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Abstract Personalised computational models of the

heart are of increasing interest for clinical applica-

tions due to their discriminative and predictive abili-

ties. However, the simulation of a single heartbeat with

a 3D cardiac electromechanical model can be long and

computationally expensive, which makes some practical

applications, such as the estimation of model parame-

ters from clinical data (the personalisation), very slow.

Here we introduce an original multifidelity approach

between a 3D cardiac model and a simplified ”0D” ver-

sion of this model, which enables to get reliable (and

extremely fast) approximations of the global behavior

of the 3D model using 0D simulations. We then use

this multifidelity approximation to speed-up an efficient

parameter estimation algorithm, leading to a fast and

computationally efficient personalisation method of the
3D model. In particular, we show results on a cohort of

121 different heart geometries and measurements. Fi-

nally, an exploitable code of the 0D model with scripts

to perform parameter estimation will be released to the

community.
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Xavier Pennec · Hervé Delingette · Nicholas Ayache ·Maxime
Sermesant
Inria, Asclepios Research Project, Sophia Antipolis, France
E-mail: maxime.sermesant@inria.fr

Alan Garny
Auckland Bioengineering Institute, University of Auckland,
Auckland, New Zealand

1 Introduction

Electromechanical models of the heart simulate the

physical behavior of a patient’s heart, in order to per-

form advanced analysis of the cardiac function. They

are of increasing interest to help clinicians in their

daily practice (Kayvanpour et al., 2015; Baillargeon

et al., 2014; Smith et al., 2011). In particular, recent

works have been successful in predicting haemodynamic

changes in cardiac resynchronization therapy (Serme-

sant et al., 2012), ventricular tachycardia inducibility

and dynamics (Chen et al., 2016), as well as in detect-

ing and localising infarcts (Duchateau et al., 2016) us-

ing 3D personalised models.

After building the patient’s heart mesh geometry,

the simulated heartbeat has to match clinical data,
such as ejected blood volume and pressure measure-

ments, or more detailed information about regional mo-

tion and abnormalities available from imaging modali-

ties such as 3D Echocardiography or Cine MRI. This is

done by finding adequate simulations settings (bound-

ary conditions, loading constraints) and values of model

parameters such as myocardial stiffness and contrac-

tility (Xi et al., 2011; Chabiniok et al., 2012). This

phase of parameter estimation is usually referred to as

the personalisation of the cardiac model (Marchesseau

et al., 2013b) and results in a personalised cardiac model

(Wang et al., 2012) made of a patient-specific heart

geometry (Schaerer et al., 2006) and patient-specific

biomechanical parameters.

A wide variety of 3D computer heart models exists

in the literature, which describe the anatomy and phys-

iology of the heart at various scales. For example the

3D mesh describing the heart geometry can be made of

very different numbers of nodes, and the cellular elec-

tromechanical phenomena underlying the build-up of
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myocardial forces can either be described with a large

number of equations, or simplified equations. We refer

to the two comprehensive reviews of (Chabiniok et al.,

2016) and (Clayton et al., 2011) for a large discussion

of various models of different scales, types and imple-

mentations. The scale and precision (also known as fi-

delity) of the model is chosen according to the study

and the available data. In general, the time required

to compute a simulation increases with its level of de-

tail. The simulation of a 3D heartbeat using some of

the most complex 3D models can take up to several

hours of computation on computers with hundreds of

cores (Panthee et al., 2016). This means that for appli-

cations where many simulations need to be repeatedly

performed (e.g. parameter estimation), computational

time becomes a real issue.

The joint use of low-fidelity models to approximate

a high-fidelity model and lower the computational bur-

den has been investigated by the multifidelity model-

ing community since (Kennedy and O’Hagan, 2000).

As described in Peherstorfer et al. (2016), a model-

management method usually handles and feeds the out-

puts of a low-fidelity model (e.g. a simplified model, a

regression model or a projection-based model) to an un-

derlying application-specific method (e.g. an optimisa-

tion algorithm) as surrogates to the high-fidelity model

outputs. The method also optionally decides when to

recompute simulations of the high-fidelity model to

guarantee the accuracy of the low-fidelity approxima-

tion.

Here we present an original 0D/3D multifidelity ap-

proach for the personalisation of 3D cardiac models

(Fig. 1). First, from our 3D cardiac model, we de-

rived and implemented a simplified ”0D” model which

is faster by 4 orders of magnitude. This was performed

as proposed in Caruel et al. (2014), by approximating

the geometry of the ventricle as a sphere and assuming

spherical symmetry and homogeneity of the electrome-

chanical behavior.

Then, we introduce a multifidelity coupling in order

to approximate 3D model simulations from 0D model

simulations. To this end, we build a parameter map-

ping which converts parameters of the 3D model into

parameters of the 0D model, based on a few represen-

tative 3D simulations in the parameter space (called

the sigma-simulations). Outputs of the 3D model are

then approximated from 0D model simulations, thus en-

abling a reduction of the computational burden when a

large number of 3D simulations outputs are required.

Finally, we present a multifidelity personalisation

method, built by adapting an efficient optimization al-

gorithm called CMA-ES (Hansen, 2006) to use approx-

imations of the 3D simulations obtained through the

multifidelity coupling instead of the real 3D simulations.

This leads to a fast and computationally efficient per-

sonalisation method for the 3D model parameters.

A preliminary version of this work was described in

(Mollero et al., 2016). In this manuscript, we propose a

significantly extended methodology for the multifidelity

coupling. First, the sigma-simulations selection is per-

formed so that additional computational gains are pos-

sible when some estimated parameters have the same

equations and values in both models. Then, a more ro-

bust, non-linear, parameter mapping is used. An addi-

tional step is finally introduced to correct the possible

errors arising during the estimation of 0D model pa-

rameters. We also present an improved methodology

for the multifidelity personalisation method which en-

ables the use of a single coupling for many iterations of

CMA-ES. This is done while simultaneously ensuring

that the approximation is accurate enough for the op-

timisation algorithm, resulting in an overall estimation

which is 5 times faster than in (Mollero et al., 2016) on

average.

In terms of results, we present extended results and

discussions for both the multifidelity coupling and the

multifidelity personalisation method. The approxima-

tion accuracy of the coupling is compared to an hy-

persurface interpolation method and the personalisa-

tion method is compared to BOBYQA (Powell, 2009), a

commonly used derivative-free optimization algorithm.

This leads to an extended discussion on the computa-

tional aspects of our method in a parallel environment.

This work is illustrated on a personalisation problem

involving 5 parameters and 3 outputs, and we demon-

strate results on a database of 121 different geometries

and clinical values, which we believe to be one of the

largest cohort of personalised cardiac cases to date. This

personalisation took around 2.5 days on our cluster.

