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Abstract. The set of Schröder words (Schröder language) is endowed
with a natural partial order, which can be conveniently described by
interpreting Schröder words as lattice paths. The resulting poset is called
the Schröder pattern poset. We find closed formulas for the number of
Schröder words covering/covered by a given Schröder word in terms of
classical parameters of the associated Schröder path. We also enumerate
several classes of Schröder avoiding words (with respect to the length),
i.e. sets of Schröder words which do not contain a given Schröder word.

1 Introduction

In the literature several definitions of patterns in words can be found. In the
present article we consider a notion of pattern which is rather natural when words
are interpreted as lattice paths, by using each letter of the alphabet of the word
to encode a possible step. The notion of pattern in a lattice paths investigated
here has been introduced in [1, 2], where it has been studied in the case of Dyck
paths. Aim of the present work is to find some analogous enumerative results
in the case of Schröder paths. In order to make this paper self-contained, we
will now briefly recall the main definitions and notations concerning patterns
in paths, and we introduce the basic notions concerning the Schröder pattern
poset.

For our purposes, a lattice path is a path in the discrete plane starting at the
origin of a fixed Cartesian coordinate system, ending somewhere on the x-axis,
never going below the x-axis and using only a prescribed set of steps Γ . We will
refer to such paths as Γ -paths. As a word, a Γ -path can be represented by the
sequence of the letters encoding the sequence of its steps. In view of this, in the
following we will often use the terms “path” and “word” referred to the same
object. Classical examples of lattice paths are Dyck, Motzkin and Schröder paths,
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which are obtained by taking Γ to be the set of steps {U,D}, {U,D,H} and
{U,D,H2}, respectively (see Figure 1). Here letters represents the steps U(p) =
(1, 1), D(own) = (1,−1), H(orizontal) = (1, 0) and H2(orizontal of length 2 ) =
(2, 0), respectively.

Fig. 1. The Schröder word UUDUH2UDDDH2H2UH2UDH2D represented as a
Schröder path.

Given a Γ -path P , its length is given by the final abscissa of P . Also important
is the word length of P , which is the length of the word associated with P .
For instance, the Schröder path in Figure 1 has length 22 and word length 17.
Notice that the length of a Schröder path is necessarily even; for this reason it
is sometimes more meaningful to refer to the semilength of a Schröder path.

Given two Γ -paths P and Q, we declare P ≤ Q whenever P occurs as a (not
necessarily contiguous) subword of Q. In this case, we say that P is a pattern of
Q. So, for instance, the Schröder path UH2UDDH2UH2H2D is a pattern of the
Schröder path in Figure 1. When P is not a pattern of Q we will also say that
Q avoids P . The set PΓ of all Γ -paths endowed with the above binary relation
is clearly a poset.

In the case of Schröder paths, the resulting poset will be denoted S. It is
immediate to see that S has a minimum (the empty path), does not have max-
imum and is locally finite (i.e. all intervals are finite). Moreover, S is a ranked
poset, and the rank of a Schröder path is given by its semilength. An important
fact concerning S is that it is a partial well order, i.e. it contains neither an
infinite properly decreasing sequence nor an infinite antichain (this is actually
a consequence of a well known theorem by Higman [5]). Notice that this is not
the case in another famous pattern poset, the permutation pattern poset, where
infinite antichains do exist (see [8]).

The present paper is devoted to the investigation of some structural and
enumerative properties of the Schröder pattern poset. Specifically, in Section 2
we study the covering relation of S and in Section 3 we enumerate some classes
of Schröder paths avoiding a single pattern.

We would like to remark that, even when Γ -paths are interpreted as words
over a suitable alphabet, other kinds of patterns can be defined which are equally
natural and interesting. Just to mention one of the most natural, one can re-
quire an occurrence of a pattern to be constituted by consecutive letters. This
originates what is sometimes called the factor order, which has been studied



for instance in [4] (in the unrestricted case of all words on a given alphabet).
Many papers, such as [3], investigate properties and applications of this more
restrictive notion of pattern, also extending it to the case in which the pattern
is not required to be a Γ -path itself.

2 The Covering Relation in the Schröder Pattern Poset

In the Schröder pattern poset S, following the usual notation for the covering
relation, we write P ≺ Q (Q covers P ) to indicate that P ≤ Q and the rank of P
is one less than the rank of Q (i.e., rank(P ) = rank(Q)−1). The results contained
in the present section concern the enumeration of Schröder paths covered by and
covering a given Dyck path Q. We need some notation before stating them.

