NMF in Screening Some Spirometric Data, an Insight into 12-Dimensional Data Space

Abstract : We present the usage of the Non-negative Matrix Factorization (NMF), an unsupervised machine learning method, which learns normal and abnormal state of patient’s ventilatory systems. This is done using samples of patients having defects of obturative and restrictive kind and a control group.We show that the NMF method can identify patients being in the normal state and screen them off from the remaining patients; however the kind of the ventilatory disorder for the remaining patients is not recognized. This is confronted with clustering provided by the k-means method and visualization of the 12-dimensional data using heatmaps and Kohonen’s self-organizing maps.The data set can be reconstructed with a 0.9746 accuracy (fraction of explained variance) from 6 base vectors provided by the NMF and using appropriate encoders provided also by the NMF; while 3 factors yield an 0.8573 fraction of explained variance.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda; Rituparna Chaki. 16th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Jun 2017, Bialystok, Poland. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10244, pp.155-166, 2017, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-59105-6_14〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01656197
Contributeur : Hal Ifip <>
Soumis le : mardi 5 décembre 2017 - 14:56:07
Dernière modification le : mercredi 6 décembre 2017 - 01:21:03

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Anna Bartkowiak, Jerzy Liebhart. NMF in Screening Some Spirometric Data, an Insight into 12-Dimensional Data Space. Khalid Saeed; Władysław Homenda; Rituparna Chaki. 16th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Jun 2017, Bialystok, Poland. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10244, pp.155-166, 2017, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-59105-6_14〉. 〈hal-01656197〉

Partager

Métriques

Consultations de la notice

81