
HAL Id: hal-01656238
https://inria.hal.science/hal-01656238

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sampling Method for the Flow Shop with Uncertain
Parameters

Pawel Rajba, Mieczyslaw Wodecki

To cite this version:
Pawel Rajba, Mieczyslaw Wodecki. Sampling Method for the Flow Shop with Uncertain Parameters.
16th IFIP International Conference on Computer Information Systems and Industrial Management
(CISIM), Jun 2017, Bialystok, Poland. pp.580-591, �10.1007/978-3-319-59105-6_50�. �hal-01656238�

https://inria.hal.science/hal-01656238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Sampling method for the flow shop with
uncertain parameters

Pawe l Rajba and Mieczys law Wodecki

Institute of Computer Science, University of Wroc law
Joliot-Curie 15, 50-383 Wroc law, Poland

mieczyslaw.wodecki@uwr.edu.pl

pawel.rajba@uwr.edu.pl

Abstract. In the classic approach for optimization problems modelling
well defined parameters are assumed. However, in real life problems we
find ourself very often in a situation where parameters are not defined
precisely. This may have many sources like inaccurate measurement, in-
ability to establishing precise values, randomness, inconsistent informa-
tion or subjectivity.
In this paper we propose a sampling method for solving optimization
problems with uncertain parameters modeled by random variables. More-
over, by applying confidence intervals theory, the execution time has been
significantly reduced. We will also show an application of the method for
the flowshop problem with deadlines and parameters modeled by random
variables with the normal distribution.

Keywords: flowshop with deadlines, uncertain parameters, tabu search,
normal distribution

1 Introduction

Practical machine scheduling problems are numerous and varied. They arise
in diverse areas such as flexible manufacturing systems, production planning,
communication, computer design, etc. A scheduling problem consists in finding
sequences of jobs on given machines with the objective of minimizing some func-
tion. In a simpler version of the problem, the flow shop scheduling, all jobs pass
through all machines in the some order. In this paper, we deal with another spe-
cific version of the problem called a permutation flow shop scheduling problem
where each machine processes the jobs in the same order (F ||wiUi).

Research concerning problems of algorithms arrangement refers mainly to
deterministic models ([1]). To solve such problems, which belong in the majority
of cases to the NP-strongly hard class, rough algorithms are applied successfully
([2], [6], [8]). They are mainly based on local optimalization methods: simulated
annealing, tabu search and a genetic algorithm. Determined by these algorithms,
solutions only slightly differ from best solutions. However, in practice, in the
course of a process realisation (according to the fixed schedule) very often it
appears that certain parameters (e.g. the task completion time) are different from

2

the initial ones. By the lack of the solutions stability in the fixed schedule there
may occur a big mistake, which makes such a schedule unacceptable. That’s why
a necessity exists to construct such models and methods of their solutions that
would take into account potential changes in the course of parameters process
realisation and generate stable solutions ([4], [9], [15]).

Problems of arrangements with uncertain data may be solved using methods
based on elements of probability calculus ([13], [14], [5]). In this work we deal
with the flow shop problem of tasks arrangement with the latest completion
times and the minimalisation of the costs sum of tardy tasks ([7], [10]). On
the basis of this problem the resistance to a random variable of constructive
solutions of parameters according to tabu search metaheuristics is examined.

In this study, permutation flow shop scheduling problem of the typical situ-
ation of the flexible production systems which occupy a very important place in
recent production systems are taken into consideration with random variables
due dates.