Lastly our 0D model equations are encoded in the

CellML format (Cuellar et al., 2003) and made available

for download from the Physiome Model Repository1

(Yu et al., 2011). Python scripts to perform parame-

ter estimation in the 0D model will be released within

1 month of publication, from the same location.

2 Multi-fidelity Cardiac Modelling and

Personalisation Framework

In this work we use both a 3D electromechanical model

which can simulate the behaviour of complex patient-

specific heart geometries, and a reduced ”0D” version

of this model which can be summarized in a few equa-

tions. Both models rely on the same mechanical laws

1 https://models.physiomeproject.org/e/470
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Fig. 1: 3D and 0D cardiac models (1.a, 1.b and 1.c). Our multifidelity personalisation method performs parameter

estimation in the 3D model using CMA-ES (1.d), based on 0D simulations obtained through the multifidelity

coupling between the models.

but simplifying assumptions are made on the geometry

of the 0D model to derive its equations. We also intro-

duce the personalisation framework for the parameters

of both models.

2.1 The 3D Cardiac Model

Our 3D cardiac eletromechanical model is an imple-

mentation of the Bestel-Clement-Sorine (BCS) model

(Chapelle et al. (2012)) by (Marchesseau et al., 2010,

2013a) in SOFA2, an open-source simulation software.

The model uses the following items as an input:

- A 3D tetrahedral biventricular mesh, either syn-

thetically created or derived from segmented MRI im-

ages.

2 www.sofa-framework.org

- A set of myocardial fibres directions, defined at

each node of the mesh. Here we use synthetic fibres

from the rule-based of Streeter (1979).

- A set of depolarisation and repolarisation times at

each node of the set computed from an electrophysiol-

ogy model. Here we use the Eikonal model as described

in (Sermesant et al., 2012).

Myocardial forces are then computed at each node

and at each time step from the equations of the BCS

model. Then the myocardial motion (mesh nodes veloc-

ities) as well as ventricular volumes and pressures are

computed at each time step of the cardiac cycle from

these forces. See APPENDIX A for a description of the

mechanical model equations and parameters. With my-

ocardial meshes made of around 15 000 nodes and a

time step of 5 ms, a single beat of 0.9s takes 15 min-

utes to compute on average on a single-core (Intel(R)

Core(TM) i7-4600U [2.10GHz]).
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2.2 The 0D Cardiac Model

As described in Caruel et al. (2014), it is possible to

derive the equations of a fast 0D model of the heart,

which relies on the same BCS equations. This is done

by making the following simplifying assumptions on the

geometry, the electrical activation and the properties of

the material:

1. The ventricle has a spherical shape.

2. The material is incompressible.

3. The electrical activity is synchronous and homoge-

neous over the sphere.

With these assumptions of spherical symmetry, my-

ocardial forces and motion are also spherically symmet-

ric and can be entirely described by the inner radius r

of the ventricle. Deformation and stress tensors can also

be reduced to a simple form (see Caruel et al. (2014)),

which leads to a system of a dozen equations (see AP-

PENDIX B).

We implemented the equations into C code and

solve the system of equations using an explicit Forward

Euler method with a temporal discretisation of 0.01

milliseconds. This leads to the simulation of around

15 beats per second. We also encoded the 0D model

in the CellML format (Cuellar et al., 2003), which is

an open standard based on the XML markup language

to store and exchange computer-based mathematical

models. This model can be downloaded from the Phys-

iome Model Repository3 and easily exploited through

the software OpenCOR (Garny and Hunter, 2015).

2.3 Parameter estimation Framework for Cardiac
Models

After building the model, parameter estimation is usu-

ally the first step to analyse clinical data with a model.

It consists in finding parameter values for which the

simulation with the model reproduces available values

and quantities in the data, such as pressure or vol-

ume measurements. In particular when the geometry is

patient-specific, this phase is called cardiac model per-

sonalisation (Marchesseau et al., 2013b; Kayvanpour

et al., 2015).

Formally, we consider a cardiac model M , a set of

simulated quantities called the outputs O and a subset

PM of varying parameters of the model (while the other

parameters are supposed fixed). Given a vector of these

parameters x ∈ ΩM, we note OM(x) the values of the

outputs O in the simulation of M with parameter val-

ues x. The goal of personalisation is to find parameter

3 https://models.physiomeproject.org/e/470

values x∗ ∈ ΩM for which the outputs values OM(x∗)
best match some target values Ô.

This is an inverse problem, which can be tack-

led by different methods (see the review of Chabiniok

et al. (2016)). We propose here a parameter estimation

framework (Fig 1.d) through derivative-free optimiza-

tion, using an efficient genetic algorithm called CMA-

ES (Hansen, 2006).

2.3.1 Robust Optimisation With the Genetic

Algorithm CMA-ES

We define the score S(x, Ô) of some parameter values

x as the L2 distance between OM(x) and Ô, normalised

by the Hadamard (coordinate-by-coordinate) division

� with a vector N , in order to compare outputs with

different units:

S(x, Ô) = ‖(OM(x)− Ô)�N ‖.

We then perform a derivative-free optimisation with

the genetic algorithm CMA-ES, which aims at minimis-

ing this score S. The algorithm (which stands for Co-

variance Matrix Adaptation Evolution Strategy) asks

at each iteration n for the scores of m points xi ∈ ΩM

(a generation), drawn from a multivariate distribution

with covariance Icn and mean Imn . Then, it combines

bayesian principles of maximum likelihood with natural

gradient descent on the ranks of the points scores in the

generation to update both Icn and Imn .

The CMA-ES algorithm has many advantages in

this context. First, it can explore a large and unbounded

parameter space while still performing a local search

at each iteration, and has shown very good results on

problems involving hundreds of parameters to optimise

(Geijtenbeek et al., 2013). Second, because the updates

of the Icn and Imn only depend on the score ranks, it is

very robust to outliers in the generation, in particular

to parameter values for which the simulation diverges

(in which case we give an arbitrary high score to these

parameters).

Also, since each score comes from an independent

simulation, this algorithm is well suited to parallel en-

vironments. We can either decide to set a very high

population size m and do many parallel simulations (in

this case the algorithm can converge in a few itera-

tions), or a lower population size and rely instead on

many iterations of the algorithm for convergence.

2.3.2 Application to the 0D model

Because the 0D model is extremely fast (15 beats per

seconds), parameter estimation is also very fast with

the 0D model. For example with a population size of 50
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points per generation it takes less than 50 generations

and 3 minutes on a 4-core computer (with parallel com-

putation of the simulations within each generation) to

make most of the problems with sets of up to 10 outputs

and parameters converge.

In our current implementation, 29 outputs can be

extracted from the pressure, volume and flow curves

and 25 parameters of the 0D model can be estimated.

Python scripts to automatically perform the parameter

estimation will be released within 1 month after the

publication, available for download from the Physiome

Model Repository4.

