
HAL Id: hal-01656349
https://inria.hal.science/hal-01656349

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Canonical Form of Gray Codes in N-cubes
Sylvain Contassot-Vivier, Jean-François Couchot

To cite this version:
Sylvain Contassot-Vivier, Jean-François Couchot. Canonical Form of Gray Codes in N-cubes. 23th
International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun
2017, Milan, Italy. pp.68-80, �10.1007/978-3-319-58631-1_6�. �hal-01656349�

https://inria.hal.science/hal-01656349
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Canonical form of Gray Codes in N-cubes

Sylvain Contassot-Vivier1 and Jean-François Couchot2

1 Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
Sylvain.Contassotvivier@loria.fr

2 FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, France

Abstract. In previous works, the idea of walking into a N-cube where
a balanced Hamiltonian cycle have been removed has been proposed as
the basis of a chaotic PRNG whose chaotic behavior has been proven.
However, the construction and selection of the most suited balanced
Hamiltonian cycles implies practical and theoretical issues. We propose
in this paper a canonical form for representing isomorphic Gray codes.
It provides a drastic complexity reduction of the exploration of all the
Hamiltonian cycles and we discuss some criteria for the selection of the
most suited cycles for use in our chaotic PRNG.

1 Introduction

The problem of designing Pseudo-Random Number Generators (PRNG) that
satisfy the probabilistic properties to produce a uniform distribution is difficult.
Moreover, the knowledge of the generation algorithm and any sequence of pre-
viously generated bits should not constitute a sufficient piece of information to
predict the next generated bits without knowing initial conditions. In order to
build such PRNG, some studies have focused on the use of chaotic systems [7,6,2].

In a previous work [4], some of the authors have proposed a PRNG based
on random walk in a N-cube where a balanced Hamiltonian cycle has been
removed, and its chaotic nature has been proved. Moreover, it has been shown
that the removed Hamiltonian cycle should be balanced in order to produce more
efficient PRNG. Balanced Hamiltonian cycles are cycles in which the numbers
of occurrences of the traversed dimensions are equal or differ at most by 2.
In [8], the authors have proposed an approach that provides a subset of all the
Hamiltonian cycles. This approach is however undeterministic and the cardinal
number of the produced subset is dramatically small compared to to the one
of all the Hamiltonian cycles. In some sense, it is a partial solution of finding
Hamiltonian cycles.

The undeterministic aspect of this approach has been tackled in [3] where
we have proposed a particularization of it. This new procedure succeed to find
balanced Hamiltonian cycles for any dimension N and solves this issue. Never-
theless, pursuing our objective to enhance the specification of the Hamiltonian
cycles most suited to the use in our PRNG, we have been confronted to the fact
that procedure detailed in [3] cannot produce all non-isomorphic balanced codes:
it is indeed a particularization of a partial solution.



2

In [10], the author proposed an approach to produce all the cycles of a graph.
This work may thus solve the problem of finding a large set of balanced Hamilto-
nian given a dimension N. However, the approach suffers from being too exhaus-
tive and cannot be applied as soon as the dimension of the N-cube is larger than
5. One solution could be to study cycles, whose embedding into PRNG gives dis-
tinct behaviors, i.e. which do not belong in the same class w.r.t an equivalence
relation. For that, this work proposes a canonical form dedicated to cycles and
its application to the generation of a large set of balanced Hamiltonian cycles.

This paper presents these two elements. In the following section is presented
the canonical form of Hamiltonian cycles, followed in Section 3 by the descrip-
tion of our novel algorithm. The practical interest of the algorithm is discussed
in Section 4.

2 Canonical form of Gray codes

Let SN = {1, ...,N}2N , the set of sequences of length 2N with values in {1, ...,N}.
Let HN ⊂ SN, the set of sequences describing Hamiltonian cycles in a N-cube.
Each of these sequences gives the succession of the dimensions followed by the
path. Any Hamiltonian cycle of HN can be written as h = (h1, ..., h2N). Also, we
remind the reader that a Hamiltonian cycle in a N-cube is a Gray code.