In a Schröder path Q, let k+ 1 be the number of points of Q (having integer
coordinates) lying on the x-axis (call such points p0 = (0, 0), p1, . . . , pk). Then Q
can be factorized (in a unique way) into k Schröder factors F1, . . . , Fk, each Fi
starting at pi−1 and ending at pi. Denote with fi and hi the number of U and H2

steps of factor Fi, respectively. Notice that fi also equals the number of D steps
of the same factor. Let ai (resp., di) be the number of ascents (resp. descents)
in Fi, where an ascent (resp. descent) is a maximal consecutive run of U (resp.,
D) steps. Moreover, we denote with p(Q) and v(Q) the number of occurrences
in Q of a consecutive factor UDU and DUD, respectively. Finally, we denote
with h(Q) the total number of flats of Q, a flat being a maximal sequence of
consecutive H2 steps. The path depicted in Figure 1 has 4 factors, and we have
f1 = 4, f2 = f3 = 0, f4 = 2, h1 = h2 = h3 = 1, h4 = 2, a1 = 3, a2 = a3 = 0, a4 =
2, d1 = 2, d2 = d3 = 0, d4 = 2, p(Q) = 1, v(Q) = 0 and h(Q) = 4.

Proposition 1. If Q = F1F2 · · ·Fk is a Schröder path with k factors, with Fi
having ai ascents and di descents, then the number of Schröder paths covered by
Q is given by ∑

1≤i≤j≤k

diaj − p(Q)− v(Q) + h(Q) . (1)

Proof. There are two (mutually exclusive) ways to obtain a Schröder path
covered by Q, namely:

1. by removing a H2 step, or
2. by removing a U step and a D step.

We examine the two cases separately.

1. It is immediate to observe that one obtains the same path by removing any of
the steps belonging to the same flat, whereas removing a step from different
flats gives rise to different paths. Therefore, the number of distinct Schröder
paths obtained by Q by removing an H2 step is h(Q).

2. We wish to prove that there are
∑

1≤i≤j≤k diaj−p(Q)−v(Q) ways to remove
a U steps and a D steps from Q and to obtain another Schröder path. We
will proceed by induction on the number k of factors of Q. If k = 1, then



necessarily Q starts with a U step and ends with a D step (otherwise Q = H2,
which has no U andD steps). Observe that, in this case, we can remove any of
the U steps and any of the D steps and the resulting path is still a Schröder
path. Removing steps from the same ascent (and from the same descent)
returns the same path, so we have a1 possible choices to remove a U step
and d1 possible choices to remove a D step. However, there are some special
cases in which, though removing from different ascents or descents, we obtain
the same path. Specifically, if we have a consecutive string UDU in Q, then
removing from Q the UD of such a string returns the same path as removing
the DU , in spite of the fact that the two U steps belong to different ascents.
In a similar way, the presence of a factor DUD in Q gives the possibility of
getting the same Schröder paths by removing steps from different descents.
To avoid overcount, we thus have to subtract the number of consecutive
strings UDU and DUD of Q, thus obtaining a total of d1a1 − p(Q)− v(Q)
paths. Now suppose that k > 1. There are three distinct cases to analyze.
– If we remove both the U and the D steps from the prefix F1 · · ·Fk−1 of
Q consisting of the first k− 1 factors (which is a Schröder path in itself,
of course), by induction we have

∑
1≤i≤j≤k−1 diaj − p(F1 · · ·Fk−1) −

v(F1 · · ·Fk−1) distinct choices.
– If we remove both the U and the D steps from the last factor Fk, using

the same argument as the case k = 1 we get dkak−p(Fk)−v(Fk) distinct
paths.

– Finally, suppose we choose to remove the D step from the prefix
F1 · · ·Fk−1 and the U step from the last factor Fk (notice that we are
not allowed to do the opposite, otherwise the resulting path would not
be Schröder). In this case we have ak possible choices for U and

∑k−1
i=1 di

possible choices for D. Once again, however, there are some paths that
are overcounted, occurring when F1 · · ·Fk−1 and Fk share a consecutive
UDU or a consecutive DUD. A quick look shows that this overcount
is corrected by subtracting the number of such shared occurrences of
consecutive UDU and DUD.

The sum of the above three cases gives the required expression.

Finally, summing up the quantities obtained in 1. and 2., we obtain precisely
formula (1). �

Remark. If Q is a Dyck paths, then h(Q) = 0, and formula (1) reduces to
the analogous formula for Dyck paths obtained in [2, 1], since a Schröder path
covered by a Dyck path is necessarily a Dyck path.