2.3.3 Application to the 3D model

It is possible to apply directly this framework to the 3D

model, but the computational burden can become an is-

sue because of the time required to compute the 3D sim-

ulations. Indeed, either we set a small population size,

but we need many iterations of CMA-ES (of around

15 minutes each). Or we set a high population size but

is the number of parallel CPUs used at the same time

which may become prohibitive. In Section 4, our multifi-

delity personalisation method lowers this computational

burden by replacing the outputs values of 3D simula-

tions with approximations computed from 0D simula-

tions through a multifidelity coupling between the two

models, as explained in Section 3.

3 Multi-fidelity Coupling: Approximating

global outputs values of the 3D Model

We present here a multifidelity coupling between the

3D and the 0D model. We will call global outputs of

the models quantities which can be computed from the

simulations of both models, such as the total ejected

blood volume (stroke volume) or the minimal (diastolic)

aortic pressure.

We consider a set of N1 parameters of the 3D model

P3D, a set of global outputs O, and a set of parameter

values xi ∈ Ω3D of the parameters P3D. The goal is to

get approximations of the values O3D(xi) by performing

0D simulations and only a few 3D simulations.

We will illustrate the method on the following prob-

lem: a set of 5 parameters P3D of the 3D model, and a

set of 3 outputs O listed in Table 1. We want to approx-

imate the output values for m = 30 simulations with

parameters xi, drawn from a multivariate distribution

(as in a CMA-ES iteration).

4 https://models.physiomeproject.org/e/470

Table 1: Sets of 3D model parameters and global outputs

in the example.

Global outputs O

Stroke Volume SV
Mean Aortic Pressure MP
Diastolic Aortic Pressure DP

Parameters of the 3D model P

Contractility σ
Stiffness c1
Peripheral resistance Rp

Aortic Compliance C
Central Venous Pressure Pve

3.1 Global Strategy: Building a Mapping Between 3D

and 0D Mechanical Parameters

Because they rely on the same equations, both models

display many similar trends in their global outputs val-

ues when some parameters vary. For example, if a 3D

simulation and a 0D simulation have the same stroke

volume, the stroke volume variations with changes in

the haemodynamic parameters (such as the peripheral

resistance) are very similar in both models.

However some parameters do not behave exactly the

same, and are not always even in the same range of val-

ues. This is especially the case of mechanical param-

eters such as the 3D and 0D dampings which rely on

different equations. But even for parameters from the

same equations in both models (such as σ and c1) the

values might be very different in 0D and 3D simulations

with similar outputs, due to the different assumptions.

Formally, there is no trivial function which can con-

vert the xi ∈ Ω3D into values y ∈ Ω0D of 0D model

parameters P0D, for which the global outputs values

O0D(y) and O3D(x) are the same (or at least close). The

idea of the multifidelity coupling is to find 0D model

simulations which are similar to a few selected 3D sim-

ulations, then build a parameter mapping φ be-

tween the parameters of both models. We use the

following strategy:

1. First we perform a few representative 3D simu-

lations within the domain of interest (called the

sigma-simulations with parameters Xi ∈ Ω3D).

2. Then, for each 3D sigma-simulation with parameter

values Xi ∈ Ω3D, we estimate parameter values Yi ∈
Ω0D of a coupled 0D simulation which approximates

the outputs O of the 3D sigma-simulation .

3. From those 3D model parameters Xi and 0D model

parameters Yi we derive a parameter mapping φ

which converts 3D parameters into 0D parameters.
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Fig. 2: Multi-fidelity Coupling: After performing a few 3D sigma-simulations, we find coupled 0D simulations for

each of those simulations. Then we build a parameter mapping which converts parameters of the 3D model into

parameters of the 0D model, in order to approximate 3D simulations outputs with the outputs of 0D simulations.

4. Finally, we approximate the global outputs values

O3D(x) of all the 3D simulations xi ∈ Ω3D, from

the 0D simulations with parameters φ(xi) ∈ Ω0D.

This is done by adding a correction term ψ which

is learnt, to avoid numerical errors in the previous

steps.

The overall process is illustrated in Fig 2. In the

sequel, we first discuss the selection of representative

sigma-simulations (Sec. 3.2), then the computation of

coupled 0D simulations (Sec. 3.3), then the parame-

ter mapping φ (Sec. 3.4) and the correction term ψ

(Sec. 3.5). Finally we give numerical results of the mul-

tifidelity approximation in Sec. 3.6.

3.2 Sigma-Simulations: Performing Representative 3D

Simulations Within the Domain of Interest

We consider a subset P ′
3D ⊂P3D of N2 < N1 param-

eters which cannot be converted directly into 0D model

parameters. In order to assess the global outputs vari-

ations to these parameters in the set of xi ∈ Ω3D, we

perform a few selected simulations in the domain Ω3D.

To this end, we perform PCA on the set of xi ∈ Ω3D,

which gives N1 eigenvectors of the set. Then we extract

the N2 eigenvectors dk which display the maximal vari-

ations of the parameters P ′
3D. This is done by sorting

the eigenvectors by the norm of their projection of the

subspace made by the coordinates corresponding to the

parameters P ′
3D, and selecting the N2 largest.

One sigma-simulation is then performed at the cen-

ter (X0) of the domain of interest Ω3D and pairs are

performed equidistant of X0 in each of the N2 extracted

directions (X+
k = X0 + dk and X−k = X0 − dk for

k = 1..N2). This gives a total of 2N2 + 1 representa-

tive simulations in the domain.

In our example, the three haemodynamics param-

eters Rp, C and Pve have the same values and the

same equations in both models, so we can use the same

values directly in the two models. On the other hand,

the contractility σ and the stiffness c1 do not have the

same values in both models so we need to assess how

their variation is going to impact the global outputs.

We then extract the N2 = 2 directions for which the

variations of σ and c1 are maximal, and perform a to-

tal of 2N2 + 1 = 5 sigma simulations with parameters

X0, X+
1 , X+

2 , X−1 and X−2 .

3.3 Coupled 0D Simulations: Reproducing global

outputs of the 3D Sigma-Simulations with 0D

Simulations

Then for each sigma-simulation with parameters Xi,

i = 1..2N2 + 1 and output values O3D(Xi), we want to

find a corresponding 0D simulation which has similar

global outputs values. To this end, we consider another

set O ′ of global outputs called the coupling outputs,
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and a set of 0D parameters P ′
0D called the coupled 0D

parameters.

We then find values Yi of the parameters P ′
0D

for which the coupling outputs values O ′0D(Yi) of the

0D model simulations are the closest from the cou-

pling outputs values O ′3D(Xi) of the 3D model sigma-

simulations, with all other parameters being the same

in both models. This is what we call a coupled 0D sim-

ulation.

This is done by performing, for each 3D sigma-

simulation k = 1..N2, an independent parameter es-

timation of the 0D model parameters P0D using the

method presented in Section 2.3. The target values Ô ′

for the coupling outputs O ′ are their values in the cor-

responding 3D sigma-simulation.