2 Flowshop problem

Let J = {1, . . . , N} be a set of jobs to be executed on M machines from the
set M = {1, . . . ,m}. At any given moment a specific machine can execute at
most one job and all jobs needs to be executed without the preemption. Any
job j ∈ J needs to be executed in sequence on every machine and if a job
is being executed on the machine k then it means that it has been executed
on machine the k − 1 (k = 2, 3, . . . ,M). Jobs are executed in a given order
determined by a permutation with a constraint that the permutation is applied
on all machines. The execution of a job on a machine is named operation. In this
section we consider flowshop problem with due dates defined as a set (pi,j , wi, d̃i)
(i = 1, . . . , N , j = 1, . . . ,M) where pi,j are processing times of operations, wi
are weights for all jobs and d̃i are due dates for all jobs, but they are defined as
random variables with the distribution N(di, c · di).

Let Π be the set of all permutations of the set J . For every permutation
π ∈ Π we define

Cπ(i),j =


∑i
k=1 pπ(i),j , dla j = 1,

Cπi,j−1 + pπ(i),j , dla i = 1, j > 1,

max{Cπi,j−1, Cπi−1,j}+ pπ(i),j , dla i > 1, j > 1,

as a completion time of execution job i on machine j in reference to permutation
π.

The cost of execution of operations determined by permutation π is as follows
n∑
i=1

wπ(i)Ũiπ(i).

where

Ũiπ(i) =

{
0 dla Cπ(i) 6 d̃iπ(i),

1 dla Cπ(i) > d̃iπ(i).

3

We consider the optimization problem where the goal is to find a permutation
π∗ ∈ Π which minimizes cost of execution of all operations:

W̃ (π∗) = min
π∈Π

(
n∑
i=1

wπ(i)Ũiπ(i)

)
.

3 Tabu search

Rough algorithms are used mainly to solve NP-hard problems of discrete opti-
mization. Solutions determined by these algorithms are found to be fully sat-
isfactory (very often they differ from the best known solutions approximately
less than a few percent). One of realizations of constructive methods of these
algorithms is the tabu search, whose basic elements are

• movement – a function which transforms one task into another,
• neighborhood – a subset of acceptable solutions set,
• tabu list – a list which contains attributes of a number of examined solutions.

Let π ∈ Π be a starting permutation, LTS a tabu list and π∗ the best solution
found so far.

Algorithm 1 Tabu Search
1: repeat
2: Determine the neighborhood N (π) of permutation π
3: Delete from N (π) permutations forbidden by the list LTS

4: Determine a permutation δ ∈ N (π), such that F(δ) = min{F(β) : β ∈ N (π)}
5: if F(δ) < F(π∗) then
6: π∗ := δ
7: Place attributes δ on the list LTS

8: π := δ
9: until the completion condition

3.1 Movement and Neighborhood

Let π = (π(1), . . . , π(n)) be any permutation from the set Π. By πkl (l =
1, 2, . . . , k − 1, k + 1, . . . , n) we denote the permutation obtained from π by
a change of positions π(k) with π(l). We say, in such a case, that a πkl per-
mutation was generated from π by a type of a swap move skl (i.e. a permutation
πkl = skl (π)). Then, let M(π(k)) be a set of swap moves of an element π(k), a set
of all such movements

M(π) =
⋃

π(k)∈L(π)

M(π(k)).

4

The neighborhood of an element π ∈ Π is a set of permutations

N (π) =
{
skl (π) : skl ∈M(π) ∩ L(π)

}
,

where L(π) = {π(i) : Cπ(i) > dπ(i)} is a set of delay solutions in π.

By implementing an algorithm from the neighborhood permutations whose
attributes are on the tabu list LTS are removed.

3.2 The Tabu Moves List

To prevent a cycle from arising some attributes of each movement are put on
the list of tabu moves. It’s served by means of the FIFO queue. Performing
a movement srj ∈ M(π) (i.e. generating it from π ∈ Π the πrj permutation) on
the tabu list LTS attributes of this movement, i.e. the triple (π(r), j,F(πrj)) are
put down.

Assuming that we examine a movement skl ∈ M(β) generating from β ∈ Π
a permutation βkl . If on the list LTS there is a triple (r, j, Ψ) such that β(k) = r,
l = j and F(βkl) ≤ Ψ , then such a movement is forbidden and removed from the
set M(β).

