D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of Computer and System Sciences, vol.66, issue.4, pp.671-687, 2003.
DOI : 10.1016/S0022-0000(03)00025-4

N. Ailon and B. Chazelle, The Fast Johnson???Lindenstrauss Transform and Approximate Nearest Neighbors, SIAM Journal on Computing, vol.39, issue.1, pp.302-322, 2009.
DOI : 10.1137/060673096

J. J. Amador, Random projection and orthonormality for lossy image compression, Image and Vision Computing, vol.25, issue.5, pp.754-766, 2007.
DOI : 10.1016/j.imavis.2006.05.018

R. I. Arriaga and S. Vempala, An Algorithmic Theory of Learning: Robust Concepts and Random Projection, Proc. 40th Ann. Symp. Foundations of Computer Science, pp.616-623, 1999.

R. Brunelli, Template matching techniques in computer vision. Theory and practice . Southern Gate, 2009.

S. Dasgupta and A. Gupta, An elementary proof of the Johnson-Lindenstrauss Lemma. Random Structures and Algorithms, pp.60-65, 2002.

E. R. Davies, Acomparison ofmethods for the rapid location of products and their features and defects, Proceedings of the 7th international conference on automated inspection and product control, pp.111-120, 1985.

E. R. Davies, Machine vision: Theory, algorithms, practicalities, 2005.

J. E. Fowler and Q. Du, Anomaly Detection and Reconstruction From Random Projections, IEEE Transactions on Image Processing, vol.21, issue.1, pp.184-195, 2012.
DOI : 10.1109/TIP.2011.2159730

W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics, vol.26, pp.189-206, 1984.
DOI : 10.1090/conm/026/737400

J. Matou?sekmatou?sek, On variants of the JohnsonLindenstrauss lemma, Random Structures and Algorithms, pp.142-156, 2008.

E. Meckes, Approximation of Projections of Random Vectors, Journal of Theoretical Probability, vol.107, issue.3, pp.333-352, 2012.
DOI : 10.1007/s004400050087

F. M. Megahed, W. H. Woodall, and J. A. Camelio, A Review and Perspective on Control Charting with Image Data, Journal of Quality Technology, vol.42, issue.6, pp.84-98, 2011.
DOI : 10.1021/ie020941f

F. M. Megahed, L. J. Wells, J. A. Camelio, and W. H. Woodall, A Spatiotemporal Method for the Monitoring of Image Data, Quality and Reliability Engineering International, vol.164, issue.1, pp.967-980, 2012.
DOI : 10.1108/RJTA-12-02-2008-B002

D. C. Montgomery, Introduction to Statistical Quality Control, 1996.

E. Rafajlowicz, ?. Pawlak, H. Kruczek, and W. Rafajlowicz, Statistical Classifier with Ordered Decisions as an Image Based Controller with Application to Gas Burners, Artificial Intelligence and Soft Computing -13th International Conference Proceedings, Part I, pp.586-597, 2014.
DOI : 10.1007/978-3-319-07173-2_50

C. Scheitler, Experimental investigation of direct diamond laser cladding in combination with high speed camera based process monitoring, Journal of Laser Applications, vol.28, issue.2, p.22304, 2016.
DOI : 10.2351/1.4944004

E. Skubalska-rafajlowicz, Local Correlation and Entropy Maps as Tools for Detecting Defects in Industrial Images, International Journal of Applied Mathematics and Computer Science, vol.2, issue.1, p.4147, 2008.
DOI : 10.1109/TSMC.1979.4310076

E. Skubalska-rafajj-lowicz, Detection and estimation translations of large images using random projections, In 7th International workshop on multidimensional (nD) systems (nDs), Poitiers 5?7, p.6076838, 2011.

E. Skubalska-rafajj-lowicz, Random projections and Hotellings T 2 statistics for change detection in high-dimensional data stream, Int. J. Appl. Math. Comput. Sci, vol.23, issue.2, pp.447-461, 2013.

G. Tsagkatakis and A. Savakis, A random projections model for object tracking under variable pose and multi-camera views, 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp.1-75289384, 2009.
DOI : 10.1109/ICDSC.2009.5289384

S. Vempala, The Random Projection Method, 2004.