In our example, since we want to approximate out-

puts from the volume and pressure curves (see Ta-

ble 1), we need to approximate these curves with the

0D model. We then chose a set of 4 coupling outputs O ′

from these curves, and a set of 3 coupled 0D parame-

ters P0D of the 0D model to estimate, both listed in

Table 2.

Table 2: Coupling outputs, Coupled 3D parameters,

Coupled OD parameters which are estimated and Di-

rectly Mapped Parameters in the example of Fig 3.

Coupling outputs O

Maximal Volume Vmax
Minimal Volume Vmin
Mean Aortic Pressure MP
Diastolic Aortic Pressure DP

Coupled 3D parameters P′0D

Contractility σ
Stiffness c1

Coupled 0D parameters P0D

Contractility σ
Stiffness c1
Resting Radius r0

Directly Mapped Parameters

Peripheral resistance Rp

Aortic Compliance C
Central Venous Pressure Pve

After performing the 5 parameter estimations for

the 5 sigma-simulations, we found 5 coupled 0D simu-

lations with parameters Yi, i = 1..5 which have similar

coupling outputs values, which we report in Table 3. We

also display the pressure and volume curves of the 3D

sigma-simulations and coupled 0D simulations in Fig 3.

Table 3: Coupling outputs values for the 3D sigma-

simulations with parameters Xi and the corresponding

coupled 0D simulations with parameters Yi

Vmax (ml) Vmin (ml) MP (Pa) DP (Pa)

X0 129 51.8 10278 7290

X+
1 129 35.5 10034 7590

X+
2 129 64.4 9556 7614

X−1 129 69.8 10743 7906

X−2 129 40.4 10761 6664

Y0 128 53.9 10318 7310

Y +
1 125 41.0 10107 7679

Y +
2 128 66.3 9591 7634

Y −1 129 70.4 10759 7910

Y −2 128 42.5 10806 6683

It is worth noting there is no guarantee that we

can find a set of parameters for which the 0D simula-

tion has exactly the same global outputs values as the

3D simulation. In fact, we can observe in Table 3 that

some coupling outputs do not have the same values in

a 3D sigma-simulation and the 0D corresponding cou-

pled simulations. We will see in a subsequent section

how this obstacle can be overcome.

We point out that there are many possibilities to

choose the sets of coupling outputs O ′ and coupled

0D parameters. For example, another possibility would

have been to use directly the set of outputs to approx-

imate O. This would have lead to 0D and 3D simula-

tions with the same stroke volume, but not necessarily

the same minimal and maximal volumes. In general the

sets of O ′ and O have to be related so that it is possible

to calculate the values of the outputs O from the values

of the coupling outputs O ′.
Similarly, there are many possibilities to choose the

sets of coupling 0D parameters. Here we could also have

set the resting radius in the 0D model to a value for

which the ”resting volume” is the same than in the 3D

model, then estimate only the stiffness and contractility

of the 0D model. Empirically, it seems to be a good

thing to use more parameters to avoid ending in a local

minimum during the parameter estimation of the 0D

simulations.

3.4 Parameter Mapping: A function to Convert 3D

model Parameters into 0D model Parameters

We now have a corresponding coupled 0D simulation

with parameters Yi ∈ Ω0D for each sigma-simulation

with parameters Xi ∈ Ω3D. The second idea of the

coupling is to build a mapping φ between the 3D and

0D model parameters using the Xi and Yi. This map-

ping will then be used to approximate global outputs
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Fig. 3: Comparison between the volume (top) and pressure (bottom) curves of the sigma-simulations simulated with

the 3D model (red), and the corresponding coupled 0D simulations (black). The 5 columns correspond respectively

to the sigma-simulations with parameters X0, X+
1 , X+

2 , X−1 and X−2 .

values O3D(xi) of the 3D simulations with parameters

xi, from the values O0D(φ(xi)) of the 0D simulations

with parameters φ(xi).

The parameters Xi ∈ Ω3D were chosen in a specific

way in Section 3.2: one (X0) is at the center of the xi
and there are two equidistant of X0 (X+

k and X−k for

k = 1..N2) for each of the N2 axis, which are orthog-

onals from each other. However, the Yi were indepen-

dently estimated for each sigma-simulation so there is

no such relationship.

For the mapping φ we use here a degree 2 hyper-

surface which interpolates the Yi in the points Xi. In

dimension 1 this is equivalent to finding a degree 2

polynomial which interpolates three specific points. In

higher dimension (N2 in our case), there is a straight-

forward formula because of the specific organisation of

Xi along orthogonal axis:

ck = (x − X0) · dk

||dk||2 , k = 1..N2

F+
k =

(Y +
k −Y0)+(Y −k −Y0)

2 , k = 1..N2

F−
k =

(Y +
k −Y0)−(Y −k −Y0)

2 , k = 1..N2

φ(x) = Y0 +
N2∑
k=1

ck · (ck · F+
k + F−

k ).

(1)

This formula leads to φ(Xi) = Yi for all the i =

1..2N2 + 1 sigma-simulations, so the parameters of the

3D sigma-simulations are mapped to the parameters

of the coupled 0D simulations of the previous section.

We will then use this mapping to approximate global

outputs of 3D simulations with parameters xi from 0D

simulations with parameters φ(xi).

3.5 Approximating global outputs: Correcting Bias

Ideally in the computation of coupled 0D simulations

in Section 3.3, we find 0D simulations with the same

coupled outputs values than the 3D sigma-simulations

i.e. O ′3D(Xi) = O ′3D(Yi). As illustrated in Table 3,

this is not always the case and the coupled outputs val-

ues can be different between the coupled 0D simula-

tions and the sigma-simulations. This also means that

the direct approximation of the sigma-simulations out-

put values O3D(Xi) by the values O0D(Yi) through the

mapping has a bias due to this difference.
In order to correct this approximation bias, both for

the output values of the sigma-simulations and all the

subsequent 3D simulations with parameters xi, we build

a new degree 2 hypersurface ψ between the parameters

of the sigma-simulations Xi and the bias. The formula

is exactly the same as in Equation 1 where the Yi are

replaced by the bias values (O3D(Xi)− O0D(Yi)).

The final approximating function Cφ,ψ used to ap-

proximate the O3D(xi) is then given by the following

formula:

Cφ,ψ(xi) = O0D(φ(xi)) + ψ(xi) ≈ O3D(xi), (2)

and interpolates in particular the global outputs values

O3D(Xi) of the sigma-simulations.

3.6 Approximation Results

Results are given here for the approximation of the

global outputs values O3D(xi) of the 30 simulations with
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parameters xi. We compute the mean absolute error

made on the approximation of the 3 global outputs O,

first with the biased approximation with O0D(φ(xi))

(MAEBiased), then with the corrected approximation

with Cφ,ψ (MAECorrected). Results are reported in Ta-

ble 4.