4 Robustness

Due to the fact that we consider uncertain environment and the actual values are
not known at the moment of the algorithm execution, we need a way to measure
the quality of solutions. We assume that we have a set of reference test data
and there are two algorithms: the examined one and the reference one (classic in
our paper). The scenario of verification is as follows. For a specific test instance
both algorithms propose solutions πp (examined) and πd (reference) which we
expect to be robust. Then we generate a set of disturbed subinstances based on
the test instance and for every subinstance we calculate the cost of execution
with reference to πp (cost wp) and πd (cost wd). We also calculate an “almost
optimal” solution for the subinstance w∗. Having that we calculate a relative
error for all subinstances, then calculate relative error for all instances and by
that we are able to take conclusion about the algorithm. We do that for both
algorithms and compare the final values.

More formally, let define the basic robustness coefficient as a relative distance
between examined and the reference solution, i.e. let w be a cost of “robust”
solution (wp or wd) and w∗ be the reference “almost optimal” solution cost.
Then relative error

δ =
w − w∗

w∗
100%

and it shows how many percent w is worse than w∗.

In some scenarios we need to compare the sets of values based on the dis-
turbed data, so we propose an extension to the basic error definition. Let consider

5

s disturbed data instances, w1, . . . , ws be cost values obtained by examined algo-
rithm and w∗1 , . . . w

∗
s be reference cost values. Then we define extended relative

error as follows:

∆ =
w1+...+wn

n − w∗
1+...+w

∗
n

n
w∗

1+...+w
∗
n

n

=
(w1 + . . .+ wn)− (w∗1 + . . .+ w∗n)

w∗1 + . . .+ w∗n

Let ψ be a data instance, D(ψ) be a set of disturbed data subinstances obtain

from ψ based on the random variable d̃i and

– Aref be an algorithm which find the reference solution,
– A be the examined algorithm,
– πM,x be a solution obtained by algorithm M ∈ {A,Aref} for the problem

instance x,
– W (πM,x, y) be the cost of instance y calculated by applying a solution πM,x.

Then

∆(A,ψ,D(ψ)) =

∑
ϕ∈D(δ)W (πA,ψ, ϕ)−

∑
ϕ∈D(δ) F (πAref,ϕ, ϕ)∑

ϕ∈D(δ)W (πAref,ϕ, ϕ)
,

we define as solution robustness πA,ψ (obtained by the algorithm A for instance
ψ) based on set of disturbed data D(ψ).

Let Ω be a set of test data for the examined problem. Then by

S(A,Ω) =
1

Ω

∑
ψ∈Ω

∆(A,ψ,D(ψ)) (1)

we define as the robustness coefficient for the algorithm A on the set of test data
Ω. The less the value is, the better the algorithm is, i.e. solutions obtained by
the examined algorithm are more robust and random changes in the actual data
don’t affect significantly the final execution cost.

5 Sampling method

The idea of the method is as follows. In every tabusearch algorithm iteration
we are testing different candidate solutions from the neighbourhood to find the
best one and improve the current global best solution. Let assume an instance
(pi,j , wi, d̃i) and that we examine the candidate solution, a permutation π. Due

to the fact that d̃i is defined as random variable, we don’t know the actual data
that may come. What we propose in the sampling method is to simulate this
actual scenario by testing the candidate solution on a sample of disturbed data
generated from d̃i. We can describe the method in the following main steps:

1. Generate l vectors d
k

= (d
k

1 , . . . , d
k

N), where k ∈ {1, . . . , l}. By that we get

l deterministic instances (pi,j , wi, d
k
).

6

2. For every deterministic instance a cost is calculated based on the candidate
solution π. By that we obtain sample Wπ

1 , . . . ,W
π
l .

3. We calculate a mean x and a standard deviation from s the sample which
are used in the comparison by tabusearch. Of course less is better.