We call the canonical form of a Hamiltonian cycle, an equivalent description
of the cycle that is obtained, through a specific computation process, for all its
isomorphic cycles.

Before describing our computation process of the canonical forms, we provide
below an overview of the different cases of isomorphism between cycles.

2.1 Isomorphic cycles

Intuitively, Hamiltonian cycles are isomorphic to each other when the paths they
describe can be topologically superposed. Indeed, a same Hamiltonian cycle can
be expressed in many sequences according to some simple (global) transforma-
tions of the N-cube, leading to a set of isomorphic cycles. We list below the
different transformations that can be applied to a sequence to produce isomor-
phic cycles.

First of all, it can be noticed that describing a cycle by the sequence of the
traversed dimensions in the N-cube does not specify any starting vertex. So,
a sequence does not represent only a single cycle but the 2N cycles that are
isomorphic up to the starting position in the N-cube.

In a similar way, applying a cyclic shift to a sequence, in any direction, is
equivalent to change only its starting vertex, but this does not change the path
topology. So, shifted sequences are also isomorphic cycles.

Moreover, as the N-cubes considered in the scope of this paper are not ori-
ented, the direction of the cycle is not significant and then, an isomorphic cycle
is obtained by inverting the order of a sequence.



3

Finally, cycles can also be isomorphic up to rotations/symmetries, which are
obtained by renumbering the dimensions of the N-cube. For example, exchanging
dimensions 2 and 3 in a 3-cube is similar to performing a 90 degrees rotation
around dimension 1. In the following, that operation may also be referred to as
the relabeling of a sequence since it only changes the dimensions labels. It is
worth noticing that some dimensions relabelings are equivalent to the sequence
inversion combined with a cyclic shift.

In order to define the canonical form of Hamiltonian cycle, we need to intro-
duce some functions over HN.

2.2 Preliminary tools

Let R : HN → HN, the function that renumbers a Hamiltonian cycle h to a
sequence R(h) by mapping the successive distinct values (dimensions) of h to
the ordered values from 1 to N. So, the first value h1 of h is necessarily mapped
to 1, then the first distinct value in the remaining of h (that is (h2, . . . , h2N)) is
mapped to 2, and so on. As function R applies a renumbering, it follows that
∀i, j ∈ {1, . . . , 2N}, hi = hj ⇔ R(h)i = R(h)j .

The effect of function R is to apply rotations/symmetries to a sequence, by
relabeling the dimensions of the N-cube, in order to express it in a specific order
of the traversed dimensions, without modifying topology of the path. So, this
function is an automorphism on HN.

As an example, if we have N = 3 and the sequence h = (2, 3, 1, 3, 2, 3, 1, 3),
then R(h) = (1, 2, 3, 2, 1, 2, 3, 2). So, the dimensions 1, 2 and 3 are respectively
replaced by (relabeled) 3, 1 and 2 (as shown in Fig. 1), where the three dimensions
labels and the starting vertex are fixed. It can be seen that both sequences are
isomorphic up to a rotation around dimension 1 and an orientation inversion.

R

Starting

vertex

1

2

3

h = (2,3,1,3,2,3,1,3)

1

2

3

R(h) = (1,2,3,2,1,2,3,2)

Fig. 1: Application of function R on sequence h = (2, 3, 1, 3, 2, 3, 1, 3).

As the lexicographic order over sequences of length N provides a total order
on HN, the results of R are totally ordered. So, for any subset X of HN there
exists a unique minimal value of the results of R applied to any h ∈ X. This
property is used in the computation of our canonical form.

Let D : HN × {1, . . . , 2N} → HN, the function that associates to a sequence
h = (h1, . . . , h2N) and an integer k, the sequence



4

D(h, k) = (hk, hk+1, . . . , h2N , h1, h2, . . . , hk−1), which is h after k − 1 successive
left cyclic shifts, so that hk becomes the first value of the sequence.

The effect of functionD is simply to change the starting point of the sequence,
without modifying the cycle itself, as can be seen on Fig. 2. As well as function
R, this function is also an automorphism on HN and it is also used to compute
our canonical form of isomorphic cycles.