We observe a good approximation of the output

values compared to the range of values to be approxi-

mated, and that the corrected approximation makes a

better approximation of the outputs values than the

biaised approximation. This means the hypersurface ψ

indeed corrects errors due to the differences between the

coupled 0D simulations and the 3D sigma-simulations.

Table 4: Error in the approximation of the global out-

puts values O3D(xi) with the various methods.

Global Output SV (ml) DP (Pa) MP (Pa)

Range 38.23 3010 2254

MAECorrected 1.59 56.4 137
MAEBiased 4.58 62.8 140
MAEHypersurface 2.09 511 408

MAEHypersurface-11 0.25 174 93

Finally, we compare our method to an interpolation

with a degree 2 hypersurface (MAEHypersurface). To this

end we use the same formula than Equation 1, where

the Yi are replaced by the output values O3D(Xi). We

see in particular that our method performs better on

all the outputs (MAECorrected < MAEHypersurface), in

particular on the pressure values. This is because the

sigma-simulations are computed only in the directions

of maximal variations of the parameters σ0 and c1 (see

Section 3.2). There is then a few directions of the pa-

rameter space in which the variations of global output

values could not be evaluated by the interpolation.

In order to compare more fairly to an interpolation

method, we computed the sigma-simulations in all the

directions of the domain by selecting all the eigenvec-

tors in Section 3.2, leading to 2 · N1 + 1 = 11 sigma-

simulations. We performed the degree 2 interpolation

from these 11 sigma-simulations and report the results

(MAEHypersurface-11). The degree 2 hypersurface per-

forms better than our method on the stroke volume and

the mean pressure but not on the diastolic pressure.

We conclude that the approximation using the cou-

pling of the 0D and 3D models gives competitive ap-

proximation results compared to the classical regression

methods, and with the lowest computational cost. This

is because the variations of some outputs (which rely on

the same equations in both models) can be directly ap-

proximated in some directions of the parameter space,

without having to compute 3D simulations in these di-

rections. Here in particular, the pressure outputs varia-

tions due to changes in the haemodynamic parameters

C, Rp and Pve are correctly predicted with the coupling

(especially the Diastolic Aortic Pressure (DP) varia-

tions), even though no sigma-simulation was computed

in the directions of maximal variation of these param-

eters (Section 3.2). As a consequence, only 5 sigma-

simulations are required to approximate all the outputs

values within the parameter space with the coupling,

while the hypersurface interpolation needs 11 sigma-

simulations to achieve similarly accurate results.

4 Multi-Fidelity Optimization for Efficient 3D

Cardiac Model Personalisation

Here we present our multifidelity personalisation

method for the 3D model. We suppose a parameter es-

timation with CMA-ES was set up over N1 parameters

P of the 3D model as described in Section 2.3, some

global outputs O, some target values Ô and a popula-

tion size m. The idea of the method is to replace the

scores of 3D simulations in CMA-ES with approximate

scores calculated through multifidelity coupling.

We illustrate the method with the same set of 5 pa-

rameters P and 3 outputs O as in Section 3 and the

same number m = 30 for the population size. Target

values Ô for the optimization are respectively 60 ml

for the Stroke Volume (SV), 7315 Pa for the Diastolic

Aortic Pressure (DP) and 10152 Pa for the Mean Aor-

tic Pressure (MP). The normalisation coefficients for

this problem (in the vector N defined in Section 2.3.1)

are 10 ml for the Stroke Volume (SV), 200 Pa for the

Diastolic Aortic Pressure (DP) and the Mean Aortic

Pressure (MP).

4.1 Multi-fidelity-CMA: CMA-ES Optimisation with

the Multifidelity Coupling

At each iteration, the algorithm CMA-ES asks for the

scores of m simulations of the 3D model, whose param-

eters xj are drawn from a multivariate distribution.

A first approach to replace the computation of the

3D simulations by 0D simulations is to perform the

coupling described in Section 3 for each generation of

CMA-ES. This means recomputing sigma-simulations,

coupled 0D simulations and a parameter mapping for

each set of xj . This was our approach (called Coupled-

CMA) in (Mollero et al., 2016). We showed that the

optimisation could converge with approximate scores,

even as fast as with the real scores in some cases. We
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Fig. 4: Criteria for selecting the generation for the next coupling step in the selection step: as the 3D parameters

of the simulations asked by CMA-ES (in black) are increasingly far from the sigma-simulations (in green) of the

coupling, the predicted outputs values with 0D simulations (in orange) are increasingly far from the real outputs

values of the 3D simulations. We then recompute the coupling when this distance is too high (M(on) > γ
√
|O|).

also personalised 34 hearts with this method, thus ex-

hibiting a practical personalisation method with a lower

computational burden than the original CMA-ES algo-

rithm (because only the sigma-simulations were com-

puted for each generation instead of the m 3D simula-

tions).

Here we present an improved approach called

Multifidelity-CMA. Instead of recomputing the coupling

for each generation, we approximate scores of 3D sim-

ulations of successive generations of CMA-ES. Indeed,

because the sets of parameters xnj and xn+1
j asked by

CMA-ES in two consecutive generations n and n+1 are

usually close, the function Cφ,ψ computed at the itera-

tion n to approximate 3D simulations with parameters

xnj , can give a good approximation for 3D simulations

with parameters xn+1
j as well.

On the other hand, after a few iterations n+1..n+p,

the points asked by CMA-ES can be increasingly far

from the sigma-simulations of the multifidelity coupling

performed at n. This can lead to approximations of the

scores which are increasingly inaccurate, making the

optimisation impossible.

We then developed a criterion to evaluate the accu-

racy of the approximation for a few successive iteration

of CMA-ES, then decide at which step a new multi-

fidelity coupling has to be computed. This is done by

iterating on the following steps:

1. Coupling step. At a generation n0 of CMA-ES, we

first perform a multifidelity coupling, as explained in

3.4. This leads to the computation of the function

Cφ,ψ.

2. Exploration step. Then, we perform N iterations

n = n0+1..n0+N of the CMA-ES algorithm, where

all the outputs O3D(xnj ) of the 3D simulations with

parameters xni are approximated by Cφ,ψ(xnj ).

3. Control step. For each of these N iterations, we

compute a control-simulation: the 3D simulation

whose parameters on are the mean of the popula-

tion parameters xnj .

4. Selection step. We compute our criterion M(on)

as the Mahalanobis distance between the vector of

outputs values O3D(on) of the control-simulation

and the set of vectors of approximated outputs val-

ues Cφ,ψ(xnj ).

