gies, which are measurable functions α :
[
0, T̂

]
→ [αmin, αmax].

For our studies, it is reasonable to assume that changes in the environ-
ment (i. e., in nutrient availability) are possible only in the form of instanta-
neous shifts [8, 17, 29]. For example, Escherichia coli bacteria cycle between
various habitats such as mammalian intestinal systems, water bodies, soils,
sediments, etc. We impose the condition that intermediate environmental
fluctuations between the shifts are negligible.
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Any nutrient downshift or upshift leads to a new value of the environ-
mental input eM and thereby changes the optimal resource allocation prob-
lem (11)–(13). In the current work, we model bacterial adaptation mecha-
nisms on the time interval between two arbitrary consecutive shifts of the en-
vironment. Hence, eM is taken as a constant parameter in the problem (11)–
(13).

Note that the growth maximization criterion in the problem of [8] was
infinite-horizon and understood in the overtaking optimality sense [30]. An-
alytical reasonings for this problem were based on the implicit assumption
that the optimal state trajectories should enter a specific rest point (with the
maximum growth rate) and stay there all the remaining infinite time. How-
ever, it was not proved that the overtaking optimal control strategies existed
and generated such trajectories. Besides, the infinite-horizon case could not
be treated numerically, while the approximate optimal control functions for
the problem with a fixed finite horizon and a free terminal state acted so that
the mentioned rest point was left a little time before the final instant. By
referring to the general turnpike theory of [31], the hypothesis on absence of
such exiting subarcs in the overtaking optimal processes was proposed (and
these subarcs were removed from the illustrations), but rigorous verification
remained an open task there.

Thus, we need a somewhat different statement of our dynamic optimiza-
tion problem in order to allow wider mathematical justification, while pre-
serving a reasonable biological interpretation.

First, one can think of following the economic modeling framework of [32]
and thereby including the exponential decaying factor e−νt in the maximized
improper integral of the growth rate. Such a discounted functional was also
considered in [12]. However, its biological meaning and a method to estimate
a suitable value of the parameter ν from real data are not totally clear.

Let us adopt the approach of [17], which is to take a sufficiently large
finite time horizon T̂ and to impose the terminal condition(

p̂
(
T̂
)
, r̂
(
T̂
))

=
(
p̂∗opt, r̂

∗
opt

) (
T̂ ∈ (0,+∞) is fixed

)
, (14)

where
(
p̂∗opt, r̂

∗
opt

)
is the steady state with the maximum growth rate. The

related steady-state analysis and, in particular, steady-state optimization will
be provided in Section 4.

For the dynamic optimization problem (11)–(14) under some natural as-
sumptions, it becomes possible to prove existence of optimal open-loop con-
trol strategies if T̂ is large enough. This will be done in Section 5, and
a practical recommendation for choosing suitable time horizons will also be
given there. In Section 6, we will establish that the optimal state trajectories
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reach the steady state
(
p̂∗opt, r̂

∗
opt

)
by chattering [24, 25]. Section 7 will de-

velop a numerical method to approximate the corresponding switching curve
in the state space. One more significant argument in favor of our problem
statement with the terminal constraint (14) is that this method in principle
will not depend on a particular time horizon, i. e., we will obtain the same
results when applying it to the related infinite-horizon problem in the over-
taking optimality sense (under the a priori assumption of entering

(
p̂∗opt, r̂

∗
opt

)
by the overtaking optimal state trajectories).

2.3 Effect of temperature

From both theoretical and practical point of view, it is important to un-
derstand influence of temperature on biochemical systems [19–22, 33]. The
works [19, 20] contained experimental studies of the temperature effect on
the growth and degradation for Escherichia coli. The experiments of [19]
showed the reduction of the growth rate from nearly its maximum at 37◦C
to about 1% of that at 45◦C, which was called forth by the difference in
sensitivity to temperature changes between the protein synthesis and degra-
dation. An approach to account for this property within the framework of
the model (11) is described in Appendix A. The key aspect is to use Arrhe-
nius law [33] with different activation energies for the protein synthesis and
degradation. Finally, the form of the dynamical system remains similar, but
the time variable t̂ and parameters ΓM ,ΓR change so that the influence of
the degradation rates increases with the increase of temperature. One more
objective of this work is to investigate how the optimal feedback control law
for the problem (11)–(13) depends on temperature. The results of the related
numerical simulations will be presented in Section 8.

3 Preliminary considerations

Before proceeding to the primary investigation, let us establish some auxiliary
results. Several introductory assumptions will also be formulated in this
section. Further assumptions will be given in the subsequent sections when
needed.

First, recall the a priori conditions on the model parameters.

Assumption 3.1. γM > 0, γR > 0, 0 6 λM 6 1, 0 6 λR 6 1, 0 6 αmin <
αmax 6 1, β > 0, eM > 0, kR > 0, KR > 0.

Assumption 3.1 and the definitions (10) trivially imply EM > 0, K > 0,
ΓM > 0, ΓR > 0.
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It is convenient to specify a suitable strongly invariant region [34, Chap-
ter 4, §3] for our controlled system.

Proposition 3.1. Let Assumption 3.1 hold. For the controlled system (11),
the set

G
def
= {(p̂, r̂) : p̂ > 0, 0 < r̂ < 1} (15)

is a strongly invariant domain in the state space, i. e., admissible open-loop
control strategies generate such state trajectories that cannot leave G if the
corresponding initial states lie in G.

Proof. Suppose that p̂0 > 0 and 0 6 r̂0 6 1. Consider an arbitrary measur-
able control function α : I → [αmin, αmax] defined on some connected time
interval I ⊆ [0,+∞) with 0 ∈ I. Let (p̂(·), r̂(·)) be a solution to (11),(12)
on I for the chosen α(·). If r̂0 = 0, then dr̂

(
t̂
)
/dt̂ ≡ 0 and r̂

(
t̂
)
≡ 0 on I.

For r̂0 > 0, we have r̂
(
t̂
)
> 0 everywhere on I. It suffices to verify the

following two implications:

1) if p̂0 > 0 and 0 6 r̂
(
t̂
)
6 1 everywhere on I, then p̂

(
t̂
)
> 0 every-

where on I;

2) if 0 < r̂0 < 1 and p̂
(
t̂
)
> 0 everywhere on I, then r̂

(
t̂
)
< 1 every-

where on I.

Let us prove the implication 1. When p̂
(
t̂′
)

= 0 at some t̂′ ∈ I, the

derivative dp̂
(
t̂′
)
/dt̂ is zero for 1 − r̂

(
t̂′
)

= λRΓR = 0 and positive in the

following cases: a) r̂
(
t̂′
)

= 1, λRΓR > 0; b) 0 6 r̂
(
t̂′
)
< 1. Therefore, if

p̂0 > 0 and 0 6 r̂
(
t̂
)
6 1 everywhere on I, then we may have p̂

(
t̂′
)

= 0 at

some t̂′ ∈ I only for 1 − r̂
(
t̂′
)

= λRΓR = 0. However, for λRΓR = 0, the
point (p̂, r̂) = (0, 1) is a steady state of the system regardless of a control α(·).
Thus, the implication 1 indeed holds.

Now let us establish the implication 2. Assume that 0 < r̂0 < 1 and
p̂
(
t̂
)
> 0 everywhere on I. From the second equation in (11), we get

dr̂
(
t̂
)

dt̂
6
(
1− r̂

(
t̂
)) p̂ (t̂) r̂ (t̂)

K + p̂
(
t̂
) + (ΓM − ΓR) r̂

(
t̂
) (

1− r̂
(
t̂
))
,

d

dt̂

(
1− r̂

(
t̂
))

> −r̂
(
t̂
) (

1− r̂
(
t̂
)) ( p̂

(
t̂
)

K + p̂
(
t̂
) + ΓM − ΓR

)
for all t̂ ∈ I. Let ρ : I → R be the solution to the Cauchy problem

dρ
(
t̂
)

dt̂
= −

(
1− ρ

(
t̂
))
ρ
(
t̂
) ( p̂

(
t̂
)

K + p̂
(
t̂
) + ΓM − ΓR

)
, t̂ ∈ I,

ρ(0) = 1− r̂0.
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Since ρ(0) > 0, then ρ(·) is positive everywhere on I. According to the well-
known general comparison result [35, Theorem 1.10.2], we obtain 1− r̂

(
t̂
)
>

ρ
(
t̂
)
> 0 and, consequently, r̂

(
t̂
)
< 1 for all t̂ ∈ I. This completes the

proof.