Going back to our previous example sequence h = (2, 3, 1, 3, 2, 3, 1, 3) and
choosing k = 3, we obtain D(h, 3) = (1, 3, 2, 3, 1, 3, 2, 3).

Starting

vertex

D

1

2

3

h = (2,3,1,3,2,3,1,3)

1

2

3

D(h,3) = (1,3,2,3,1,3,2,3)

Fig. 2: Application of function D on sequence h = (2, 3, 1, 3, 2, 3, 1, 3) and k = 3.

Let W : Hn × {1, . . . , 2N} → {1, . . . , 2N}, the function that associates to a
sequence h and an integer k, the length of the minimal sub-sequence of cycle h
starting at hk and containing all the values in {1, . . . , n}.

Getting back to our example h and choosing k = 4, we have
W ((2, 3, 1, 3, 2, 3, 1, 3), 4) = 4 as the smallest sub-sequence containing {1, 2, 3}
starting from h4 = 3 in h is (2, 3, 1, 3, 2, 3, 1, 3), that is to say (3, 2, 3, 1), whose
length is 4. In the same way, we have W ((2, 3, 1, 3, 2, 3, 1, 3), 7) = 3 as the min-
imal sub-sequence from h7 = 1 is (1, 3, 2). However, we can notice too that
W ((2, 3, 1, 3, 2, 3, 1, 3), 8) = 4.

In [1], Bykov uses this notion of minimal sub-sequence containing all the
dimensions of the N-cube to define the window width of a sequence h. It corre-
sponds to the maximal value of function W over all the possible starting points
in the sequence. It provides information about the local balance between the tra-
versed dimensions along the cycle. This window width can be defined by M(h),
for h ∈ HN as :

M(h) = max
k∈{1,...,2N}

W (h, k) (1)

2.3 Canonical form

The function C : HN → HN, defined by:

C(h) = min {R(D(h, k))| k is s.t. W (h, k) = M(h)} (2)

produces the canonical form of any sequence from HN. Notice that this set is
ordered according to the aforementioned lexical ordering, which is total.



5

The role of the C function is to provide a unique representative of for each
class of Hamiltonian cycle. By class of Hamiltonian cycle, we mean the set of
isomorphic Hamiltonian cycles according to translations (changing the starting
point of the sequence) and rotations/symmetries (changing the dimensions la-
bels). So, we have the following theorem.

Theorem 1. For any cycles a and b in HN, C(a) = C(b) if and only if a and b
are isomorphic cycles.

Proof. As both functions R and D are automorphisms on HN, the composite
function R ◦ D also is an automorphism on HN. Thus, for any integer k ∈
{1, . . . , 2N}, sequence R(D(h, k)) is isomorphic to sequence h, and so is C(h).
Also, this implies that for any two non-isomorphic sequences h and g in HN,
there does not exist any couples of integers i and j in {1, . . . , 2N} such that
R(D(h, i)) = R(D(g, j)). Thus, the results of C(h) and C(g) are necessarily
different when h and g are not in the same classes of isomorphic cycles.

However, there remains the question of uniqueness of the result of C for all
sequences in a same class of HN. That property induces that for any two iso-
morphic sequences h and g in HN, there exist two integers i and j in {1, . . . , 2N}
such that R(D(h, i)) = R(D(g, j)). From the previous observations, it is obvious
that R(D(h, k)) is isomorphic to R(D(g, j)), but we have to show that for some
adequately chosen i and j, they are identical sequences.

As a first step, let us consider two sequences h = (h1, . . . , hl) and g =
(g1, . . . , gl) that are isomorphic only up to rotations/symmetries. As such trans-
formations can be expressed by dimensions relabeling, it follows that g and h
are mutual relabelings of each others:

h1 ↔ g1, h2 ↔ g2, . . . , hl ↔ gl (3)

and
∀i, j ∈ {1, . . . , l} hi = hj ⇔ gi = gj (4)

Moreover, R(h) and R(g) are also respective relabelings of h and g. The fact
that R(h) = R(g) is ensured by the ordered relabeling over {1, . . . , n}. Indeed,
as the relabeling follows the numerical order of integers, it produces the same
sequence for h and g according to the total lexicographic order over HN:

h1 → 1, g1 → 1
h2 → 2, g2 → 2

(5)

and due to (4), we have:

∀i ∈ {3, . . . , l}, k ∈ {1, . . . , n}, hi → k ⇔ gi → k (6)

Thus, function R produces the same result for sequences that are isomorphic up
to rotations/symmetries.

