Image-Driven Decision Making with Application to Control Gas Burners

Abstract : Our aim is to propose a model-free approach to decision making that is based on the direct use of images. More, precisely, a content of each image is used – without further processing – in order to cluster them by the K-medoids method. Then, decisions are attached to each cluster by an expert. When a new image is acquired, it is firstly classified to one of the clusters and the corresponding decision is made. The approach is conceptually rather simple, but its success in on-line applications depends on the way of organizing learning and decision phases. We illustrate the approach by the example of a decision-making system for industrial gas burners.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda; Rituparna Chaki. 16th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Jun 2017, Bialystok, Poland. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10244, pp.436-446, 2017, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-59105-6_37〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01656234
Contributeur : Hal Ifip <>
Soumis le : mardi 5 décembre 2017 - 14:58:10
Dernière modification le : mercredi 6 décembre 2017 - 01:20:58

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ewaryst Rafajłowicz, Wojciech Rafajłowicz. Image-Driven Decision Making with Application to Control Gas Burners. Khalid Saeed; Władysław Homenda; Rituparna Chaki. 16th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Jun 2017, Bialystok, Poland. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10244, pp.436-446, 2017, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-59105-6_37〉. 〈hal-01656234〉

Partager

Métriques

Consultations de la notice

13