Besides, the first equation in (11) implies that

dp̂
(
t̂
)

dt̂
< max

η∈[0,1]
{(EM + λMΓM) (1− η) + λRΓR η}

+ p̂
(
t̂
)
· max
η∈[0,1]

{ΓM − (ΓM − ΓR) η}

when
(
p̂
(
t̂
)
, r̂
(
t̂
))
∈ G. For any q0 ∈ R, the Cauchy problem

dq
(
t̂
)

dt̂
= max

η∈[0,1]
{(EM + λMΓM) (1− η) + λRΓR η}

+ q
(
t̂
)
· max
η∈[0,1]

{ΓM − (ΓM − ΓR) η} , t̂ > 0,

q(0) = q0,

obviously has a unique solution q(·; q0) (which can serve as a dynamic upper
estimate for p̂(·) if q0 = p̂0). Then, with the help of the comparison result [35,
Theorem 1.10.2] and Proposition 3.1, we arrive at the following corollary.

Corollary 3.1. For any measurable function α : [0,+∞)→ [αmin, αmax] and
any initial state (p̂0, r̂0) ∈ G, there exists a unique solution to (11),(12) on
the time interval [0,+∞), and, moreover,

(
p̂
(
t̂
)
, r̂
(
t̂
))
∈ G ∀t̂ > 0,

p̂
(
t̂
)
6 q

(
t̂; p̂0

)
6 max

ξ∈[0,T̂ ]
q (ξ; p̂0) ∀t̂ ∈

[
0, T̂

]
.

Let us impose the next condition in order to consider only such state
trajectories of (11) that lie in G.

Assumption 3.2. p̂0 > 0, 0 < r̂0 < 1.

It is also natural to suppose that the macromolecules used in metabolism
are less stable than those for gene expression [17,18,36–38].

Assumption 3.3. ΓM > ΓR.

The next result will be used in Section 5. It gives a sufficient condition for
boundedness of solutions to (11),(12) on the infinite time interval [0,+∞).

12



Proposition 3.2. Let Assumptions 3.1–3.3 hold, and let α : [0,+∞) →
[αmin, αmax] be a measurable function such that

α
(
t̂
)
> ΓR + ε ∀t̂ > 0, (16)

where ε > 0 is some constant. Then the corresponding solution (p̂(·), r̂(·)) to
(11),(12) on the time interval [0,+∞) is bounded.

Proof. Due to Corollary 3.1, it suffices to verify existence of such a finite
uniform upper bound for p̂(·) that may depend only on the model parameters
and initial state (p̂0, r̂0).

The second equation in (11) can be rewritten as

dr̂
(
t̂
)

dt̂
= r̂

(
t̂
) ( p̂

(
t̂
)

K + p̂
(
t̂
) + ΓM − ΓR

) (
r̂∗1
(
p̂
(
t̂
)
, α
(
t̂
))
− r̂

(
t̂
))
,

where

r̂∗1 (p̂, α)
def
=

α · p̂
K+p̂

+ ΓM − ΓR
p̂

K+p̂
+ ΓM − ΓR

> α ∀p̂ > 0 ∀α ∈ [αmin, αmax].

This yields

r̂
(
t̂
)
> r̂low

def
= min (ΓR + ε, r̂0) > 0 ∀t̂ > 0 (17)

by virtue of (16).
Now, by using both equations in (11), we get

d

dt̂

(
p̂
(
t̂
)

r̂
(
t̂
)) = (EM + λMΓM)

(
1

r̂
(
t̂
) − 1

)
−

p̂
(
t̂
)

K + p̂
(
t̂
) + λRΓR

−
p̂
(
t̂
)

r̂
(
t̂
) (α (t̂) · p̂

(
t̂
)

K + p̂
(
t̂
) − ΓR

)
.

(18)
Note that

1

r̂
(
t̂
) 6

1

r̂low

, p̂
(
t̂
)
<

p̂
(
t̂
)

r̂
(
t̂
) 6

p̂
(
t̂
)

r̂low

∀t̂ > 0 (19)

due to (17), and, furthermore, p̂/ (K + p̂) −−−−→
p̂→+∞

1. Hence, the right-hand

side of (18) is negative when p̂
(
t̂
)

is sufficiently large. With the help of (17)–
(19), one can directly obtain a suitable finite upper bound for p̂(·) depending
only on the model parameters and initial state.

13



4 Steady-state analysis

Let us find a steady state
(
p̂∗opt, r̂

∗
opt

)
∈ G at which the growth rate (4)

takes the maximum value.
Some new conditions on the model parameters need to be imposed.

Assumption 4.1. The following inequalities hold:

EM + (λM − λR) ΓM > 0,

(1− ΓR)EM − ΓM (1 − λM + (λM − λR) ΓR) > 0.

Assumption 4.1 and also subsequent Assumptions 4.4, 5.1 are not just
technical. In particular, they require the environmental input to be high
enough and the degradation rates to be low enough, so that the bacterial
growth could be maintained at an acceptable level.

For any steady state (p̂∗, r̂∗) ∈ G of the system (11) with the corre-
sponding control α∗, we have

r̂∗ = r̂∗ (p̂∗) =
EM + λMΓM + ΓM p̂∗

EM + λMΓM − λRΓR + p̂∗ (1+p̂∗)
K+p̂∗

+ (ΓM − ΓR) p̂∗
(20)

(here the denominator is positive by virtue of Assumption 3.3 and the first
inequality in Assumption 4.1, which yield EM + λMΓM − λRΓR > EM +
(λM − λR) ΓM > 0) and

α∗ = α∗ (p̂∗) = r̂∗ (p̂∗) − (ΓM − ΓR)
K + p̂∗

p̂∗
(1− r̂∗ (p̂∗)) (21)

(if the latter expression belongs to [αmin, αmax]). According to (13), our aim
is to maximize

µ̂∗ = µ̂∗ (p̂∗) =
p̂∗ r̂∗ (p̂∗)

K + p̂∗
+ (ΓM − ΓR) r̂∗ (p̂∗) − ΓM (22)

over all p̂∗ > 0.
One can directly verify that

µ̂∗ (p̂∗) =
(

(1 + ΓM − ΓR) · (p̂∗)2 + (EM + λMΓM − λRΓR + 1 + (ΓM − ΓR)K) · p̂∗

+ K (EM + λMΓM − λRΓR)
)−1 ·

· ( ((1− ΓR)EM − ΓM (1− λM + (λM − λR) ΓR)) · p̂∗

− ΓRK (EM + (λM − λR) ΓM) )
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and, consequently,

dµ̂∗ (p̂∗)

dp̂∗
·
(

(1 + ΓM − ΓR) · (p̂∗)2 + (EM + λMΓM − λRΓR + 1 + (ΓM − ΓR)K) · p̂∗

+ K (EM + λMΓM − λRΓR)
)2

= −a · (p̂∗)2 + b · p̂∗ + c,

where

a
def
= ((1− ΓR)EM − ΓM (1− λM + (λM − λR) ΓR)) · (1 + ΓM − ΓR),

b
def
= 2 ΓRK (EM + (λM − λR) ΓM) · (1 + ΓM − ΓR),

c
def
= K · ( ((1− ΓR)EM − ΓM (1− λM + (λM − λR) ΓR)) ·

· (EM + λMΓM − λRΓR) + ΓR (EM + (λM − λR) ΓM) ·
· (EM + λMΓM − λRΓR + 1 + (ΓM − ΓR)K) ).

(23)
Assumptions 3.3 and 4.1 imply positivity of the constants a, b, c. Then

p̂∗opt
def
=

b+
√
b2 + 4ac

2a
(24)

is a unique positive root of the equation dµ̂∗ (p̂∗) /dp̂∗ = 0. This is indeed a
unique maximum point of the function (22) on the interval [0,+∞), since

dµ̂∗ (p̂∗)

dp̂∗
> 0 ∀p̂∗ ∈

[
0, p̂∗opt

)
,

dµ̂∗ (p̂∗)

dp̂∗
< 0 ∀p̂∗ > p̂∗opt. (25)

The next assumption is required in order to guarantee that the optimal
steady-state regime is feasible and related to an intermediate configuration
of resource allocation.

Assumption 4.2. r̂∗opt
def
= r̂∗

(
p̂∗opt

)
∈ (0, 1), α∗opt

def
= α∗

(
p̂∗opt

)
∈ (αmin, αmax).

Similarly, denote µ̂∗opt
def
= µ̂∗

(
p̂∗opt

)
.
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Now consider the Jacobian matrix of the system (11):

D (p̂, r̂;α) =


d11 (p̂, r̂) d12 (p̂)

d21 (p̂, r̂;α) d22 (p̂, r̂;α)

 ,

d11 (p̂, r̂)
def
= −r̂

(
p̂

K + p̂
+

K (1 + p̂)

(K + p̂)2 + ΓM − ΓR

)
+ ΓM ,

d12 (p̂)
def
= −

(
EM + λMΓM − λRΓR +

p̂ (1 + p̂)

K + p̂
+ (ΓM − ΓR) p̂

)
,

d21 (p̂, r̂;α)
def
=

K r̂ (α− r̂)
(K + p̂)2 ,

d22 (p̂, r̂;α)
def
=

p̂ (α− 2r̂)

K + p̂
+ (ΓM − ΓR) (1− 2 r̂) .