Proposition 2. Let P = F1 · · ·Fk be a Schröder path having k factors. Denote
with fi the number of U steps in the factor Fi (this is also the number of D steps
in Fi) and with hi the number of H2 steps in Fi. Moreover, let ` be the word
length of P . Then the number of Schröder paths covering P is given by

2 + `+
∑
(i,j)

1≤i≤j≤k

(fi + hi)(fj + hj). (2)



Proof. We have two options to obtain a Schröder path covering P :

1. either we add a H2 step, or
2. we add a U step and a D step.

As in the previous proposition, we examine the two cases separately.

1. Adding a new H2 step in any point of a flat of P returns the same path.
Hence, in order to obtain distinct paths, we can add a H2 step either before
a U step, or before a D step, or at the end of P . Thus we have a total of

2

k∑
i=1

fi + 1

paths covering P in this case.
2. We start by observing that adding a U step in any point of an ascent returns

the same path, and the same holds for D steps (with ascents replaced by
descents). Suppose to add a new U step to P first. In order to obtain distinct
paths, we can add U either before a D step, or before a H2 step, or at the
end of P .
If a U step is added before a D step in Fi, we observe that we cannot add the
new D step in a factor Fj , with j < i, otherwise the path would fall below
the x-axis. With this constraint in mind, we are now allowed to add the new
D step either before a U or before a H2 or at the end of the path. However,
in the first of the three previous cases, we cannot of course add the new D
step before the first allowed U (i.e., at the beginning of the factor); moreover,
adding the new D right before the new U step just added would produce a
substring DUD, which can be obtained also by first adding the U step in the
following available position of P and then adding the D step immediately
after it. Thus, in this case, the number of paths covering P is obtained by
considering the number of possible choices for U to be added in Fi, which is
fi, and the number of possible choices for D, which is

∑
j≥i(fj + hj), and

so it is ∑
(i,j)

1≤i≤j≤k

fi(fj + hj).

If a U step is added before a H2 step in Fi, as in the previous case, we cannot
add the new D step in a factor Fj , with j < i. We can now add the new D
step either before a U (except for the first U of Fi, of course), or before a
H2 or at the end of P . So, in this case, the number of paths covering P is
given by

k∑
i=1

hi ·

1 +

k∑
j=i

(fj + hj)

 .

Finally, if we add the new U step at the end of P , then the new D step must
necessarily be added after it.



Summing up, we therefore obtain the following expression for the total num-
ber of paths covering P :

2

k∑
i=1

fi + 1 +
∑
(i,j)

1≤i≤j≤k

fi(fj + hj) +

k∑
i=1

hi ·

1 +

k∑
j=i

(fj + hj)

+ 1

=2 +

k∑
i=1

(2fi + hi) +
∑
(i,j)

1≤i≤j≤k

fi(fj + hj) +
∑
(i,j)

1≤i≤j≤k

hi(fj + hj)

=2 + `+
∑
(i,j)

1≤i≤j≤k

(fi + hi)(fj + hj), (3)

which is formula (2). �

Remark 1. Notice that fi + hi is the semilength of the factor Fi. Denoting
it with ϕi, formula (2) can be equivalently written as

2 + `+
∑
(i,j)

1≤i≤j≤k

ϕiϕj .

Remark 2. If P is a Dyck path, then, in the first expression in the chain of
equalities (3), the summand 2

∑k
i=1 fi + 1 gives the number of non-Dyck paths

covering P (i.e., those having one H2 step), and the remaining summands give
the number of Dyck paths covering P . Also in this case, recalling that hi = 0
for all i, we recover the analogous formula for Dyck paths obtained in [2, 1].

3 Enumerative Results on Pattern Avoiding Schröder
Paths

Main goal of the present section is to enumerate several classes of Schröder
paths avoiding a given pattern. For any Schröder path P , denote with Sn(P )
the set of Schröder paths of semilength n avoiding P , and let sn(P ) = |Sn(P )|
be its cardinality. It is completely trivial to observe that

– sn(∅) = 0;
– sn(H2) = Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number (sequence

A000108 of [7]), counting the number of Dyck paths of semilength n;
– sn(UD) = 1 when n > 0.

Starting from patterns of semilength 2, we get some interesting enumerative
results. In the next subsections we define several classes of Schröder paths avoid-
ing a single pattern, each of which suitably generalizes the case of a pattern of
semilength 2. In all cases, after having described a general enumeration formula,
we illustrate it in the specific case of the relevant pattern of semilength 2.