The next step consists in taking into account cyclic shifts between sequences.
Solving this problem is similar to finding a way to re-align all isomorphic cycles



6

according to a common starting vertex. Fortunately, this is possible according to
the notion of window width, previously introduced and expressed by functionsW
and M . Indeed, the window width discriminates the positions in a sequence, by
identifying the ones with the highest local balance, that is to say the ones from
which starts the longest minimal sub-sequence containing all values in {1, .., n}.
Obviously, the window width is the same for all isomorphic cycles, as they have
the same sequence of local balances up to a cyclic shift, whatever the labels of the
dimensions. For any class of cycles, there is at least one position corresponding
to the window width and we use it as the reference starting position to force the
alignment of all cycles in the class.

When there is exactly one such position in a class, there is no ambiguity and
every cycle of the class if shifted to begin at this position. However, for some
classes, there might exist several positions corresponding to the window width.
Thus, an additional deterministic selection must be applied to those possibilities.
This is where the total lexicographic order is exploited, by selecting the position
whose ordered relabeling produces the smallest sequence relatively to that order.
This is what is expressed by the min operator in function C. As the result is
a minimal value over a totally ordered space, it is unique and it ensures the
common re-alignment of all the cycles in a same class.

So, function C re-aligns isomorphic cycles to a common starting position
and relabels their dimensions in an ordered way that ensures a unique result for
isomorphic cycles. ut

Finally, it is worth noticing that it is the use of the window width notion com-
bined to cyclic shifts, the total lexicographic order over HN and the dimensions
relabeling that allows us to compute a unique class representative.

So, the binary relation E induced by function C:

∀a, b ∈ HN, E(a, b) =

{
1 if C(a) = C(b)
0 otherwise (7)

is an equivalence relation over HN since C is a function.

2.4 Examples of application of C

Applying function C to our example sequence h = (2, 3, 1, 3, 2, 3, 1, 3) yields
C(h) = (1, 2, 1, 3, 1, 2, 1, 3) and M(h) = 4. Moreover, that maximal value is
obtained for the positions: 2, 4, 6 and 8. So, it is necessary to compute the
sequences R(D(h, 2)), R(D(h, 4)), R(D(h, 6)), and R(D(h, 8)) in order to get
the minimal one according to the lexicographic order over HN, leading to results
in Table 1.

Finally, as the four results are identical, the minimal sequence is this unique
result, leading to C(h) = (1, 2, 1, 3, 1, 2, 1, 3).

In fact, it can be checked that all the sequences in H3 lead to that unique
result of function C. This comes from the fact that there is only one Gray code
up to isomorphism in H3.



7

k D(h, k) R(D(h, k))

2 (3, 1, 3, 2, 3, 1, 3, 2) (1, 2, 1, 3, 1, 2, 1, 3)
4 (3, 2, 3, 1, 3, 2, 3, 1) (1, 2, 1, 3, 1, 2, 1, 3)
6 (3, 1, 3, 2, 3, 1, 3, 2) (1, 2, 1, 3, 1, 2, 1, 3)
8 (3, 2, 3, 1, 3, 2, 3, 1) (1, 2, 1, 3, 1, 2, 1, 3)

Table 1: Application of R ◦D to h = (2, 3, 1, 3, 2, 3, 1, 3).

In order to provide a more representative example, let us apply function C
to some cycles from a N-cube providing several classes of Hamiltonian cycles. If
we consider h = (1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3) in H4, then M(h) = 6 and
there are five possible starting positions: 6, 9, 11, 13 and 16. Fig. 3(a) gives the re-
sults of R ◦ D for those possibilities. The minimal vector is
(1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4), and so is C(h).