(26)
The sum and product of its eigenvalues are equal to its trace and determinant,
respectively. Hence, the optimal steady state

(
p̂∗opt, r̂

∗
opt

)
is asymptotically

stable under the following conditions.

Assumption 4.3. trD
(
p̂∗opt, r̂

∗
opt;α

∗
opt

)
< 0, detD

(
p̂∗opt, r̂

∗
opt;α

∗
opt

)
> 0.

If ΓM = ΓR = 0, this assumption allows a trivial analytical verification.
For nonzero degradation rates, it can be checked numerically.

Let us summarize the obtained results in the form of a theorem.

Theorem 4.1. Let Assumptions 3.1–3.3, 4.1–4.3 hold. There exists a unique
optimal steady state

(
p̂∗opt, r̂

∗
opt

)
∈ G of (11) maximizing the growth rate (4).

The first coordinate p̂∗opt is determined by (23),(24). The second coordi-
nate r̂∗opt and corresponding control α∗opt are represented in terms of p̂∗opt ac-
cording to (20),(21). The optimal steady state is a stable node or a stable
focus.

We need one more assumption so as to have the function (20) strictly
decreasing on [0,+∞) (this property will be used when proving Theorem 5.1
in the next section).

Assumption 4.4. ΓR < min

(
1,

1

K

)
.

Proposition 4.1. Under Assumptions 3.1–3.3, 4.1–4.4, the function (20)
strictly decreases on [0,+∞).
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Proof. Direct calculations lead to the representation

dr̂∗ (p̂∗)

dp̂∗
·
(
EM + λMΓM − λRΓR +

p̂∗ (1 + p̂∗)

K + p̂∗
+ (ΓM − ΓR) p̂∗

)2

= − 1

(K + p̂∗)2 ·
(

((1− ΓR)EM − ΓM (1−K − λM + (λM − λR) ΓR)) · (p̂∗)2

+ 2K ((1− ΓR) (EM + λMΓM) + λRΓMΓR) · p̂∗

+ K ((1− ΓRK) (EM + λMΓM) + λRΓMΓRK)
)

for all p̂∗ > 0. Negativity of its right-hand side follows from Assumption 4.4
and the second inequality in Assumption 4.1.

5 Existence of optimal control strategies

For proving existence of an optimal control strategy in the problem (11)–
(14), additional conditions on the model parameters are required (also recall
the comments after Assumption 4.1).

Assumption 5.1. The following inequalities hold:

1

K
+ ΓM > 2 ΓR,(

1− α∗opt

)
(EM + λMΓM − λRΓR) > (ΓM − ΓR) (1− ΓRK),

α∗opt > ΓR.

Theorem 5.1. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold. Then there exists
an optimal control strategy in the problem (11)–(14) if the time horizon T̂ is
sufficiently large.

Proof. By virtue of the general existence result [39, Chapter VIII, §1, Theo-
rem 1.1], it suffices to establish existence of a time horizon and an admissible
control function such that the related state trajectory satisfies the terminal
constraint (14).

Let Ḡ denote the closure of the strongly invariant domain G. In the set
Ḡ\{0, 1}, the system (11) with α ≡ α∗opt has only one steady state

(
p̂∗opt, r̂

∗
opt

)
,

and the latter is a stable node or a stable focus due to Theorem 4.1. If
λRΓR > 0, then

(
p̂∗opt, r̂

∗
opt

)
is a unique steady state of this system in Ḡ.

If λRΓR = 0, then there is also the steady state (0, 1), which is a saddle
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according to the representations

D
(
0, 1;α∗opt

)
=


−
(

1

K
− ΓR

)
−(EM + λMΓM − λRΓR)

−
1− α∗opt

K
−(ΓM − ΓR)

 ,

trD
(
0, 1;α∗opt

)
= −

(
1

K
+ ΓM − 2 ΓR

)
,

detD
(
0, 1;α∗opt

)
= (ΓM − ΓR)

(
1

K
− ΓR

)
−

1− α∗opt

K
(EM + λMΓM − λRΓR)

and the first two inequalities in Assumption 5.1. For a saddle, the attracted
set in its sufficiently small neighborhood consists only of the corresponding
stable separatrix.

By using the general sufficient condition for local controllability [40, Chap-
ter 6, §6.1, Theorem 1], one can verify the following property for some open
neighborhood Ω ⊂ G of the point

(
p̂∗opt, r̂

∗
opt

)
: for any (p̂1, r̂1) ∈ Ω, there

exist a number T̂1 > 0 and a measurable control function α :
[
0, T̂1

]
→

[αmin, αmax] such that the related state trajectory of (11) with the initial

position (p̂(0), r̂(0)) = (p̂1, r̂1) fulfills
(
p̂
(
T̂1

)
, r̂
(
T̂1

))
=
(
p̂∗opt, r̂

∗
opt

)
.

Now consider a state trajectory Φ of (11) with α ≡ α∗opt and (p̂(0), r̂(0)) ∈
G on the infinite time interval [0,+∞), and suppose that (0, 1) is not its ω-
limit point. In compliance with the above reasonings, it suffices to prove
that

(
p̂∗opt, r̂

∗
opt

)
is an ω-limit point of Φ. Indeed, (0, 1) appears as a saddle

in addition to the asymptotically stable steady state
(
p̂∗opt, r̂

∗
opt

)
only when

λRΓR = 0. In this case, the stable separatrix of (0, 1) can be left (without
any further entering) if (p̂, r̂) 6= (0, 1) and the control is changed to some
constant value α 6= α∗opt on a small time subinterval and then switched back
to α = α∗opt. The subsequent arc with α = α∗opt kept till infinity will not have
(0, 1) as an ω-limit point.

Note that, for every constant control α ∈ [αmin, αmax], the right-hand side
of the system (11) is defined and continuously differentiable in some open
neighborhood of the closed domain Ḡ. Moreover, Φ̄ ⊂ Ḡ due to Propo-
sition 3.1. From Poincaré–Bendixson theorem [41, Chapter 3, §3.7, Theo-
rem 1], Proposition 3.2, and the last inequality in Assumption 5.1, we con-
clude that

(
p̂∗opt, r̂

∗
opt

)
will be an ω-limit point of Φ if the system (11) with

α ≡ α∗opt does not have any periodic orbits in Ḡ.
The state trajectory Φ lies outside some open neighborhood Ω(0,1) of (0, 1),

since this is not its ω-limit point and Φ ⊂ G. For the system (11), we have
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dr̂/dt̂ = 0 if r̂ = 0, while, on the set{
(p̂, r̂) ∈ ∂G \ Ω(0,1) : r̂ > 0

}
,

the vector
(
dp̂/dt̂, dr̂/dt̂

)
is directed strictly inside G if α < 1. Hence, if a

periodic orbit of (11) with α ≡ α∗opt exists in Ḡ, then it should lie inside G.
Thus, it remains to prove absence of such orbits in G. Let us introduce the
function

B (p̂, r̂)
def
=

1

r̂
(
EM + λMΓM − λRΓR + p̂ (1+p̂)

K+p̂
+ (ΓM − ΓR) p̂

) ∀ (p̂, r̂) ∈ G

and use Dulac’s theorem [41, Chapter 3, §3.9, Theorem 2]. We obtain

∂

∂p̂

(
B (p̂, r̂) · dp̂

dt̂

∣∣∣∣
(11)

)
+

∂

∂r̂

(
B (p̂, r̂) · dr̂

dt̂

∣∣∣∣
(11)

)

=
1

r̂

dr̂∗ (p̂)

dp̂
−

p̂
K+p̂

+ ΓM − ΓR

EM + λMΓM − λRΓR + p̂ (1+p̂)
K+p̂

+ (ΓM − ΓR) p̂
< 0

∀ (p̂, r̂) ∈ G

by virtue of Proposition 4.1 and Assumptions 3.3, 4.1. This completes the
proof.

Remark 5.1. The minimum admissible T̂ depends on the initial state (12).
A heuristic way of choosing a suitable time horizon is to integrate the sys-
tem (11) with α ≡ α∗opt numerically till a sufficiently small neighborhood of(
p̂∗opt, r̂

∗
opt

)
is reached and then to take T̂ somewhat greater than the final

instant of the integration.