Before delving into computations we state an important lemma, which in
several cases reduces the enumeration of pattern avoiding Schröder paths to
the case of pattern avoiding Dyck paths. In this lemma, as well as in several
subsequent proofs, we will deal with the multiset coefficient

((
n
k

))
, counting the

number of multisets of cardinality k of a set of cardinality n. As it is well known,
the multiset coefficients can be expressed in terms of the binomial coefficients,
namely

((
n
k

))
=
(
n+k−1

k

)
.

Lemma 1. Given a Dyck path P , denote with dn(P ) the number of Dyck paths
of semilength n avoiding P . Then

sn(P ) =

n∑
h=0

(
n+ h

n− h

)
dh(P ). (4)

Proof. Let Q be a Schröder path. Clearly Q avoids P if and only if the Dyck
path Q̃ obtained from Q by deleting horizontal steps avoids P . Therefore, the
set of Schröder paths of semilength n with n− h horizontal steps avoiding P is
obtained by taking in all possible way a Dyck path of semilength h avoiding P
and then adding to it n− h horizontal steps in all possible ways. Observe that,
in a Dyck path of semilength h, one has 2h + 1 possible sites where to insert
a horizontal step, and any number of horizontal steps can be inserted into the
same site. Thus, if n− h horizontal steps have to be inserted, it is necessary to
select a multiset of cardinality n − h from the set of the possible 2h + 1 sites.
This can be done in

(
(2h+1)+(n−h)−1

n−h
)

=
(
n+h
n−h

)
ways, as it is well known. Since h

can be chosen arbitrarily in the set {0, 1, 2, . . . , n}, the total number of Schröder
paths of semilength n avoiding P is given by formula (4), as desired. �

3.1 The Pattern (UD)k

Since (UD)k is a Dyck path, this case can be seen as an immediate conse-
quence of Lemma 1 together with the results of [2, 1].

Proposition 3. For i, j ≥ 1, let Ni,j = 1
i

(
i
j

)(
i

j−1
)

be the Narayana numbers

(sequence A001263 of [7]). Extend such a sequence by setting N0,0 = 1 and
Ni,0 = N0,j = 0, for all i, j > 0. Then

sn((UD)k) =

n∑
h=0

k−1∑
j=0

(
n+ h

n− h

)
Nh,j . (5)

The case k = 2 gives rise to an interesting situation. In fact, for the pattern
UDUD, recalling that N0,0 = 1, Ni,0 = 0 and Ni,1 = 1 for all i > 0, formula (5)
gives

sn(UDUD) =

n∑
h=0

(
n+ h

n− h

)
Nh,0 +

n∑
h=0

(
n+ h

n− h

)
Nh,1

= 1 +

n∑
h=1

(
n+ h

n− h

)
=

n∑
h=0

(
2n− h
h

)
. (6)



Since it is well known that Fibonacci numbers (Fn)n (sequence A000045 in
[7]) can be expressed in terms of binomial coefficients as1 Fn+1 =

∑
k≥0

(
n−k
k

)
,

we get sn(UDUD) = F2n+1, i.e. Schröder paths avoiding UDUD are counted
by Fibonacci numbers having odd index (sequence A122367 of [7]).

Remark. Notice that, for a Schröder path, avoiding the (Schröder) path
UDUD is equivalent to avoiding the (non-Schröder) path DU . As suggested by
one of the referees, a simple combinatorial argument to count Schröder words
of semilength n avoiding the subword DU is the following: if the words contains
k H2 steps, then it can be constructed by taking the word Un−kDn−k and
inserting k H2 steps. Taking into account all possibilities, and summing over k,
gives precisely formula (6).

3.2 The Pattern UkDk

This case is similar to the previous one, in that it can be easily inferred from
Lemma 1, since the generic pattern of the class is a Dyck path. Thus, applying
the above mentioned lemma and using results of [2, 1], we obtain the following
result.

Proposition 4. For all k ≥ 0, we have

sn(UkDk) =

k−1∑
h=0

(
n+ h

n− h

)
Ch +

(
n+ k

n− k

)
(Ck − 1)

+

min{2k−1,n}∑
h=k+1

∑
j≥1

(
n+ h

n− h

)
b2k−j,h−k+j , (7)

where the Cn’s are the Catalan numbers and the bi,j’s are the ballot numbers
(sequence A009766 of [7]).