Now, let us build a cycle g that is isomorphic to h by applying to h the
following operations:

1- invert the sequence order → (3, 4, 1, 4, 2, 4, 3, 2, 1, 2, 3, 4, 3, 1, 2, 1)
2- apply 4 left cyclic shifts → (2, 4, 3, 2, 1, 2, 3, 4, 3, 1, 2, 1, 3, 4, 1, 4)
3- exchange dimensions 2 and 3 → (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4)

We thus have g = (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4) and M(g) = 6 with
five corresponding starting positions: 3, 9, 12, 14 and 16. From the applica-
tion of R ◦D on those instances, depicted in Fig. 3(b), we deduce that C(g) =
(1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4) and that C(g) = C(h).

As a last example, let us consider another cycle inH4 that is not isomorphic to
g and h. This is the case for f = (3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1) because the
numbers of occurrences of the dimensions are not equal in f , whereas they are for
g and h. For the computation of C(f), we have M(f) = 8 and four corresponding
starting positions: 2, 6, 10 and 14. All four positions produce the same result by
R ◦D, shown in Fig. 3(c), and then C(f) = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4),
which is different from C(g) and C(h).

This illustrates the class separation realized by function C when there are
several classes in the considered HN space, as non-isomorphic cycles lead to
distinct results whereas isomorphic cycles lead to the same one.

2.5 Discussion over the interest of the canonical form

This work provides an efficient way to partition theHN space up to isomorphisms
by computing unique representatives of the classes. Such partitions are very
useful as soon as one wants to study properties of Gray codes in dimensions
larger than 3, as it is possible to focus only on classes representatives. This lead
to more efficient algorithms as the number of classes increases much slowly than
the number of instances. Moreover, the total order over the class representatives
can also be exploited to implement efficient storage and classification algorithms
when exploring a given HN space.



8

k D(h, k) R(D(h, k))

6 (3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)
9 (2, 3, 4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1) (1, 2, 3, 1, 3, 4, 3, 2, 4, 1, 4, 2, 3, 2, 1, 4)
11 (4, 2, 4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3) (1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4)
13 (4, 1, 4, 3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2) (1, 2, 1, 3, 2, 4, 2, 3, 1, 3, 4, 2, 4, 3, 1, 4)
16 (3, 1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)

(a) h = (1, 2, 1, 3, 4, 3, 2, 1, 2, 3, 4, 2, 4, 1, 4, 3).

k D(g, k) R(D(g, k))

3 (2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4, 3, 4) (1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 3, 4, 2, 4)
9 (2, 1, 3, 1, 2, 4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4) (1, 2, 3, 2, 1, 4, 2, 4, 3, 4, 1, 3, 2, 3, 1, 4)
12 (1, 2, 4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3) (1, 2, 3, 1, 3, 4, 3, 2, 4, 1, 4, 2, 3, 2, 1, 4)
14 (4, 1, 4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2) (1, 2, 1, 3, 1, 4, 3, 2, 3, 4, 1, 4, 2, 3, 2, 4)
16 (4, 3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1) (1, 2, 1, 3, 2, 4, 2, 3, 1, 3, 4, 2, 4, 3, 1, 4)

(b) g = (3, 4, 2, 3, 1, 3, 2, 4, 2, 1, 3, 1, 2, 4, 1, 4).

k D(f, k) R(D(f, k))

2 (1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
6 (1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
10 (1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)
14 (1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2) (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4)

(c) f = (3, 1, 4, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 4, 1)

Fig. 3: Application of R ◦D to cycles from H4.

3 Balanced Gray codes generation algorithm

We remind the reader that in balanced Gray codes, the dimensions of the N-cube
are used a same number of times or at most with a difference of two occurrences.
When all the dimensions are used exactly the same number of times, we speak of
totally balanced Gray codes. This is only possible for N-cubes whose dimension
is a power of 2.