6 Investigation of the dynamic optimization

problem by Pontryagin’s maximum princi-

ple

In optimal control theory, first-order necessary optimality conditions are
given by Pontryagin’s maximum principle or, in short, PMP [23]. For the
problem (11)–(14) under the adopted assumptions, PMP leads to the Hamil-
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tonian

H (p̂, r̂, α, ψ1, ψ2)
def
= ψ1 ·

(
(1− r̂) EM −

p̂ r̂

K + p̂
+ λMΓM

− (λMΓM − λRΓR) r̂ − p̂

(
p̂ r̂

K + p̂
+ (ΓM − ΓR) r̂ − ΓM

))
+ ψ2 ·

(
α

p̂ r̂

K + p̂
− ΓR r̂ − r̂

(
p̂ r̂

K + p̂
+ (ΓM − ΓR) r̂ − ΓM

))
− ψ0 ·

(
p̂ r̂

K + p̂
+ (ΓM − ΓR) r̂ − ΓM

)
∀ (p̂, r̂, α, ψ0, ψ1, ψ2) ∈ G× [αmin, αmax]× R3,

(27)
adjoint system

ψ0 ≡ −1 or ψ0 ≡ 0,

dψ1

(
t̂
)

dt̂
= −

∂H
(
p̂
(
t̂
)
, r̂
(
t̂
)
, α
(
t̂
)
, ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))

∂p̂

=
K r̂

(
t̂
)(

K + p̂
(
t̂
))2

(
ψ1

(
t̂
) (

1 + p̂
(
t̂
))

+ ψ2

(
t̂
) (
r̂
(
t̂
)
− α

(
t̂
))

+ ψ0

)
+ ψ1

(
t̂
) ( p̂ (t̂) r̂ (t̂)

K + p̂
(
t̂
) + (ΓM − ΓR) r̂

(
t̂
)
− ΓM

)
,

dψ2

(
t̂
)

dt̂
= −

∂H
(
p̂
(
t̂
)
, r̂
(
t̂
)
, α
(
t̂
)
, ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))

∂r̂

= ψ1

(
t̂
)

(EM + λMΓM − λRΓR)

+
p̂
(
t̂
)

K + p̂
(
t̂
) (ψ1

(
t̂
) (

1 + p̂
(
t̂
))

+ ψ2

(
t̂
) (

2 r̂
(
t̂
)
− α

(
t̂
))

+ ψ0

)
+ (ΓM − ΓR)

(
ψ1

(
t̂
)
p̂
(
t̂
)

+ ψ2

(
t̂
) (

2 r̂
(
t̂
)
− 1
)

+ ψ0

)
,
(28)(

ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))
6= (0, 0, 0) ∀t̂ ∈

[
0, T̂

]
, (29)

and Hamiltonian maximum condition

α
(
t̂
)

=


αmin, ψ2

(
t̂
)
< 0,

αmax, ψ2

(
t̂
)
> 0,

arbitrary from [αmin, αmax] , ψ2

(
t̂
)

= 0,

(30)

which is necessarily fulfilled by an optimal control almost everywhere on[
0, T̂

]
(with respect to Lebesgue measure). Absence of any terminal condi-
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tion on the adjoint variables is called forth by the terminal condition (12) on
the state variables.

An admissible process

P(·) = (p̂(·), r̂(·), α(·), ψ0, ψ1(·), ψ2(·)) (31)

satisfying PMP is called extremal. It is called normal if ψ0 6= 0 and abnormal
if ψ0 = 0.

Since our controlled system is autonomous, the Hamiltonian (27) is con-
served along any extremal process.

If the switching function ψ2(·) vanishes over some time subinterval, then
the corresponding control and part (arc) of the related extremal state tra-
jectory are called singular [42].

The Hamiltonian maximum condition (30) directly implies the following
result.

Proposition 6.1. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold, and let (31)
be an extremal process for the problem (11)–(14). A switching of the control
may appear only when ψ2

(
t̂
)

= 0. For such a switching instant, consider the
expression

dψ2

(
t̂
)

dt̂

∣∣∣∣∣
ψ2(t̂) = 0

= ψ1

(
t̂
)
·

(
EM + λMΓM − λRΓR +

p̂
(
t̂
) (

1 + p̂
(
t̂
))

K + p̂
(
t̂
)

+ (ΓM − ΓR) p̂
(
t̂
))

+ ψ0 ·

(
p̂
(
t̂
)

K + p̂
(
t̂
) + ΓM − ΓR

)
.

(32)
If (32) is negative, then the switching occurs in the direction from α = αmax

to α = αmin. If (32) is positive, then the opposite switching direction takes
place.

6.1 Characterization of singular arcs

Consider a singular arc of an extremal process (31) in the problem (11)–(14).
Along such an arc, the adjoint function ψ2(·) and expression (32) vanish,
which yields

ψ1

(
t̂
)

= −ψ0

p̂(t̂)
K+p̂(t̂)

+ ΓM − ΓR

EM + λMΓM − λRΓR +
p̂(t̂) (1+p̂(t̂))

K+p̂(t̂)
+ (ΓM − ΓR) p̂

(
t̂
) ,

(33)
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and the Hamiltonian (27) transforms into

H
(
p̂
(
t̂
)
, r̂
(
t̂
)
, α
(
t̂
)
, ψ0, ψ1

(
t̂
)
, ψ2

(
t̂
))

= ψ1

(
t̂
) (
EM + λMΓM + ΓM p̂

(
t̂
))

+ψ0 ΓM .
(34)

If ψ0 = 0, then, from ψ2

(
t̂
)

= 0 and (33), we obtain a contradiction with
(29). This implies the next statement.

Proposition 6.2. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold. Abnormal
extremal processes in the problem (11)–(14) cannot contain singular arcs.

Hence, the studied process P(·) with a singular arc is normal, i. e., ψ0 =
−1.

Due to the representation (34) and above-mentioned Hamiltonian con-
servation property, there exists a number HP(·) depending on the whole pro-
cess P(·) but not on time t̂ and such that

ψ1

(
t̂
)

=
HP(·) + ΓM

EM + λMΓM + ΓM p̂
(
t̂
) (35)

for the considered singular arc of P(·). By setting the right-hand sides of
(33) and (35) equal to each other, one can obtain a quadratic equation on
p̂
(
t̂
)
. Its coefficients are independent from t̂, and it has at most two real

solutions. This means that the singular arc stays at a steady state of (11),
because dp̂

(
t̂
)
/dt̂ = 0 leads to the representation (20) of r̂

(
t̂
)

in terms of

p̂
(
t̂
)
. A stronger result can indeed be established.

Theorem 6.1. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold. Singular arcs
of extremal processes in the problem (11)–(14) stay at the optimal steady
state

(
p̂∗opt, r̂

∗
opt

)
.

Proof. Consider a subinterval I ⊆
[
0, T̂

]
and a singular arc

(
p̂
(
t̂
)
, r̂
(
t̂
))

=(
p̂∗sing, r̂

∗ (p̂∗sing

))
, t̂ ∈ I, of an extremal process (31) in the problem (11)–(14).

The related adjoint functions satisfy

ψ2

(
t̂
)

=
dψ2

(
t̂
)

dt̂
= 0, ψ1

(
t̂
)

=
HP(·) + ΓM

EM + λMΓM + ΓM p̂∗sing

,
dψ1

(
t̂
)

dt̂
= 0 ∀t̂ ∈ I.

(36)
Now take an arbitrary steady state (p̂∗, r̂∗ (p̂∗)) ∈ G of (11) with the
corresponding control α (p̂∗) (recall the formulas (20),(21)); in particular,
these can be

(
p̂∗sing, r̂

∗ (p̂∗sing

))
and α∗

(
p̂∗sing

)
, respectively. According to (22)

and (27), we have

H

(
p̂∗, r̂∗ (p̂∗) , α∗ (p̂∗) , −1,

HP(·) + ΓM
EM + λMΓM + ΓM p̂∗

, 0

)
= µ̂∗ (p̂∗) ,
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and, therefore,

d

dp̂∗
H

(
p̂∗, r̂∗ (p̂∗) , α∗ (p̂∗) , −1,

HP(·) + ΓM
EM + λMΓM + ΓM p̂∗

, 0

)
=

dµ̂∗ (p̂∗)

dp̂∗
.

