Canonical Form of Gray Codes in N-cubes

Abstract : In previous works, the idea of walking into a $\mathsf {N}$-cube where a balanced Hamiltonian cycle have been removed has been proposed as the basis of a chaotic PRNG whose chaotic behavior has been proven. However, the construction and selection of the most suited balanced Hamiltonian cycles implies practical and theoretical issues. We propose in this paper a canonical form for representing isomorphic Gray codes. It provides a drastic complexity reduction of the exploration of all the Hamiltonian cycles and we discuss some criteria for the selection of the most suited cycles for use in our chaotic PRNG.
Type de document :
Communication dans un congrès
Alberto Dennunzio; Enrico Formenti; Luca Manzoni; Antonio E. Porreca. 23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10248, pp.68-80, 2017, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-58631-1_6 〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01656349
Contributeur : Hal Ifip <>
Soumis le : mardi 5 décembre 2017 - 15:41:59
Dernière modification le : vendredi 6 juillet 2018 - 15:06:09

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Sylvain Contassot-Vivier, Jean-François Couchot. Canonical Form of Gray Codes in N-cubes. Alberto Dennunzio; Enrico Formenti; Luca Manzoni; Antonio E. Porreca. 23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10248, pp.68-80, 2017, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-58631-1_6 〉. 〈hal-01656349〉

Partager

Métriques

Consultations de la notice

473