Finally we select the iteration n∗ at which the next

coupling step is performed with the following cri-

teria:

n∗ = argmin
M(on) < γ

√
|O|

O3D(on)

The process is illustrated in Fig 4. The Mahalanobis

distance M(on) is a ratio between the approximation
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error on the control-simulation output values, and the

range of approximate outputs values for this genera-

tion. Roughly, this gives an indication on ”how accurate

the coupling is” on the control-simulation, compared to

”how accurate it needs to be” so that CMA-ES can

rank the scores accurately.

For example in Fig 5, we report for N = 10 iter-

ations the scores of the control-simulations on which

were predicted through the function Cφ,ψ (in black),

and the real scores of these simulations (in blue). Si-

multaneously, we show the criterion M(on) for these N

iterations and the upper value (red line) γ
√
|O| for the

criterion (γ = 1.5 here).

We can see that the score prediction (thus the ap-

proximation of the outputs O3D(xnj ) values by Cφ,ψ) is

quite accurate for at least the 5 first iterations, and is

less accurate for n ≥ 6. Then, even though the score

prediction seems as accurate at the iteration 5 than at

the generation 1, M(on) is higher. This is because the

prediction error is more important relatively to the set

of Cφ,ψ(xnj ) of the generation, in particular in directions

where the set has a lower variance.

In this example, the iteration 5 was selected to re-

compute the coupling (black vertical line), which is also

the iteration where the control simulation has the min-

imal score over the 10 iterations. In some cases, later

iterations can have a lower score but are not selected

because the criterion M(on) is too high for this itera-

tion (such as the iteration 7).

The upper bound γ
√
|O| for the criterion has an im-

portant impact on the optimisation behavior. If a high

accuracy is imposed (small γ value), then one of the

earlier iterations of the exploration step is usually se-

lected for the subsequent coupling step, even if a later

control-simulation has a lower score. This can lead to a

slow optimization. On the other with a small accuracy

(high γ value) the CMA-ES algorithm can end up in

local minima because it performed the optimization on

inaccurate values.

Therefore the value of γ characterizes a trade-off

between maximising the optimisation gain with a sin-

gle coupling, and ensuring the approximation errors do

not impact the optimisation process. Because of the

probabilistic nature of the algorithm and the various

non-linearities of the score function, the optimal value

of γ seems very dependent on the optimisation prob-

lem. We found γ = 1.5 to give good convergence results

in our experiments and the number n∗ of the iteration

selected in the selection step is 5.5 in average in our

experiments.

Fig. 5: Top: real scores (blue) and approximated scores

(black) of the N=10 control-simulations. Bottom: Value

of the criterion M(on) of the control-simulations.

4.2 Computational Considerations: A Parallelizable

Method

The main computational cost in personalisation meth-

ods comes from the computation of the 3D simulations.

In our implementation, each simulation of one heart-

beat with the 3D model uses one CPU, during a time

T3D which depends mostly on the size of the mesh, and

the heartbeat duration.

Most of the modern research is performed on com-

puter clusters which can perform many tasks at the

same time. In particular in our method, many steps
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can be parallelized. To compare different optimization

methods in a parallel setting, we introduce here two

metrics: the classic CPU Time which measures the total

amount of CPU resources used, and the Optimization

Time which measures the duration of the optimization

in (real) time.

During one complete iteration of Multifidelity-CMA,

the following steps are parallelized:

1. Computation of the 2N2 + 1 3D sigma-simulations:

the simulations are performed in parallel and each

one takes a CPU Time T3D. The whole step has then

a CPU Time of (2N2 +1) ·T3D and an Optimization

Time of T3D
2. Computation of the coupled 0D simulations: all the

parameter estimations are performed in parallel.

Each one uses 4 CPUs during fixed time of around

3 minutes. The whole step has a CPU Time of

(2N2 + 1) · 4· 3 minutes and an Optimization Time

of 3 minutes.

3. Computation of the N 3D control-simulations: the

simulations are performed in parallel and each one

takes a CPU Time T3D. The whole step has a CPU

Time of N · T3D and an Optimization Time of T3D

In our example we have 5 sigma-simulation and 10

control-simulation, and the 3D simulation takes 15 min-

utes. Each iteration of Multifidelity-CMA then takes a

total CPU Time of 5*15+4*5*3+10*15 = 285 minutes

and an Optimization Time of 33 minutes.

4.3 Results: Comparison of Optimization Time, CPU

Time for 4 personalizations methods

Here we compare the evolution of the CPU Time and

the score S during optimization on a typical case, with

the 4 following optimization methods:

1. The Multifidelity-CMA method with 0D/3D cou-

pling.

2. The Multifidelity-CMA method where the approxi-

mation of outputs is done with a degree 2 hypersur-

face interpolation relying on 11 sigma-simulations

(as explained in Section 3.6).

3. The classic CMA-ES method with a population size

of m = 30.

4. BOBYQA, which is another commonly used

gradient-free optimizer for example to solve person-

alisation problems (Seegerer et al., 2015) or as a

baseline to evaluate other personalisation methods

(Neumann et al., 2016). It uses trust region method

and forms successive quadratic models of the score

function which interpolates the points computed

during optimization.

Fig. 6: Comparison of the evolution of the score S (top)

and CPU Time (bottom) during optimization for the

four methods. BOBYQA is in red, the classic CMA-

ES is in blue, Multifidelity-CMA with the hypersurface

approximation is in black and Multifidelity-CMA with

0D/3D coupling is in green.

Results are shown in Figure 6. We can see that

BOBYQA (red) is slow to converge, but has also a low

computational cost, both due to the fact that BOBYQA

performs only one iteration at a time. The normal

CMA-ES (blue) converges faster than BOBYQA, but

with a very high computational cost because 30 simula-

tions of the 3D model are computed at each generation.

Finally, both our multifidelity approaches are very

fast to converge, however the Multifidelity-CMA which

uses the 0D/3D multifidelity coupling is the one

with the lowest CPU Time (because only 5 sigma-
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simulations per complete iteration is computed instead

of 11, as explained in Section 3.6).

We conclude than the multifidelity approach of the

CMA-ES algorithm leads to considerable improvements

in optimization speed, both from the original CMA-ES

algorithm and BOBYQA. Finally, the approximation of

outputs with a 0D/3D multifidelity coupling instead of

a generic hypersurface interpolation leads to additional

computational gains.

4.4 Results: Personalisation of a database of 121 cases

We finally present results on a large database of 121

cases. For each patient, a biventricular heart mesh ge-

ometry (between 10 000 and 15 000 nodes) was built

from the available MRI image and the boundaries of

the myocardium were tracked in the cine MRI images as

described in (Jolly et al., 2011) and (Wang et al., 2013).

This led to the computation of the volume curve, then

the value of the stroke volume. Pressure measurements

were also available for each heartbeat.

We applied our Multifidelity-CMA method to

personalise the whole cohort. The optimization started

from a vector xstart of parameter values which has the

same values for every patient, except for Pve, which is

set at the value DP − 2000Pa (see Table 6). The al-

gorithms ran for around 2.5 days, and the BOBYQA

optimization was ran on the same problems during this

period as well.