On the other hand, with the help of (36), we get

d

dp̂∗
H

(
p̂∗, r̂∗ (p̂∗) , α∗ (p̂∗) , −1,

HP(·) + ΓM
EM + λMΓM + ΓM p̂∗

, 0

)∣∣∣∣
p̂∗ = p̂∗sing

=
∂H

(
p̂∗sing, r̂

∗ (p̂∗sing

)
, α∗

(
p̂∗sing

)
, −1,

HP(·)+ΓM

EM+λMΓM+ΓM p̂∗sing
, 0
)

∂p̂

+
∂H

(
p̂∗sing, r̂

∗ (p̂∗sing

)
, α∗

(
p̂∗sing

)
, −1,

HP(·)+ΓM

EM+λMΓM+ΓM p̂∗sing
, 0
)

∂r̂
·
dr̂∗
(
p̂∗sing

)
dp̂∗

+
∂H

(
p̂∗sing, r̂

∗ (p̂∗sing

)
, α∗

(
p̂∗sing

)
, −1,

HP(·)+ΓM

EM+λMΓM+ΓM p̂∗sing
, 0
)

∂α
·
dα∗

(
p̂∗sing

)
dp̂∗

+
∂H

(
p̂∗sing, r̂

∗ (p̂∗sing

)
, α∗

(
p̂∗sing

)
, −1,

HP(·)+ΓM

EM+λMΓM+ΓM p̂∗sing
, 0
)

∂ψ1

·

·

(
d

dp̂∗

(
HP(·) + ΓM

EM + λMΓM + ΓM p̂∗

)∣∣∣∣
p̂∗ = p̂∗sing

)

= −
dψ1

(
t̂
)

dt̂
−

dψ2

(
t̂
)

dt̂
·
dr̂∗
(
p̂∗sing

)
dp̂∗

+ ψ2

(
t̂
)
·
p̂∗sing r̂

∗ (p̂∗sing

)
K + p̂∗sing

·
dα∗

(
p̂∗sing

)
dp̂∗

+ 0 ·

(
d

dp̂∗

(
HP(·) + ΓM

EM + λMΓM + ΓM p̂∗

)∣∣∣∣
p̂∗ = p̂∗sing

)
= 0

∀t̂ ∈ I.

Thus, dµ̂∗
(
p̂∗sing

)
/dp̂∗ = 0, and, due to (25), we conclude that p̂∗sing = p̂∗opt

and r̂∗
(
p̂∗sing

)
= r̂∗

(
p̂∗opt

)
= r̂∗opt.

One can directly verify that the switching function ψ2 = ψ2

(
t̂
)

should
be consecutively differentiated four times before an explicit appearance of
the control α = α

(
t̂
)

in the corresponding expressions obtained by using

the equations (11),(28) with the substituted singular arc condition ψ2

(
t̂
)

=
0. The Kelley condition [42] or, in other words, the generalized Legendre–
Clebsch condition [25] (which is necessary for optimality of singular arcs) also
holds there. In compliance with the theory of chattering control [24, 25, 43],
we arrive at the following property.
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Theorem 6.2. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold. Singular arcs of
extremal processes in the problem (11)–(14) have the second order and can
be entered or left only by chattering (i. e., with infinite numbers of bang-bang
switchings between the boundary control values αmin, αmax on a finite time
interval).

Note that singular arcs play a central role in dynamic optimization prob-
lems arising in many applied areas such as economics, engineering, ecology,
biology, and medical sciences [24, 25, 32, 44–46]. Similarly to [8, 17], let us
exclude abnormal extremal processes from the further consideration of the
problem (11)–(14) according to the fact that they do not allow singular arcs
(Proposition 6.2) and, therefore, do not admit a clear biological interpreta-
tion.

6.2 Characterization of chattering arcs

In the problem (11)–(14), a chattering phenomenon can be described by the
following local phase portrait on the plane (p̂, r̂) of the state variables (see
Fig. 2, the general theory is given in [24,25,43]):

1) N is some open neighborhood of the point
(
p̂∗opt, r̂

∗
opt

)
;

2) a continuous curve Σ divides N into two open half-neighborhoods N0

and N1, N = N0 ∪ Σ ∪N1;

3) the point
(
p̂∗opt, r̂

∗
opt

)
lies on Σ and divides Σ into two regular parame-

terized curves Σ0 and Σ1, Σ = Σ0 ∪
{(
p̂∗opt, r̂

∗
opt

)}
∪ Σ1;

4) the curves Σ0 ∪
{(
p̂∗opt, r̂

∗
opt

)}
and Σ1 ∪

{(
p̂∗opt, r̂

∗
opt

)}
with the in-

cluded endpoint
(
p̂∗opt, r̂

∗
opt

)
also allow regular parametrizations and,

consequently, have tangent lines at this endpoint;

5) Σ0 and Σ1 are constituted by switching points of extremal state trajec-
tories in the directions from α = αmax to α = αmin and from α = αmin

to α = αmax, respectively;

6) the vector of the right-hand side of the system (11) is directed strictly
inside N0 (i. e., strictly outside N1) on Σ0 and strictly inside N1 (i. e.,
strictly outside N0) on Σ1 for α ∈ {αmin, αmax} and, therefore, for all
α ∈ [αmin, αmax];

7) extremal state trajectories cross the curves Σ0 and Σ1 infinitely many
times before entering the singular arc at

(
p̂∗opt, r̂

∗
opt

)
, and all of these

crossings are transversal (nontangential) due to the previous item;
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Figure 2: Chattering phenomenon on the plane (p̂, r̂) in the problem (11)–
(14). The directions of arrows on the state trajectories correspond to motion
in forward time t̂. There is a unique tangent line to Σ at

(
p̂∗opt, r̂

∗
opt

)
, and it

is vertical.

8) the corresponding local feedback map can be determined as α = αmin

in N0 and α = αmax in N1.

Note that α(·) does not explicitly appear in the first equation of (11).
Then the first component of the velocity vector field is continuous regardless

of a chosen control law. Since dp̂/dt̂
∣∣∣(11), (p̂,r̂) = (p̂∗opt,r̂∗opt)

= 0, we come to

the intuitive hypothesis that the tangent line to the switching curve Σ at the
point

(
p̂∗opt, r̂

∗
opt

)
should be unique and vertical (as depicted in Fig. 2). This

can indeed be verified by the following property related to the framework of
generalized characteristics for first-order partial differential equations [43,47].
If the directions specified by the vectors(

∂H

∂ψ1

,
∂H

∂ψ2

)∣∣∣∣
(27), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmin

=

(
dp̂

dt̂
,
dr̂

dt̂

)∣∣∣∣
(11), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmin

,(
∂H

∂ψ1

,
∂H

∂ψ2

)∣∣∣∣
(27), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmax

=

(
dp̂

dt̂
,
dr̂

dt̂

)∣∣∣∣
(11), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmax

coincide with each other, then this is in fact the direction of the tangent line
to Σ at

(
p̂∗opt, r̂

∗
opt

)
. The latter is vertical, because, as mentioned above, we
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have

dp̂

dt̂

∣∣∣∣
(11), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmin

=
dp̂

dt̂

∣∣∣∣
(11), (p̂,r̂) = (p̂∗opt,r̂∗opt), α=αmax

= 0.

Note that, for well-known Fuller and Marshal problems, such tangent lines
are also vertical [24,25].

Furthermore, for all chattering arcs which enter the singular arc at
(
p̂∗opt, r̂

∗
opt

)
,

the conserved Hamiltonian value is the same and equal to

H
∣∣∣(27), (p̂,r̂) = (p̂∗opt,r̂∗opt), ψ2 = 0, ψ0 =−1 = µ̂∗opt.

Let (31) be a normal extremal process containing such a chattering arc,
and let t̂ = t̂sw be one of the corresponding switching instants, i. e.,

ψ2

(
t̂sw
)

= 0,

H
(
p̂
(
t̂sw
)
, r̂
(
t̂sw
)
, α
(
t̂sw
)
, −1, ψ1

(
t̂sw
)
, 0
)

= µ̂∗opt.

(37)

If dp̂
(
t̂sw
)
/dt̂ = 0, then r̂

(
t̂sw
)

= r̂∗
(
p̂
(
t̂sw
))

and, from (37), we get µ̂∗
(
p̂
(
t̂sw
))

=

µ̂∗opt, which yields
(
p̂
(
t̂sw
)
, r̂
(
t̂sw
))

=
(
p̂∗opt, r̂

∗
opt

)
, i. e., at t̂ = t̂sw, this is

already a singular arc. Hence, the case dp̂
(
t̂sw
)
/dt̂ = 0 can be taken out

of the chattering arcs’ consideration, and we suppose that dp̂
(
t̂sw
)
/dt̂ 6= 0.

Then (37) implies

ψ1

(
t̂sw
)

=

((
1− r̂

(
t̂sw
))
EM −

p̂
(
t̂sw
)
r̂
(
t̂sw
)

K + p̂
(
t̂sw
)

+ λMΓM − (λMΓM − λRΓR) r̂
(
t̂sw
)

− p̂
(
t̂sw
) ( p̂ (t̂sw) r̂ (t̂sw)

K + p̂
(
t̂sw
) + (ΓM − ΓR) r̂

(
t̂sw
)
− ΓM

))−1

·

·

(
µ̂∗opt + ΓM −

(
p̂
(
t̂sw
)

K + p̂
(
t̂sw
) + ΓM − ΓR

)
r̂
(
t̂sw
))

.