Setting k = 2 in formula (7), for Schröder paths of semilength n ≥ 3 avoiding
UUDD we obtain the following polynomial of degree 4 (sequence A027927 of
[7]):

sn(UUDD) = 1 +

(
n+ 1

n− 1

)
+

(
n+ 2

n− 2

)
= 1 +

n(n+ 1)(n2 + n+ 10)

24
.

3.3 The Pattern Hk
2

In this case the generic pattern of this class is not a Dyck path. However, we
are able to give a direct argument to count Schröder paths avoiding Hk

2 .

1 Notice that the sum contains only a finite number of nonzero terms, since the bino-
mial coefficients vanish when k > bn/2c



Proposition 5. For all n, k ≥ 0, we have

sn(Hk
2 ) =

k−1∑
i=0

(
2n− i
i

)
Cn−i. (8)

Proof. We observe that a Schröder path avoids the pattern Hk
2 if and only

if it has at most k−1 H2 steps. Thus, the set of all Schröder paths of semilength
n avoiding Hk

2 can be obtained by taking the set of all Dyck paths of semilength
n− i and inserting in all possible ways i H2 steps, for i running from 0 to k− 1.
Since in a Dyck path of semilength n − i there are precisely 2n − 2i + 1 points
in which inserting the horizontal steps, and we have to insert i horizontal steps
(possibly inserting more than one H2 step in the same place), we get

sn(Hk
2 ) =

k−1∑
i=0

((
2n− 2i+ 1

i

))
Cn−i =

k−1∑
i=0

(
2n− 2i+ 1 + i− 1

i

)
Cn−i

=

k−1∑
i=0

(
2n− i
i

)
Cn−i,

as desired. �

When k = 2 we obtain the following special case:

sn(H2H2) = Cn + (2n− 1)Cn−1 =
n+ 3

2
Cn =

n+ 3

2(n+ 1)

(
2n

n

)
,

which is valid for n ≥ 1. This is sequence A189176 of [7], whose generating

function is 1−5x+4x2−(1−5x)
√
1−4x

2x(1−4x) , and can be also obtained as the row sums of

a certain Riordan matrix (see [7] for details).

3.4 The Pattern UHk−1
2 D

This class of patterns requires a little bit more care, nevertheless we are able
to get a rather neat enumeration formula.

Proposition 6. For all n ≥ 0, k > 1, we have

sn(UHk−1
2 D) = 1 +

n∑
h=1

min{k−2,n−h}∑
i=0

((
2h− 1

i

))
(n− h− i+ 1)Ch. (9)

Proof. Let P be a Schröder path of semilength n avoiding UHk−1
2 D. If

P does not contain U steps, then necessarily P = Hn
2 . Otherwise, P can be

decomposed into three subpaths, namely:

– a prefix, consisting of a (possibly empty) sequence of horizontal steps;



– a path starting with the first U step and ending with the last D step (nec-
essarily not empty);

– a suffix, consisting of a (possibly empty) sequence of horizontal steps.

The central portion of P in the above decomposition has at most k − 2
horizontal steps. Thus it can be obtained starting from a Dyck path of semilength
h, for some 1 ≤ h ≤ n, and adding i horizontal steps, for some 0 ≤ i ≤ min{k −
2, n−h}. Such horizontal steps can be inserted into 2h−1 possible sites (here we
have to exclude the starting and the ending points, since the subpath is required
to start with a U and end with a D), with the possibility of inserting several
steps into the same site, as usual. The resulting path has therefore semilength
h+ i, and has to be completed by adding a suitable number of horizontal steps
at the beginning and at the end, to obtain a Schröder path of semilength n:
there are n − h − i + 1 possible ways to do it. We thus obtain formula (9) for
sn(UHk−1

2 D), as desired. �

Formula (9) becomes much simpler in the special case k = 2 of Schröder
paths of semilength n avoiding UH2D. Indeed we obtain:

sn(UH2D) = 1 +

n∑
h=1

(n− h+ 1)Ch =

n∑
h=0

Ch(n− h) +

n∑
h=0

Ch − n.

In this case, we can find an interesting expression for the generating function
of these coefficients in terms of the generating function C(x) =

∑
n≥0 Cnx

n of
Catalan numbers, which provides an easy way to compute them:∑

n≥0

sn(UH2D)xn = C(x) ·
∑
n≥0

nxn + C(x) ·
∑
n≥0

xn −
∑
n≥0

nxn

= C(x)

(
x

(1− x)2
+

1

1− x

)
− x

(1− x)2

=
1

(1− x)2
(C(x)− x).