One can easily notice that in the above description we are missing the size
of the sample, i.e. the value of l. We want the l to be as small as possible and
meaningful on the other hand. To determine that we apply confidence intervals
theory with the standard significance level α = 5%. Please note that we don’t
know the distribution of the sample Wπ

1 , . . . ,W
π
l . By that we apply the following

variant of significance level formula:

x− µα
s√
l
< m < x+ µα

s√
l

where l is a sample size (at least 30), x is the sample mean, s is the sample
standard deviation and µα is the value of random variable N(0, 1) under the
condition:

Φ(µα) = 1− α

2
what, according to the assumptions, provide µα = 1, 96.

To sum up, the comparison criteria in the tabusearch method needs to be
extended by the following code:

Function 2 Extention for comparison criteria in tabu search

1: z ← 0 . current number of generated vectors
2: l← 30
3: Generate l − z vectors (d

k
= (d

k
1 , . . . , d

k
N), where k ∈ {1, . . . , l}. By that we have

l instances (pi,j , wi, d
k
)

4: For every new instance calculate cost in context of candidate solution π. We obtain
sample Wπ

1 , . . . ,W
π
l .

5: Calculate mean x and standard deviation s from sample.
6: z ← l
7: if d 6 5%x or l > N ·M then
8: return (x, s)
9: else

10: l← l + 10%l
11: Go to point 3

A remark: random sample don’t need to be generated with every calculation
of comparison criteria function. It is enough to generate it once for a specific data
instance and this way it has been implemented in the computational experiments.

6 Computational experiments

In this section we describe the method for generating random data and elabo-
rate the efficiency of the proposed method. The tabu search algorithm presented

7

in section 3 has been appropriately applied. As a reference algorithm we use
classic deterministic implementation of tabusearch which we compare with the
adaptation of tabusearch for the sampling method. Moreover, the following cus-
tomization has been applied:

– start permutation: π = (1, 2, . . . , n),
– tabu list size: n,
– algorithm’s iterations count: n.

In order to measure the efficiency of the proposed method we examine the
computational complexity by checking samples’ size and the robustness.

6.1 Test data

Both implemented algorithms have been examined on the commonly used refer-
ence test data which comes from [12] where he hired variants with jobs’ numbers
N = 20, 50, 100 and machines’ numbers M = 5, 10, 20 what give 9 combina-
tions. For every combination 10 examples are available so in total we have 90
test examples. Due to the fact that published examples consist of only process-
ing times we needed to complete those examples by generating weights (wi)
and due dates (di). We applied the following schema: wi has been generated
uniformly from the range [1, 10] and di has been generated uniformly from the
range [P (1− T −R/2), P (1− T +R/2)] where P denotes the best known value
for the makespan for the Cmax problem, T = 0.3 and R = 0.3 ([11]).

Based on the reference data we create the random instances (pi,j , wi, d̃i)
as formulated in the problem definition in section 2 where pi,j and wi val-

ues come from previously described examples and d̃i ∼ N(di, c · di) where
c ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Having that for every random instance we
generated 100 disturbed deterministic subinstances according to distribution of
the random variable d̃i, in total we obtained 90 · 5 · 100 = 54000 subinstances.
The robustness coefficient 1 has been determined for both algorithms and results
are presented in the next section.

6.2 Results

Before performing the complete set of tests we have checked whether sample
measure on the mean only is good enough or is it worth introduce the standard
deviation as well. It turned out the introducing standard deviation has a negligi-
ble influence on the final result, so all the tests have been executed with applying
the mean only.

We executed tests for two main algorithms, but we examined the proposed
method in more details to have a better insight into value that it brings. In the
Tables 1, 2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2 there is a complete summary of all tested
variants with main results. A quick observation leads to the conclusion that the
proposed method gives much better results than the classic approach. Moreover,
in all cases the results obtained by applying the sampling method are better

8

in the sense of statistical significance than results obtained by the classic way.
The only thing which is puzzling is the fact that the more value c is the less
advantage of sampling method is.