(38)
For the chattering arcs, Proposition 6.1 can be strengthened by the following
result (see Fig. 2).

Theorem 6.3. Let Assumptions 3.1–3.3, 4.1–4.4, 5.1 hold. For a chattering
arc of a normal extremal process (31) in the problem (11)–(14), switchings in
the direction from α = αmax to α = αmin may appear only in the domain

{(p̂, r̂) ∈ G : r̂ > r̂∗ (p̂)} , (39)
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and switchings in the opposite direction may happen only in the domain

{(p̂, r̂) ∈ G : r̂ < r̂∗ (p̂)} . (40)

Proof. After substituting (38) into (32), we get

dψ2

(
t̂sw
)

dt̂
=

((
1− r̂

(
t̂sw
))
EM −

p̂
(
t̂sw
)
r̂
(
t̂sw
)

K + p̂
(
t̂sw
)

+ λMΓM − (λMΓM − λRΓR) r̂
(
t̂sw
)

− p̂
(
t̂sw
) ( p̂ (t̂sw) r̂ (t̂sw)

K + p̂
(
t̂sw
) + (ΓM − ΓR) r̂

(
t̂sw
)
− ΓM

))−1

·

·

((
µ̂∗opt + ΓM

)
·

(
EM + λMΓM − λRΓR +

p̂
(
t̂sw
) (

1 + p̂
(
t̂sw
))

K + p̂
(
t̂sw
)

+ (ΓM − ΓR) p̂
(
t̂sw
))
−

(
p̂
(
t̂sw
)

K + p̂
(
t̂sw
) + ΓM − ΓR

)
·

·
(
EM + λMΓM + ΓM p̂

(
t̂sw
)))

.

With the help of the representations (20),(22), the last formula can be trans-
formed into

dψ2

(
t̂sw
)

dt̂
=

(
EM + λMΓM − λRΓR +

p̂
(
t̂sw
) (

1 + p̂
(
t̂sw
))

K + p̂
(
t̂sw
)

+ (ΓM − ΓR) p̂
(
t̂sw
))−1

·
(
r̂∗
(
p̂
(
t̂sw
))
− r̂

(
t̂sw
))−1 ·

·

((
µ̂∗opt + ΓM

)
·

(
EM + λMΓM − λRΓR +

p̂
(
t̂sw
) (

1 + p̂
(
t̂sw
))

K + p̂
(
t̂sw
)

+ (ΓM − ΓR) p̂
(
t̂sw
))
−

(
p̂
(
t̂sw
)

K + p̂
(
t̂sw
) + ΓM − ΓR

)
·

·
(
EM + λMΓM + ΓM p̂

(
t̂sw
)))

=
(
r̂∗
(
p̂
(
t̂sw
))
− r̂

(
t̂sw
))−1 ·

(
µ̂∗opt − µ̂∗

(
p̂
(
t̂sw
)))

.

Recall that p̂∗opt is a unique maximum point of the function µ̂∗ = µ̂∗ (p̂∗)
on the interval [0,+∞). Now, from Proposition 6.1, we conclude that, for
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completing the proof, it remains to analyze the case p̂
(
t̂sw
)

= p̂∗opt under the

conditions ψ2

(
t̂sw
)

= dψ2

(
t̂sw
)
/dt̂ = 0.

For any constant control α (such as α = αmin or α = αmax), one can
represent d2ψ2

(
t̂
)
/dt̂2 in terms of p̂

(
t̂
)
, r̂
(
t̂
)
, α, ψ1

(
t̂
)
, ψ2

(
t̂
)

subject to
the state dynamic and adjoint equations (11),(28). In the corresponding
expression, let us set t̂ = t̂sw, ψ2

(
t̂sw
)

= 0 and substitute the formula (33)

(following from ψ2

(
t̂sw
)

= dψ2

(
t̂sw
)
/dt̂ = 0). Then the control will disappear

there. Moreover, let us take p̂
(
t̂sw
)

= p̂∗opt. Finally, we will obtain a linear

expression with respect to r̂
(
t̂sw
)
, which is zero for r̂

(
t̂sw
)

= r̂∗
(
p̂∗opt

)
= r̂∗opt

(due to the characterization of singular arcs in Subsection 6.1), negative for
r̂
(
t̂sw
)
> r̂∗opt, and positive for r̂

(
t̂sw
)
< r̂∗opt. This yields the desired result,

since
(
p̂
(
t̂sw
)
, r̂
(
t̂sw
))
6=
(
p̂∗opt, r̂

∗
opt

)
.

Remark 6.1. The proof of Theorem 6.3 relies on PMP and does not use
specific conditions on N0, N1,Σ,Σ0,Σ1 formulated in the beginning of this
subsection.

The next section develops a numerical technique to construct the chat-
tering switching curve in the studied problem.

7 Numerical method to approximate the chat-

tering switching curve

Based on the reasonings of the previous section, the following numerical
method to approximate the chattering switching curve Σ in the problem (11)–
(14) can be proposed.

Fix some numbers p̂min > 0, p̂max > p̂min, r̂min ∈ [0, 1), r̂max ∈ (r̂min, 1]
determining the bounded domain

{(p̂, r̂) : p̂min < p̂ < p̂max, r̂min < r̂ < r̂max} , (41)

in which Σ is going to be approximated. The optimal steady state
(
p̂∗opt, r̂

∗
opt

)
should lie there.

Take a sufficiently small number δ > 0 and consider the vertical line
segment

Lδ
def
=

{(
p̂∗opt, r̂

)
: r̂∗opt − δ 6 r̂ 6 r̂∗opt + δ

}
as an approximation of a small part of Σ near the point

(
p̂∗opt, r̂

∗
opt

)
(see Fig. 2

and recall that the tangent line to Σ at
(
p̂∗opt, r̂

∗
opt

)
is vertical). The upper

half of Lδ with the excluded center
(
p̂∗opt, r̂

∗
opt

)
lies in the region (39), and
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the lower one is contained in (40). Discretize Lδ \
{(
p̂∗opt, r̂

∗
opt

)}
by the grid

consisting of the points

Qi
def
=

(
p̂∗opt, r̂

∗
opt + i

δ

n

)
, i ∈ I def

= {−n,−n+ 1, . . . , n− 1, n} \ {0},

for a sufficiently large n ∈ N. Rewrite the system of the state dynamic and

adjoint equations (11),(28) in reverse time τ̂
def
= T̂ − t̂ with

α =



αmin, ψ2 < 0,

αmax, ψ2 > 0,

αmin, ψ2 = 0,
dψ2

dt̂

∣∣∣∣
ψ2=0

< 0,

αmax, ψ2 = 0,
dψ2

dt̂

∣∣∣∣
ψ2=0

> 0,

αmin, ψ2 =
dψ2

dt̂

∣∣∣∣
ψ2=0

= 0, r̂ > r̂∗ (p̂) ,

αmax, ψ2 =
dψ2

dt̂

∣∣∣∣
ψ2=0

= 0, r̂ < r̂∗ (p̂) .

(42)

The expression (32) with ψ0 = −1 should be substituted in (42). The case
ψ2 = dψ2/dt̂ |ψ2=0 = 0, r̂ = r̂∗ (p̂) is excluded there, because it refers to
the state

(
p̂∗opt, r̂

∗
opt

)
(recall the considerations coming before Theorem 6.3).

Since the constructed system is autonomous, the initial time instant for its
integration can be chosen as τ̂ = 0. For i ∈ I, specify the initial conditions
at τ̂ = 0 as(

p̂0
i , r̂

0
i

) def
= Qi, ψ0

2,i
def
= 0,

ψ0
1,i

def
=

((
1− r̂0

i

)
EM −

p̂0
i r̂

0
i

K + p̂0
i

+ λMΓM − (λMΓM − λRΓR) r̂0
i

− p̂0
i

(
p̂0
i r̂

0
i

K + p̂0
i

+ (ΓM − ΓR) r̂0
i − ΓM

))−1

·

·
(
µ̂∗opt + ΓM −

(
p̂0
i r̂

0
i

K + p̂0
i

+ ΓM − ΓR

)
r̂0
i

)
(the last equality follows from (38)). Let

(p̂i (τ̂) , r̂i (τ̂) , ψ1,i (τ̂) , ψ2,i (τ̂)) , τ̂ ∈
[
0, T̂i

)
, i ∈ I,

be the family of the corresponding solutions to the introduced system, so
that, for any i ∈ I, the time horizon T̂i > 0 equals either the instant of the
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first exit from the domain (41) or +∞ if there is no such an exit. Then the
set ⋃

i∈I

{
(p̂i (τ̂) , r̂i (τ̂)) : τ̂ ∈

[
0, T̂i

)
, ψ2,i (τ̂) = 0

}
can serve as an approximation of Σ. From the computational point of view,

here it is reasonable to replace T̂i with min
(
T̂i,Θ

)
, where Θ ∈ (0,+∞) is a

sufficiently large finite number.