We consider a personalisation to be successful when

a set of parameter values was found with a score lower

than l1 = 0.1, and acceptable if the score is lower than

l2 = 1. This means the personalised simulation matches

the target stroke volume within 1 ml and the pressure

measurements within 20 Pa for the successful case, and

within respectively 10 ml and 200 Pa in the acceptable

case. In other cases the personalisation is said failed. We

report the number of successful, acceptable and failed

cases on this database, for both methods in Table 5.

Table 5: Results of the personalisation on the database.

Result Successful Acceptable Failed

Multifidelity-CMA 113 6 2
BOBYQA 5 69 47

A high number of cases were successfully person-

alised (113 among 121 cases) with our method. For the

acceptable cases, and one of the failed case, the opti-

mization had converged in a local minima. For the other

failed case, the CMA-ES algorithm diverged to extreme

parameter values during optimization. For BOBYQA,

the convergence was not yet reached in most of the

non-successful cases (the score is the lowest in the last

iteration).

We finally report the mean and standard deviation

of all the estimated parameter values, in Table 6, as well

as the norm of their relative variation |∆| compared to

the starting value during the optimization. This shows

in particular that the stiffness c1 did not change a lot

during the personalisation process. The arterial com-

pliance C and the contractility σ0 are the parameters

which changed the most.

5 Discussion and Conclusion

We presented a novel multifidelity approach involving

a 3D cardiac electromechanical cardiac model and a

simplified 0D model, which relies on the same equa-

tions but with simplifying assumptions. We developed

an original multifidelity coupling between the param-

eters of both models, which gives a good multifidelity

approximation of global output values in 3D simulations

from 0D simulations. We then used this approximation

in an efficient parameter estimation process using the

genetic algorithm CMA-ES, in order to have an efficient

multifidelity personalisation method for the 3D model.

Our multifidelity coupling procedure computes a

mapping between the parameters of a few represen-

tative 3D sigma-simulations within the domain, and

the parameters of corresponding coupled 0D simula-

tions with the same output values. This is done through

parameter estimation on the 0D model parameters to

compute coupled 0D simulations that have the same

global outputs values than 3D sigma-simulations. The

parameter mapping is then derived through an interpo-

lation method.

This enables to get fast and accurate approxima-

tions of 3D simulations with the 0D model. These ap-

proximations are then used in the parameter estimation

of 3D model parameters with CMA-ES, to replace 3D

simulations while simultaneously controlling the accu-

racy of the approximation and recomputing a coupling

when the accuracy is too low. Ultimately, this results

into both an increase of the speed of the 3D parameter

estimation process and a decrease of the computational

cost.

Our multifidelity approach slightly differs from more

classic multifidelity methods (Kennedy and O’Hagan,

2000; Peherstorfer et al., 2016) where the same param-

eter values are used as input of both models, and the

outputs of the low-fidelity model are corrected a poste-

riori to fit the outputs of the high-fidelity model. Since
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Table 6: Statistics of the estimated parameter values and their variations during the personalisation.

c1 (kPa) σ (MPa) Pve (Pa) R (MPa.m3.s) C (MPa-1.m-3)

xstart 50.1e1 68.8 DP-2000 54.1 18.0e-3

Mean 50.5e1 91.6 4760 68.2 8.17e-3

Std. 0.36e1 36.5 1340 16.3 2.41e-3

Mean |∆| 4.74% 53.9% 26.2% 35.8% 54.7%

the parameters of both models are not exactly the same,

we had to find a mapping between the parameters in-

stead of the outputs. This was tractable thanks to the

fast parameter estimation in the 0D model.

A first extension of the multifidelity coupling would

be to use additional shared parameters and equations

in both models, to approximate a larger variety of out-

puts of the 3D model (e.g. flow velocities, timings of

valve opening and closing). Since CMA-ES has already

been proven successful on complex optimisation prob-

lems with a larger parameter space, we expect the per-

sonalisation method to scale well. A second extension

would be to use the multifidelity personalisation to per-

sonalise ”geometrical” or ”local” measurements which

are outputs of the 3D model but not of the 0D model

(e.g. the septal shortening or the circumferential tor-

sion). Indeed, even though they cannot be approxi-

mated through the 0D/3D multifidelity coupling, their

values can still be locally approximated during person-

alisation using the hypersurface interpolation.

Finally, the lower-fidelity approximation could be

used not only for personalisation but also for other ap-

plications that require many simulations, such as pa-

rameter sensitivity or uncertainty quantification (with

Monte-Carlo methods for example) and also for applica-

tions simulations that require the computation of many

cardiac cycles. In particular, a case where the multifi-

delity approach could be useful is when the 3D model

is coupled with a full-body circulation model as bound-

ary conditions. Indeed, studies associated to such mod-

els (for example on the influence of physical exercise,

increased heart rate and/or pressure loads) usually re-

quire many heartbeats to be computed. This can be

computationally intensive with the 3D model but, it

could be done faster using 0D simulations, through a

similar coupling method than in this manuscript. In this

case where the number of coupled parameters would

be high, additional constraints could be added in the

parameter mapping to impose correlations between pa-

rameters with different equations or values but a similar

behavior.
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6 APPENDIX A: Mechanical Equations and

Haemodynamics

As described in (Marchesseau et al., 2013a) our 3D electrome-
chanical model is based on the Bestel-Clement-Sorine model
(BCS) of sarcomere contraction as extended by Chapelle
et al. (2012), in conjunction with a Mooney-Rivlin energy for
the passive hyperelasticity. Hemodynamics are represented
through global values of pressures and flows in the cardiac
chambers, and coupled to the mechanical equations with the
Windkessel model of blood pressure for the after-load (aortic
pressure).

6.1 The BCS model: Active Contraction and Passive

Material

The BCS model describes the sarcomere forces as the sum
of an active contraction force in the direction of the fibre, in
parallel with a passive isotropic visco-hyperelastic component
(see Fig 1.b). It is compatible with the laws of thermodynam-
ics, and allows to model physiological phenomena at the sar-
comere scale which translate at the macroscopic scale (such
as the Starling Effect).

The active force in the sarcomere is modeled by the fil-
ament model of Huxley (1957), which describes the bind-
ing/unbinding process of the actin and myosin in the sar-
comere at the nanoscopic scale. At the mesoscopic scale, it
results (Caruel et al., 2014) in a differential equation which
relates the active stress τc, the stiffness kc and the strain ec
of the filament within the sarcomere:

{
k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+,
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+,

(3)

where α is a constant related to the cross-bridge destruction
during contraction, k0 and σ0 are respectively the maximum
stiffness and contraction. The values of |u|+ and |u|- are re-
spectively the rate of build-up kATP and decrease kRS of the
force during contraction and relaxation, which depends on
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the depolarisation and repolarisation times Td and Tr of the
sarcomere:

u =


kATP when Td ≤ t ≤ Tr

−kRS otherwise
|u|+ = max(u, 0),

|u|- = −min(u, 0).