Table 1. Complete results summary for confidence intervals sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,79 0,26 2,04 75,48 89
0,10 1,36 0,66 1,08 79,26 89
0,15 2,00 1,14 0,75 83,17 89
0,20 2,62 1,64 0,59 90,16 89
0,25 3,31 2,27 0,46 89,54 88
0,30 3,66 2,60 0,41 91,67 88

Average 2,29 1,43 0,89 84,88 88,7

Table 2. Complete results summary for NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,82 0,25 2,25 661,11 90
0,10 1,38 0,63 1,21 661,11 90
0,15 1,99 1,08 0,85 661,11 89
0,20 2,63 1,59 0,66 661,11 90
0,25 3,24 2,11 0,53 661,11 90
0,30 3,61 2,47 0,46 661,11 88

Average 2,28 1,35 0,99 661,11 89,5

Another general observation is that for almost all test instances the sampling
method gives better robustness than the classic approach. When the sample size
is based on confidence intervals theory, we obtain the level 98, 5% of advantage.
The best one is for the sample size N ·M when we have the value 99, 4%. Even
for a small sample size N ·M ·0.03 the sampling method gives the level 92, 3% of
advantage, finally we lose the advantage for a very small sample size N ·M ·0.01.

Let’s take a closer look at the relationship between the classic approach,
the sampling one with sample size NM and the sampling one with sample size
based on confidence intervals based sample size. On the chart one can see the
robustness level (Figure 1). We can easily observe that for all values of parameter

9

Table 3. Complete results summary for 0.3 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,82 0,26 2,11 198,33 87
0,10 1,37 0,64 1,14 198,33 90
0,15 2,00 1,11 0,80 198,33 89
0,20 2,66 1,66 0,60 198,33 90
0,25 3,25 2,15 0,51 198,33 89
0,30 3,63 2,50 0,45 198,33 88

Average 2,29 1,39 0,94 198,33 88,8

Table 4. Complete results summary for 0.15 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,81 0,27 2,00 99,22 89
0,10 1,37 0,65 1,12 99,22 90
0,15 2,00 1,14 0,75 99,22 89
0,20 2,64 1,69 0,57 99,22 89
0,25 3,25 2,21 0,47 99,22 88
0,30 3,67 2,60 0,41 99,22 88

Average 2,29 1,43 0,89 99,22 88,8

Table 5. Complete results summary for 0.1 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,80 0,28 1,86 66,11 87
0,10 1,36 0,67 1,03 66,11 90
0,15 1,98 1,17 0,70 66,11 89
0,20 2,63 1,70 0,55 66,11 89
0,25 3,26 2,26 0,44 66,11 87
0,30 3,69 2,67 0,38 66,11 86

Average 2,29 1,46 0,83 66,11 88

10

Table 6. Complete results summary for 0.05 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,79 0,30 1,66 33,11 88
0,10 1,36 0,72 0,89 33,11 88
0,15 1,99 1,26 0,58 33,11 85
0,20 2,68 1,84 0,46 33,11 85
0,25 3,30 2,41 0,37 33,11 83
0,30 3,77 2,89 0,30 33,11 83

Average 2,32 1,57 0,71 33,11 85,3

Table 7. Complete results summary for 0.03 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,78 0,33 1,38 19,89 87
0,10 1,36 0,77 0,76 19,89 85
0,15 1,99 1,31 0,52 19,89 82
0,20 2,66 1,92 0,39 19,89 84
0,25 3,32 2,53 0,31 19,89 84
0,30 3,77 3,00 0,26 19,89 80

Average 2,31 1,64 0,6 19,89 83,7

Table 8. Complete results summary for 0.01 ·NM sample size

c Classic Sampling Relatively Sample size #Better

0,05 0,74 0,48 0,52 6,67 73
0,10 1,33 1,01 0,32 6,67 72
0,15 1,98 1,61 0,23 6,67 70
0,20 2,66 2,26 0,18 6,67 71
0,25 3,31 2,96 0,12 6,67 65
0,30 3,82 3,52 0,08 6,67 62

Average 2,31 1,97 0,24 6,67 68,8

11

c the advantage of the sampling method is indisputable. We can also observe that
we can get the best robustness when the sample size is NM .