Remark 7.1. In the local phase portrait described in the beginning of Sub-
section 6.2, chattering arcs are unique solutions to the differential inclusion
with the multi-valued right-hand side specified by the right-hand side of (11)
and by the condition

α
(
t̂
)
∈


{αmin},

(
p̂
(
t̂
)
, r̂
(
t̂
))
∈ N0,

{αmax},
(
p̂
(
t̂
)
, r̂
(
t̂
))
∈ N1,

[αmin, αmax] ,
(
p̂
(
t̂
)
, r̂
(
t̂
))
∈ Σ.

(43)

Indeed, due to the item 6 of that description, the control values on Σ0 ∪ Σ1

can be chosen arbitrarily from [αmin, αmax]. Besides, the control values at the
point

(
p̂∗opt, r̂

∗
opt

)
are not significant in our consideration of chattering arcs

which do not include the singular arc. The condition (43) directly implies
upper semicontinuity of the multi-valued right-hand side of the introduced
differential inclusion with respect to the vector of the state variables. By
virtue of the results from [48, Chapter 2, §8] and [49, Chapter 2, Section 2.2],
solutions to this differential inclusion are continuous with respect to initial
data. This may serve as a particular theoretical justification for the validity
of the proposed method.

Remark 7.2. One can see that the described method in principle does not
depend on a particular finite time horizon T̂ .

It is reasonable to validate this numerical approach by testing it on clas-
sical Fuller problem [24, 25]. The corresponding results are presented in
Appendix B, and the approximate switching curve fits the theoretical one
very well.
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8 Numerical simulations

8.1 Parameter specification

Let the dynamic optimization problem (11)–(14) describe resource allocation
for a population of Escherichia coli. As in [8], take

β = 0.003 L · g−1, KR = 1 g · L−1,

αmin = 0, αmax = 1.
(44)

Set the recycling parameters as

λM = λR = 0.8. (45)

In compliance with Subsection 2.3, consider the temperature range T0 6 T 6
T1 with the endpoints

T0 = 37◦C = 310.15 K, T1 = 45◦C = 318.15 K. (46)

The parameters (44),(45) are assumed to be constant within this range. Ap-
pendix A explains a way to modify our model in case of a temperature change.
According to [19], we choose the following activation energies:

E1 = 15 kcal ·mol−1 = 62760 J ·mol−1 for metabolism and gene expression,

E2 = 150 kcal ·mol−1 = 627600 J ·mol−1 for degradation.

(47)
As introduced in Appendix A, the function ϕ1 describes how tempera-

ture affects the parameters eM and kR for metabolism and gene expression,
the function ϕ2 specifies the effect on the degradation rates γM , γR, and

ϕ
def
= ϕ2/ϕ1 is the corresponding ratio (see the formulas (53),(54)). Fig. 3

illustrates the graphs of the sections ϕ1(·, T0) and ϕ(·, T0) on the observed
temperature interval. By virtue of the resulting transformation rule (55) and
dramatic increase of ϕ(·, T0) as compared to ϕ1(·, T0), the influence of the
degradation rates should become stronger for higher temperatures.

Let the values of the parameters eM , kR from [8] correspond to the tem-
perature 37◦C:

eM |T =T0 = 3.6 h−1, kR |T =T0 = 3.6 h−1. (48)

In case of this temperature, let us also set the average half-life time of a
macromolecule as 20 h for metabolic machinery and 100 h for gene expression
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Figure 3: The functions ϕ1(·, T0) and ϕ(·, T0) for the parameter val-
ues (46),(47). Here the Celsius temperature scale is used for convenience.

machinery, i. e.,

γM |T =T0 =
ln 2

20
h−1, γR |T =T0 =

ln 2

100
h−1. (49)

Such a value of γM conforms with the relevant ranges specified in [18,36]. Due
to a significantly higher stability of proteins for gene expression in comparison
with metabolic ones [17, 18, 36–38], here it is reasonable to take γR much
smaller than γM .

8.2 Effect of temperature

Fig. 4 depicts the dependence of the optimal dimensionless steady-state
growth rate µ̂∗opt on temperature. Since the transformation rule (55) con-
tains a time variable change, the growth rates at different temperatures are
correctly compared only if they are evaluated with respect to the same time
variable t̂. We suppose that t̂ is related to the system for the tempera-
ture 37◦C. For 45◦C, the growth rate appears to be about 100 times lower
than for 37◦C. In fact, the particular value of γR |T =T0 in (49) is chosen so
as to achieve this good agreement with the experimental results of [19]. It
is also important to emphasize that, in the whole considered temperature
range, our parameter values satisfy Assumptions 3.1–3.3, 4.1–4.4 and also
the first and third inequalities of Assumption 5.1. However, the second in-
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Figure 4: The optimal dimensionless steady-state growth rate µ̂∗opt depend-
ing on temperature for the parameter values (44)–(49). Here the Celsius
temperature scale is used for convenience.

equality of Assumption 5.1 holds on the temperature interval from 37◦C till
approximately 44.2◦C, and it is violated for higher temperatures.

The numerical method of Section 7 is used to approximate the chattering
switching curve Σ of the optimal feedback control law in the problem (11)–
(14). Fig. 5 indicates the dependence of this curve on temperature. It is evi-
dent that, as opposed to the degradation rates, the optimal feedback strategy
of bacterial resource allocation is low sensitive to temperature changes within
the subrange [37◦C, 42◦C].

8.3 Dynamics of optimal processes

For illustrating the dynamics of the optimal processes, let us fix the temper-
ature

T = 42◦C = 315.15 K, (50)

time horizon
T̂ = kR · T = 10, (51)

and initial position as the optimal steady state for a lower environmental
input:

(p̂0, r̂0) =
(
p̂∗opt, r̂

∗
opt

) ∣∣
eM = 0.2 · 3.6 h−1 = 0.72 h−1, T = 315.15 K ≈ (0.03625, 0.33704).

(52)

The latter condition can be reasonable, for example, if the bacterial popula-
tion is considered directly after a nutrient upshift, such as transferring from
a poor environment to a richer one with the same temperature. If the time
variable t̂ is related to the system for the temperature T0, then, according to
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Figure 5: The chattering switching curves for different temperatures in case
of the parameter values (44)–(49). The curve in case of the temperature 37◦C
and zero degradation rates ΓM = ΓR = 0 is also shown for comparison. Here
the Celsius temperature scale is used for convenience.

(55), the new time variable ξ̂ is represented as

ξ̂ = ϕ1(T , T0) · t̂ ≈ 1.4713 · t̂,

and, due to (51), the new time horizon equals

Ξ̂ = ϕ1(T , T0) · T̂ ≈ 14.713.

Fig. 6 indicates the results of numerical computation of the optimal open-
loop control function via the software package Bocop [50] (despite the usage of
the transformed system in the computation, the illustrations are provided in
the original time scale t̂). For comparison, we also show the optimal process in
the corresponding problem (11)–(13) without the terminal condition (14). As
one can see, imposing this condition excludes the final chattering regime (by
which the optimal steady state is left) and gives only a slightly lower quality of
the optimal control strategy. Fig. 7 depicts the approximate optimal process
for the greater time horizon T̂ = 20. By comparing the results for the
problem (11)–(14) in the two cases T̂ = 10 and T̂ = 20, we conclude that,
on the time subinterval before t̂ = 10, the processes are almost identical, and
then the control law in the second case continues to keep the system in the
steady-state singular regime till the end. Numerical experiments with greater
time horizons have shown a similar situation. Thus, the mentioned properties
are practical justifications for our problem statement with the condition (14).
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Figure 6: The approximate optimal process computed via Bocop for the prob-
lem (11)–(14) with the parameter values (44)–(51) and initial condition (52).
For comparison, we also show the approximate optimal process in the corre-
sponding problem (11)–(13) without the terminal condition (14).
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Figure 7: The approximate optimal process computed via Bocop for the
problem (11)–(14) with the parameter values (44)–(50), time horizon T̂ = 20
and initial condition (52). For comparison, we also show the approximate
optimal process in the corresponding problem (11)–(13) without the terminal
condition (14).
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Figure 8: The approximate optimal state trajectory computed via Bocop,
and the chattering switching curve constructed through the numerical method
of Section 7. The related problem is (11)–(14), the parameter values and
initial condition are specified by (44)–(52).