In order to generate the complete subset of balanced Gray codes in a givenHN

space, we have adapted the (d, g)−algorithm proposed by Wild [10] to generate
all the Hamiltonian cycles. As this algorithm produces more cycles than the ones
we are interested in, we had to insert an additional selection phase during the
generation process in order to discard branches that would lead to imbalanced
Hamiltonian cycles.

That additional selection can be placed before the other treatments (co-
herency, small cycles elimination,...) applied to each generation node (in the
generation tree). By this way, it cuts any unproductive branch as soon as possi-
ble, thus avoiding useless computations.



9

That selection consists in checking that the occurrences of the dimensions
already used in the partial construction of the cycle are compatible with a bal-
anced cycle. When this is not the case, the candidate is discarded. To check
this, we compute two values that are respectively, the maximal number of occur-
rences allowed per dimension in a balanced code (O), and the maximal number
of dimensions (D) with that specific number of occurrences.

Those two numbers can be directly deduced from the dimension N of the
N-cube:

O =
⌊
2N

N

⌋
+ 2(

⌈
2N

N

⌉
−
⌊
2N

N

⌋
) and D = 2N mod N

2 (8)

The imbalance detection algorithm is given in Alg. 1.1.

Algorithm 1.1: Imbalance detection algorithm
1 Input: a partially built path p
2 Output: a boolean indicating True if the path is imbalanced and False otherwise

4 Initialize array od[] of size n with 0
5 nbD ← 0 // Number of dimensions with max occurrences
6 imb ← False // We start with balanced path assumption

8 for each valid move in p do
9 get the dimension d along which the move is done

10 od[d] ← od[d] + 1 // move added to occurrences of d
11 if od[d]> O then // too much moves on dimension d
12 imb ← True // imbalance
13 else
14 if od[d]= O // dim d reaches max occurrences
15 if nbD= D then // too much dims with max occs
16 imb ← True // imbalance
17 else // new dim with max occs added
18 nbD ← nbD + 1
19 endif
20 endif
21 endif
22 endfor
23 return imb

The imbalance is detected as soon as the number of occurrences of one di-
mension exceeds O or the number of dimensions having reached O exceeds D.

Two other algorithmic enhancements may be added to the process. The for-
mer is a treatment of the nodes in the generation tree that aims at speeding up
the descent towards the leafs, by jumping several levels in the tree in a same iter-
ation. The latter is quite an extension of the former as it consists in starting the
generation process not at the root of the tree but several levels deeper. However,
experiments show that such additions do not systematically reduce the cost of
the algorithm. A deeper study is necessary to precisely determine the impact of
those additions.

Finally, all the paths that are totally specified within the generation process
(the leaves of the generation tree) are transformed into their canonical form.
That form is added to the lexicographically ordered list of balanced Gray codes
if not already present.

So, we obtain an algorithm that generates all the non-isomorphic balanced
Gray codes in a given HN space.



10

4 Application

The first series of experiments is dedicated to the validation of the canonical
form previously presented. Then, the second part is dedicated to the balanced
Gray code generation algorithm.

4.1 Validation of the canonical form and the generation algorithm

The first set of experiments consists in checking the completeness of the ob-
tained generation algorithm described in Section 3. So, this algorithm is used
to experimentally retrieve all the classes in N-cubes up to dimension five. For
larger dimensions, the number of distinct cycles is too large to be exhaustively
computed (777739016577752714 for H6).

For each set HN, all Hamiltonian cycles are generated by the algorithm with-
out activating the balance selection. Then, canonical forms of the cycles are
computed according to C in order to deduce the distinct classes in the space.

The numbers of resulting classes have been compared to the references pro-
vided in [1] and initially coming from [5]. Our algorithm has successfully found
a unique class for dimensions 2, and 3. It found 9 classes for dimension 4 and
237675 classes for dimension 5. These results confirm the completeness of the
generation algorithm.

4.2 Application of the balanced Gray code generation algorithm

In theory, the presented algorithm can generate all the balanced cycles for a
given dimension of N-cube. However, this is not pertinent in practice due to the
exponential increase of the number of cycles. In such case, any algorithm would
be confronted to two limitations: memory and execution time. For example, our
algorithm can generate all the balanced Gray codes for dimensions up to 5 in a
few seconds whereas it would take non reasonable time to generate all the cycles
for dimensions 6 and above.