(4)

This active force is applied in the direction of the fibre
through the visco-elastic component, made of a spring Es

and a dissipative term µ (see Fig 1.b). As derived in Caruel
et al. (2014), the resulting stress σ1D in the fibre direction is
given by:
σ1D = Es

e1D − ec
(1 + 2ec)2

,

(τc + µėc) = Es

(e1D − ec)(1 + 2e1D)

(1 + 2ec)3
,

(5)

where e1D = τ1 · e · τ1 is the strain in the fibre direction
τ1 (e is the Green-Lagrange strain tensor).

Finally for the passive component the isotropic Mooney
Rivlin model of hyperelastic material is used, driven by the
following strain energy:

We = c1(I1 − 3) + c2(I2 − 3) +
K

2
(J − 1)2, (6)

where I1, I2 and J are the invariants of the Cauchy-Green
deformation tensor, c1, c2 and K are the parameters of the
material.

6.2 Haemodynamic Model

To model the influence of blood dynamics during the car-
diac circle, the mechanical equations are coupled with a basic
circulation model implementing the 4 phases of the cardiac
cycle. For a given ventricle, if we note Pat the pressure in the
atrium, Par the pressure in the artery and PV the pressure in
the ventricle, the phases are the following:

– Diastolic Filling: when PV ≤ Pat, the atrial valve is open
and the ventricle fills up with blood.

– Isovolumetric contraction: when contraction starts, PV

rises. Pat ≤ PV ≤ Par and all the valves are closed.
– Systolic Ejection: when PV ≥ Par, the arterial valve

opens and the blood is ejected into the artery.
– Isovolumetric relaxation: when the contractile forces dis-

appear, PV finally decreases. Pat ≤ PV ≤ Par again and
all the valves are closed.

We use the haemodynamic model introduced by Chapelle
et al. (2012) which links the blood flow q to the ventricular,
atrial and arterial pressures with the following equations:

q =

Kat(PV − Pat) for PV ≤ Pat

Kiso(PV − Pat) for Pat ≤ PV ≤ Par

Kar(PV − Pat) +Kiso(Par − Pat) for PV ≥ Par

(7)

Here the atrial pressure Pat(t) (cardiac preload) is imposed at
a constant value Pat lower except for a pressure bump up to
Pat upper at the beginning of cardiac cycle, to account for the
contraction of the atrium before the ventricular contraction.
Finally the pressure of the artery Par (cardiac afterload) is
modeled with the 3-parameters Windkessel model (Westerhof

et al., 1969) and coupled to the ventricular outflow q through
the equation:

RpC ˙Par + Par − Pve = (Rp + Zc)q +RpZcCq̇, (8)

where Rp is the Peripheral resistance, Zc is the Characteris-
tic impedance, C is the Arterial compliance and PV e is the
Central Venous Pressure.

6.2.1 Implementation

The passive Mooney Rivlin energy is discretised on the 3D
mesh with the MJED (Multiplicative Jacobian Energy De-
composition) method described in (Marchesseau et al., 2010),
and the BCS fibre stress and stiffness are computed at each
node, separately from the positions and velocities. This al-
lows a fast assembly and a good conditioning of the system
of mechanical equations. A Rayleigh damping is then added
to account for the viscous global dissipation and finally, the
ventricular pressure is computed using a prediction-correction
approach, performed after solving the first system of mechan-
ical equations. This efficient algorithm and all the details
of the mechanical equations and their 3D discretizations are
fully discussed in (Marchesseau et al., 2013a).

7 APPENDIX B: Reduced Equations of the 0D

model

7.0.1 Mechanical Equations

The list of simplified equations of our 0D model is reported in
Table 7. Equations (a), (b), (c) and (f) are the same sarcomere
and visco-elastic equations than Equations 3 & 5, which are
calculated once for the whole sphere. C in equations (d), (e),
(g) and (h) denotes a component of the simplified Cauchy-
Green deformation tensor which depends only on y = R−R0.
σpassive in equation (g) is the stress due to the passive law
and σviscosity in equation (h) is the stress due to an additional
viscous damping η, both expressed as a simple function of C
(see (Caruel et al., 2014) for the full derivations). In equation
(i), Σsph is the sum of all the stresses applied to the sphere.
Equation (j) is the resulting equation of motion which, cou-
pled with the haemodynamic model (k) and the windkessel
equation (l), gives the full system of 3 equations to be solved
at each iteration.

7.0.2 Electrophysiology Equations

Assuming synchronous and homogeneous electrical activation
(and thus sarcomere force) means that all of the ventricle is
depolarised simultaneously. This leads to a rate of ventricu-
lar pressure rise during the isovolumetric contraction (resp.
isovolumetric relaxation) which is very close to the rate of
build-up kATP (resp. decrease kRS) of the active stress τc.
However in 3D, this rate is also very dependent on the time
for the ventricle to be fully depolarised, which is roughly the
QRS duration.

In order to correct this discrepancy between the models,
we adapted the electrical parameter u to take into account the
QRS duration. We model the fraction fdepo of the ventricle
which is currently depolarised as a piecewise linear function of
time which depends on Td,global, Tr,global and QRSduration.
Then the values of |u|+ and |u|− in Equation (a) are adapted
to depend on the value of fdepo as described in Table 8.
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

k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+

(τc + µėc) = Es

(e1D − ec)(1 + 2e1D)

(1 + 2ec)3

C = (1 +
y

R0
)2

e1D =
C − 1

2

σ1D = Es

e1D − ec
(1 + 2ec)2

σpassive = 4(1− C-3)(c1 + c2C)

σviscosity = 4η(1 + C-6)Ċ

Σsph = σ1D + σpassive + σviscosity

ρd0ÿ = Pv(1 +
y

R0
)2 −

d0

R0
(1 +

y

R0
)Σsph

q = 4πR2
0(1 +

y

R0
)2ẏ =

Kat(PV − Pat) for PV ≤ Pat

Kiso(PV − Pat) for Pat ≤ PV ≤ Par

Kar(PV − Pat) +Kiso(Par − Pat) for PV ≥ Par

RpC ˙Par + Par − Pve = (Rp + Zc)q +RpZcCq̇

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Table 7: Mechanical equations of the 0D model

f =



t− Td,global

QRSduration

when Td,global ≤ t ≤ Td,global +QRSduration

1 when Td,global +QRSduration ≤ t ≤ Tr,global

(1−
t− Tr,global

QRSduration

) when Tr,global ≤ t ≤ Tr,global +QRSduration

0 otherwise
|u|+ = kATP.fdepo

|u|− = kRS.(1− fdepo)

(9)

Table 8: Electrical activation in the 0D model
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