According to Figure 8, the Bocop simulation results are in good agreement
with the optimal control synthesis constructed through the numerical method
of Section 7.

Finally, Figure 9 indicates that the chattering switching curve is some-
what deformed and shifted to the left and down when the recycling param-
eters λM , λR are decreased. In particular, more intensive recycling allows to
maintain higher steady-state growth.

9 Conclusion

In this paper, we have extended the bacterial growth models of [8, 17] by
including both degradation of proteins into amino acids and recycling of the
latter (i. e., using as precursors again). The related dynamic optimization
problem with the growth maximization criterion has been investigated. The
constructed solution in the form of a feedback control law with a chatter-
ing switching curve can serve as a benchmark for comparing actual bacte-
rial strategies of resource allocation. We have also studied the influence of
temperature, whose increase intensifies protein degradation. The optimal
feedback control strategy has turned out to be essentially less sensitive to
temperature changes, while the growth rate has been deeply affected.

Note that, in comparison with purely numerical techniques, our approach
contains a detailed analytical investigation via Pontryagin’s maximum prin-
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Figure 9: The chattering switching curves for different levels of recycling in
case of the parameter values (44), (46)–(50).

ciple and thereby allows to obtain important qualitative properties of optimal
processes. Moreover, our method to approximate the chattering switching
curve relies on these properties. In [51,52], other approaches to compute op-
timal processes with chattering arcs were developed as applied to minimum
time problems for rocket and spacecraft dynamic models, and preliminary
theoretical analysis by Pontryagin’s maximum principle also played a crucial
role there.

Besides, it is possible to design suboptimal feedback control policies re-
lying on biological arguments so that the optimal steady state is eventually
approached when using “measurements” of either the amounts of nutrients
and precursors or the imbalance between the precursors and gene expression
machinery [8]. The next step is to evaluate the robustness of these realistic
strategies with respect to temperature (the constructed optimal control law
can be used as a reference).

One forward-looking extension of our model is to include stochastic un-
certainties in the implementation of resource allocation strategies. This will
lead to a stochastic optimal control problem with a state-dependent noise
and with the criterion of mean growth maximization. Then one might ex-
pect that, instead of the switching curve from the deterministic problem,
there will appear a transition domain with nonzero Lebesgue measure and
intermediate resource allocation. Such a situation was observed, for instance,
in the recent studies of [53,54] concerning financial and mechanical stochas-
tic models. Therefore, the stochastic extension of our deterministic problem
may lead to some realistic regularization of the chattering control synthesis,
while achieving better agreement with experimental approximations of the
ppGpp-based strategy in Escherichia coli [7,8]. However, stochastic dynamic
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optimization problems usually turn out to be substantially more difficult for
investigation than deterministic ones [55–57].

Another meaningful further development of our model is to account for
the costs of the molecular implementations of bacterial control strategies. In-
deed, the latter in general require additional resources to be diverted towards
the synthesis of sensory systems and regulatory proteins [26,27].

From the engineering point of view, it is also relevant to extend the model
of this paper by introducing the reaction that converts bacterial resources into
a particular product of biotechnological interest. Regulations of an external
inducer (based on specific chemical or light effects) can modify cellular pro-
cesses [3]. Then it seems promising to consider the problem of finding an
inducing strategy that maximizes the biotechnological production.
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A Effect of temperature

A classical way to describe the dependence of the rate of a chemical reaction
on temperature T [K ≡ Kelvin] is to use Arrhenius law [33]

Reaction rate parameter = A · exp

(
− E
RT

)
with suitable pre-exponential factor A (the related unit of measurement may
vary) and activation energy E

[
J ·mol−1

]
. Here R ≈ 8.314 J ·mol−1 ·K−1

is the ideal gas constant, and calligraphy letters for the variables A, E ,R, T
are used so as to avoid confusion with earlier notations.

Consider growth and degradation processes for Escherichia coli in the
temperature range [T0, T1] = [37◦C, 45◦C] = [310.15 K, 318.15 K]. In con-
formity with [19, 20], here it is reasonable to employ Arrhenius law and the
fact that protein degradation appears to be more sensitive to temperature
changes as compared to metabolism and gene expression. Let E1 be the acti-
vation energy for both metabolism and gene expression. Then the activation
energy for degradation is E2 > E1.

Assume that the parameters β,KR, αmin, αmax, λM , λR are constant in the
whole considered temperature range. Let the rates eM , kR, γM , γR correspond
to some temperature T ∈ [T0, T1]. For another temperature T̃ ∈ [T0, T1],
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Arrhenius law leads to the modified parameters

ẽM = ϕ1

(
T̃ , T

)
· eM , k̃R = ϕ1

(
T̃ , T

)
· kR,

γ̃M = ϕ2

(
T̃ , T

)
· γM , γ̃R = ϕ2

(
T̃ , T

)
· γR,

where

ϕi

(
T̃ , T

)
= exp

(
Ei
R

(
1

T
− 1

T̃

))
, i = 1, 2, (53)

and, moreover,

ṽM(r(t)) = ϕ1

(
T̃ , T

)
· vM(r(t)), ṽR(p(t), r(t)) = ϕ1

(
T̃ , T

)
· vR(p(t), r(t))

(recall the representations (6) and (7)). Also denote

ϕ
(
T̃ , T

)
def
=

ϕ2

(
T̃ , T

)
ϕ1

(
T̃ , T

) = exp

(
E2 − E1

R

(
1

T
− 1

T̃

))
. (54)

Since E2 > E1, this expression strictly increases with respect to T̃ for a fixed
T .

One can easily verify that, for the temperature T̃ , it suffices to modify
the system (5) by the direct replacements

t −→ ξ
def
= ϕ1

(
T̃ , T

)
· t,

T −→ Ξ
def
= ϕ1

(
T̃ , T

)
· T,

γM −→ ˜̃γM
def
= ϕ

(
T̃ , T

)
· γM ,

γR −→ ˜̃γR
def
= ϕ

(
T̃ , T

)
· γR.

Therefore, the problem (11)–(14) in dimensionless variables should be mod-
ified by the replacements

t̂ −→ ξ̂
def
= ϕ1

(
T̃ , T

)
· t̂,

T̂ −→ Ξ̂
def
= ϕ1

(
T̃ , T

)
· T̂ ,

ΓM −→ ˜̃ΓM
def
= ϕ

(
T̃ , T

)
· ΓM ,

ΓR −→ ˜̃ΓR
def
= ϕ

(
T̃ , T

)
· ΓR.

(55)
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Thus, for higher temperatures, the form of our dynamical system remains
similar, but the influence of the degradation rates increases.

B Fuller problem

Fuller problem is stated as follows [24,25]:

dx1(t)

dt
= x2(t),

dx2(t)

dt
= u(t),

− 1 6 u(t) 6 1, t ∈ [0, T ], T ∈ [0,+∞) is free,

(x1(0), x2(0)) = (x0
1, x

0
2) ∈ R2 is fixed,

(x1(T ), x2(T )) = (0, 0),

1

2

T∫
0

x2
1(t) dt −→ inf .

(56)

The next result gives its analytical solution in the feedback form (the proof
can be found in [24,25]).

Theorem B.1. Let ζ
def
=
√(√

33− 1
)
/24 = 0.4446236 . . . be the unique

positive root of the equation z4 + z2/12− 1/18 = 0, and introduce the sets

Σ−
def
= {(x1, x2) ∈ R2 : x1 = −ζx2

2, x2 > 0} ,

Σ+
def
= {(x1, x2) ∈ R2 : x1 = ζx2

2, x2 < 0} ,

N−
def
= {(x1, x2) ∈ R2 : x1 > −sign(x2) ζx2

2} ,

N+
def
= {(x1, x2) ∈ R2 : x1 < −sign(x2) ζx2

2} .

Then the optimal feedback control law in Fuller problem (56) can be repre-
sented as

uopt(x1, x2) =

{
−1, (x1, x2) ∈ N− ∪ Σ−,

1, (x1, x2) ∈ N+ ∪ Σ+.

The related forward-time state trajectories are chattering arcs. They switch
in the direction from u = −1 to u = 1 on Σ+ and in the opposite direction
on Σ−. The curves Σ+ and Σ− are transversally crossed by the chattering
arcs.
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Theoretical switching curve

Approximate switching curve

Figure 10: Comparison between the theoretical switching curve Σ in Fuller
problem (56) and its approximation obtained by using the numerical approach
of Section 7.

Fig. 10 compares the theoretical switching curve Σ
def
= Σ− ∪ {0, 0} ∪

Σ+ with its approximation obtained by using the numerical approach of
Section 7. One can indeed see a very good agreement there.
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