Indeed, in our application context of PRNGs, we need only to generate some
particular balanced cycles, according to the regarded properties. It is then pos-
sible to restrict the search to some particular cycles. So, it should be possible to
obtain a fast algorithm for generating specific balanced Gray codes.

Moreover, compared to other methods to generate balanced Gray codes, like
the extended Robinson-Cohn (further denoted as e-RB) algorithm [9] or the
Bykov’s one [1], our approach presents the advantage of being more complete,
and thus more flexible. It is able to find any balanced cycle that has some specific
properties, namely which is locally balanced and whose mixing time (time until
the Markov chain is ε close to the uniform distribution) is reduced.

As a first example, if we consider dimension 5, the e-RB method can only
generate 2 balanced cycles (modulo cycle isomorphism), given in Table 2. The
cycles are given in canonical form and the numbers in the left column correspond
to their positions in the totally ordered set of all balanced cycles for dimension 5
(26155). Both cycles have a local balance of 12 and a mixing time of 31 where ε is



11

10−6. However, for this dimension, the minimal local balance is 7 (only one cycle)
and the best mixing time is 29 (several cycles with different local balances). All
those cycles are listed in Table 3, together with their local balance and mixing
time. So, it is clear that our method is better suited to find cycles of interest for
the construction of PRNGs.

sequence of traversed dimensions of the N-cube local mixing
Num balance time
19708 1 2 3 1 4 1 3 2 3 4 1 5 4 5 3 5 1 2 3 2 4 2 1 4 3 5 4 5 1 2 1 5 12 31
20904 1 2 3 2 1 2 3 4 3 2 1 5 1 4 1 2 4 5 3 5 4 2 4 5 1 5 2 3 4 3 2 5 12 31

Table 2: The 2 balanced cycles generated by e-RB method in dimension 5 and
their corresponding mixing time when ε is 10−6.

sequence of traversed dimensions of the N-cube local mixing
Num balance time
22534 1 2 3 2 1 4 5 4 1 3 2 3 1 5 4 5 1 2 3 2 1 4 5 4 1 3 2 3 1 5 4 5 7 34
962 1 2 1 3 1 2 4 1 4 5 2 4 5 3 2 1 5 4 3 2 3 1 4 1 5 3 5 2 1 3 4 5 10 29
983 1 2 1 3 1 2 4 1 4 5 4 3 2 1 5 3 5 2 4 2 3 1 3 4 5 3 2 1 5 4 1 5 10 29
8962 1 2 1 3 2 4 2 1 4 5 3 2 4 1 5 1 3 4 5 4 1 2 1 3 5 1 5 4 3 2 3 5 10 29
22624 1 2 3 2 4 1 2 3 4 5 3 5 2 5 1 4 1 2 3 2 5 1 2 3 5 4 3 4 2 4 1 5 10 29
24059 1 2 3 2 4 3 2 1 4 5 3 5 2 5 1 4 1 2 3 2 5 3 2 1 5 4 3 4 2 4 1 5 10 29
11087 1 2 1 3 4 1 2 3 2 1 5 4 3 1 5 2 5 4 1 2 1 3 4 2 4 1 5 3 4 5 3 5 11 29
18407 1 2 3 1 3 4 2 3 2 1 5 3 5 2 5 4 2 1 3 1 2 4 5 4 1 5 4 2 3 2 4 5 11 29
772 1 2 1 3 1 2 1 4 3 2 3 5 2 4 2 3 4 1 5 3 5 4 3 2 3 4 5 3 5 1 4 5 12 29
6759 1 2 1 3 2 1 4 1 3 2 3 5 4 3 4 1 5 2 5 3 2 5 4 5 3 2 3 1 4 3 4 5 12 29
14967 1 2 1 3 4 3 2 1 3 1 4 5 2 1 5 2 5 4 2 5 3 5 4 1 4 3 2 3 1 4 1 5 12 29
16317 1 2 3 1 2 1 4 3 1 3 2 5 1 5 3 5 4 2 4 3 4 2 1 3 5 4 5 2 3 4 3 5 12 29
17396 1 2 3 1 3 4 1 2 1 3 4 5 2 3 4 2 3 2 5 1 5 3 4 3 2 5 4 5 3 4 1 5 12 29

Table 3: Excerpt of the 26155 non isomorphic Hamiltonian cycles generated by
our method with either the smallest local balance or the smallest mixing time
with ε = 10−6 for dimension N = 5.