Fig. 1. Comparison of the robustness level with reference to the main methods

Finally, let’s discuss the relationship between the algorithms’ results with
different sample size with reference to the robustness level (Figure 2). We can
see that within the range [1..0.1] · NM the robustness levels are very close to
each other. Only when the sample size is getting smaller (from 0.05NM), the
robustness level is getting significantly worse.

Fig. 2. Comparison of the robustness level with reference to the sample size

12

7 Conclusions

In this paper we proposed a sampling method to solve optimization problems
with uncertain parameters modeled by random variables. By applying confidence
intervals we wanted to keep a very good balance between the execution time and
the robustness level. We have seen an application of the method for the flowshop
problem with deadlines and parameters modeled by random variables with the
normal distribution. Based on the performed computational experiments we can
conclude that the proposed method gives substantially more robust solutions
than the classic approach and by applying confidence interval theory we achieve
the goal of keeping balance between the execution time and the robustness level.

References

1. Aarts A., Lenstra J.K., Local search in combinatorial optimization, John Wiley
and Sons, 1997.

2. Bożejko W., Wodecki M., Solving Flow Shop Problem by Parallel Simulated An-
nealing, LNCS, Springer-Verlag, 2328, 2002, 236–244.

3. Bożejko W., Wodecki M., On the theoretical properties of swap multimoves, Op-
erations Research Letters, 35/2, 2007, 227–231.

4. Bożejko W. Rajba P. Wodecki M., Scheduling Problem with Uncertain Parame-
ters in Just in Time System, LNCS, Springer-Verlag, 2014, 456-467.

5. Dean B.C., Approximation algorithms for stochastic scheduling problems, PhD
thesis, MIT, 2005

6. Grabowski J., Wodecki M., A very fast tabu search algorithm for the permutation
flow shop problem with makespan criterion, Computers and Operations Research,
31, 2004, 1891–1909.

7. Jang W., Klein C.M., Minimizing the expected number of tardy jobs when pro-
cessing times are normally distributed, Operations Research Letters, 30, 2002,
100–106.

8. Nowicki E., Smutnicki C., A Fast tabu search algorithm for permutation flow
shop problem, European Journal of Operational Research, 91, 1996, 160–175.

9. Rajba P., Wodecki M., Stability of scheduling with random processing times on
one machine, Applicationes Mathematicae, 39, 2, 2012, 169–183.

10. Righter R., Stochastic Scheduling, in Stochastic Orders. M. Shaked and
Shandhkumar (eds.), Academic Press, San Diego, 1994.

11. Sioud A., Gagné C., Gravel M., Minimizing Total Tardiness in a Hybrid Flexible
Flowshop with Sequence Dependent Setup Times. In INFOCOMP 2014: The
fourth International Conference on Advanced Communications and Computation,
2014, 13-–18

12. Taillard E., Benchmarks for basic scheduling problems, EJOR 64/2, 1993, 278–
285.

13. Van den Akker M., Hoogeveen H., Minimizing the number of late jobs in a stochas-
tic setting using a chance constraint, Journal of Scheduling 11, 2008, 59–69.

14. Vondrák J., Probabilistic methods in combinatorial and stochastic optimization.
PhD thesis, MIT, 2005.

15. Zhu X., Cai X., General Stochastic Single-Machine Scheduling with Regular Cost
Functions, Math. Comput. Modelling, Vol. 26, No. 3, 1997, 95–108.