Roughly speaking, the above generating function tells us that sn(UH2D)
is given by the partial sums of the partial sums of the sequence of Catalan
numbers where C1 is replaced by 0. The associated number sequence starts with
1, 2, 5, 13, 35, 99, 295, . . . and does not appear in [7].

3.5 The Pattern Hk−1
2 UD

The last class of patterns we consider is the most challenging one. It gives rise
to an enumeration formula which is certainly less appealing than the previous
ones. Due to space limitation, we will just sketch its proof and simply state the
special case corresponding to k = 2. Before illustrating our final results, we need
to introduce a couple of notations.



We denote with Pk,h the number of Dyck prefixes of length k ending at height
h. Notice that we can express these coefficients in terms of the ballot numbers
bi,j = i−j+1

i+1

(
i+j
i

)
, counting the number of Dyck prefixes with i up steps and j

down steps, as follows:

Ph,k =
∑
i,j

i−j=h
i+j=k

bi,j .

Moreover, we denote with Sn,q the number of Schröder paths of semilength
n having exactly q horizontal steps. Since each such path can be uniquely de-
termined by a Dyck path of semilength n− q with q horizontal steps added, we
have a rather easy way to compute Sn,q in terms of the Catalan numbers Cn:

Sn,q = Cn−q

((
2(n− q) + 1

q

))
=

(
2n− q
q

)
Cn−q.

Proposition 7. For all n ≥ 0, k > 1, we have

sn(Hk−1
2 UD) =

k−2∑
q=0

Sn,q

+

2n−2k+2∑
p=0

2n−p−2k+2∑
h=0

Pp,h

((
p+ 1

k − 2

))(( 2n−h−p−2k+4
2

h

))
. (10)

Proof. Let P be a Schröder path of semilength n. If P contains less than
k − 1 horizontal steps, then it necessarily avoids Hk−1

2 UD. This gives the term∑k−2
q=0 Sn,q in the r.h.s. of (10). If instead P contains at least k − 1 horizontal

steps, then, in order to avoid Hk−1
2 UD, it has to be decomposable into a Schröder

prefix ending at some height h and having exactly k − 2 horizontal steps, and
a suffix starting with a horizontal steps followed exclusively by H2 and D steps
(with exactly h D steps). The generic Schröder prefix of the required form can be
obtained by taking a Dyck prefix of length p, for some 0 ≤ p ≤ 2n− 2k+ 2, and

adding k− 2 H2 steps in all possible ways. We thus get a total of Pp,h ·
((

p+1
k−2
))

Schröder prefixes of length p+ 2k− 4 ending at height h and containing exactly
k − 2 H2 steps. The generic suffix of the required form contains h D steps and
2n−h−p−2k+4

2 H2 steps. Such a suffix can be obtained by inserting the h down
steps into the sequence of horizontal steps in all possible ways. Since the first

step has to be a horizontal one, this gives a total of
(( 2n−h−p−2k+4

2
h

))
allowed

suffixes. Putting together all the contributions, we get the desired expression for
sn(Hk−1

2 UD). �

Specializing to k = 2 we obtain

sn(H2UD) = Cn +

2n−2∑
p=0

2n−p−2∑
h=0

Pp,h

(( 2n−h−p
2

h

))
.



4 Suggestions for Further Work

It would be very interesting to investigate in more detail the structural prop-
erties of the Schröder pattern poset. A typical question in this context concerns
the computation of the Möbius function, which is still open even in the Dyck
pattern poset. Another (partially related) issue is the enumeration of (saturated)
chains. More generally, can we say anything about the order structure of intervals
(for instance, is it possible to determine when they are lattices?)?

Concerning the enumeration of pattern avoiding classes, the next step would
be to count classes of Schröder words simultaneously avoiding two or more pat-
terns.

Finally, it would be nice to have information on the asymptotic behavior of
integer sequences counting pattern avoiding Schröder words. In the Dyck case,
all the sequences which count Dyck words avoiding a single pattern P have the
same asymptotic behavior (which is roughly exponential in the length of P ).
This is in contrast, for instance with the permutation pattern poset, where the
asymptotic behavior of a class of pattern avoiding permutations depends on the
patterns to be avoided (this is the ex Stanley-Wilf conjecture, proven by Marcus
and Tardos [6]). What does it happen in the Schröder pattern poset?
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8. D. A. Spielman, M. Bóna, An infinite antichain of permutations, Electron. J.
Combin., 7 (2000) #N2 (4 pp.).