A second example is related to the Bykov’s construction of locally balanced
cycles. The proposed algorithm builds a family of Hamiltonian cycles in a N-cube
with a specific local balance of at most n+3.log2(n). However, Table 3 shows us
two facts. The former is that only two cycles among the 7403 with this particular
local balance (11 for dimension 5) obtain the minimal mixing time. The latter is
that this minimum is reached also by some cycles with other local balances (10
and 12). Thus, a more exhaustive algorithm, like the one we propose, is useful
to get all the cycles better suited to the inclusion in a PRNG and to provide a
wider choice.

5 Conclusion

A canonical form has been proposed to provide unique representations of Hamil-
tonian cycles in N-cubes. All the properties of an equivalence relation over the



12

set HN have been proved. Based on this form and the Wild’s algorithm that
generates cycles in graphs, a new algorithm has been designed to generate all
the balanced Hamiltonian cycles in any N-cube. Restrictions to specific cycles
can be used to limit the generation and to avoid the combinatorial explosion on
the number of cycles for dimensions greater than 6.

In the application context of PRNG construction, we have shown that our
algorithm is better suited than other existing methods that generate only specific
cycles, like the extended Robinson-Cohn and the Bykov ones.

Hence, our algorithm provides a useful tool to study the cycles properties
that are relevant to the inclusion in a PRNG. This study is planned as our next
work, together with performance optimization of our generation algorithm.

Acknowledgments

This work is partially funded by the Labex ACTION program (contract ANR-
11-LABX-01-01).

References
1. Bykov, I.S.: On locally balanced gray codes. Journal of Applied and

Industrial Mathematics 10(1), 78–85 (2016), http://dx.doi.org/10.1134/
S1990478916010099

2. Cao, L., Min, L., Zang, H.: A chaos-based pseudorandom number generator and
performance analysis. In: Computational Intelligence and Security, 2009. CIS ’09.
International Conference on. vol. 1, pp. 494–498. IEEE (Dec 2009)

3. Couchot, J.F., Contassot-Vivier, S., Héam, P.C., Guyeux, C.: Random walk in a
n-cube without hamiltonian cycle to chaotic pseudorandom number generation:
Theoretical and practical considerations. International Journal of Bifurcation and
Chaos (2016), accepted on Oct 2016

4. Couchot, J., Héam, P., Guyeux, C., Wang, Q., Bahi, J.M.: Pseudorandom number
generators with balanced gray codes. In: SECRYPT 2014 - Proceedings of the 11th
International Conference on Security and Cryptography, Vienna, Austria, 28-30
August, 2014. pp. 469–475 (2014)

5. Sloane, N.: On-line encyclopedia of integer sequences, http://oeis.org
6. Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part i: analy-

sis [cryptography]. Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on 48(3), 281–288 (Mar 2001)

7. Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-based random number generators.
part ii: practical realization. Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on 48(3), 382–385 (Mar 2001)

8. Suparta, I., Zanten, A.v.: Totally balanced and exponentially balanced gray codes.
Discrete Analysis and Operation Research (Russia) 11(4), 81–98 (2004)

9. Suparta, I., Zanten, A.v.: A construction of gray codes inducing complete graphs.
Discrete Mathematics 308(18), 4124–4132 (2008)

10. Wild, M.: Generating all cycles, chordless cycles, and hamiltonian cycles with
the principle of exclusion. Journal of Discrete Algorithms 6(1), 93 – 102 (2008),
http://www.sciencedirect.com/science/article/pii/S1570866707000020, se-
lected papers from {AWOCA} 2005Sixteenth Australasian Workshop on Com-
binatorial Algorithms


