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Abstract. We study a small part of the 8088 diploid cellular automata.
These rules are obtained with a random mixture of two deterministic
Elementary Cellular Automata. We use numerical simulations to study
the mixtures obtained with three blind rules: the null rule, the identity
rule and the inversion rule. As the mathematical analysis of such systems
is a difficult task, we use numerical simulations to get insights into the
dynamics of this class of stochastic cellular automata. We are particularly
interested in studying phase transitions and various types of symmetry
breaking.
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1 Introduction

As introduced by Turing in his article on morphogenesis [15], the question of
randomness is fundamental to understand the laws of life. Turing was puzzled
by the capacity of biological organisms to realise a form of “symmetry break-
ing”: given a dynamical system which is invariant under some symmetry and
an initial condition which is also invariant under this symmetry, such systems
evolve to a state which is stable and which is no longer invariant under this
symmetry. The typical case is the embryo which initially has a spherical form
and needs to “break” this form to develop different organs. To produce such a
phenomenon, two mechanisms can be at play: (a) the initial condition possesses
a small asymmetry which is amplified in the evolution of the system; (b) the
components of the system evolve with some randomness, which allows them to
“choose” one of the symmetric directions of evolutions.

The framework of stochastic cellular automata is adapted for the study of
such phenomena. In this note, we deal with one-dimensional cellular automata
with random transitions, binary states and nearest neighbours. More specifically,
we restrict our scope to the rules defined as a random mixture of two determin-
istic Elementary cellular automata (see the definitions below). As we will see,
this case is sufficiently rich to provide many worthy examples, with potential
applications in the study of physical, chemical or biological systems. We are par-
ticularly interested in the qualitative transformations that a cellular system may
undergo when one progressively varies the mixing rate of its two deterministic
components.
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2 Definitions

Elementary Cellular Automata. We consider finite cellular automata with
binary states and periodic boundary conditions. We denote by Q = {0, 1} the
set of states and let L = Z/nZ denote the set of n cells arranged in a ring. A
configuration represents the collection of states of all the cells at a given time
step ; the set of configurations is denoted by QL.

In this note, we are only interested in the systems where the cells update their
state according to their own state and the state of their left and right neighbour.
This set of three cells forms the neighbourhood of a given cell. At each time step,
the updates are made synchronously according to a local rule f : Q3 → Q. Given
a local function f and a set of cells L, one can define the Elementary Cellular
Automaton F : QL → QL such that, the image y = F (x) of a configuration
x ∈ QL is given by:

∀i ∈ L, yi = f(xi−1, xi, xi+1).

An initial condition x ∈ QL is then associated to its trajectory, that is, the
infinite sequence (xt)t∈N such that x0 = x and xt+1 = F (x) for all t ∈ N.

Classically, a rule f is identified by the decimal number W which results from
the conversion of the binary number [f(1, 1, 1)f(1, 1, 0) . . . f(0, 0, 0)]b. (In other
words W (f) = f(0, 0, 0) ·20 + f(0, 0, 1) ·21 + · · ·+ f(1, 1, 1) ·27.) It is common to
identify the rule with its decimal code. When the ring size n and the local rule
f are clear from the context, it is also common to identify the local rule with
the Elementary Cellular Automaton (ECA) F .

We now turn our attention to stochastic cellular automata1. In this model,
each cell has a probability to turn to 0 or to 1 according to the states of its
neighbourhood. This means that we need to replace the trajectories (xt)t∈N by
a random process (ξt)t∈N. Each ξt is formed by the random variables (ξti)i∈L,
which represent the random state of the cell i at time t. Starting from given
probability distribution ξ0, the evolution of the stochastic cellular automaton is
a Markov chain: intuitively this means that the knowledge of the state of the
system at time t is sufficient to calculate the probability distribution at time t+1.
Since the state of each cell is calculated independently, we can use a function
φ : Q3 → [0, 1], which gives the probability to be in state 1 if the neighbourhood
of a cell is (x, y, z). Starting from an initial random distribution ξ0, the evolution
of our stochastic cellular automaton can thus be obtained for each t ∈ N and for
each i ∈ L with:

Pr{ξt+1
i = 1} =

∑
(x,y,z)∈Q3

Pr{(ξti−1, ξti , ξti+1) = (x, y, z)}.φ(x, y, z) (1)

An alternative way of defining the Markov chain (xt)t∈N is to specify, for two
configurations x, y ∈ QL, the probability to go from x to y; we then have:

Pr{ξt+1 = y|ξt = x} =
∏
i∈L

yi ·φ(xi−1, xi, xi+1) + (1− yi) ·
(
1−φ(xi−1, xi, xi+1)

)
.

1 The name probabilistic cellular automata is also frequently used and is a synonym.
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The formalism defined above is convenient for binary finite systems but it re-
quires more elaborate definitions for infinite-size systems [8] or systems with
more states or continuous states [2]. Note that other types of presentations of
the rules may be used to facilitate the analysis [5,2].

Diploid ECA. Since a stochastic ECA φ is defined with eight probabilities,
it is rather intuitive to try to understand how the combination of these eight
probabilities influences the behaviour of a rule, for example if the rule may
converge to a fixed point or not, and what is the average time of convergence.
An important question is to determine what are the various “behaviours” that
this space contains and how these behaviours are modified when one moves
continuously in this space. Since this space already contains the 256 deterministic
ECAs, which are difficult to understand theoretically (see e.g. [12]), one can
easily guess that its generalisation to the space of probabilistic CA will generate
a great number of new problems [1,8].

In order to get some insights on this question, it is thus necessary to con-
centrate on a subset of the stochastic ECA space. We thus propose to focus
on the stochastic mixtures of two deterministic ECA. Such rules have already
been studied by many authors (e.g. [9]), but to our knowledge only in particular
contexts. We want here to enlarge our view of this space of rules: as a first step,
we examine some of their simple properties and explore their dynamics with
numerical simulations.

We denote by S8 the set of stochastic ECA; this set is isomorphic to [0, 1]8

and for the sake of simplicity we will identify a stochastic rule and the function
which maps each neighbourhood (x, y, z) ∈ Q3 to its probability to update to
state 1. Let φ ∈ S8 be a stochastic ECA, we say that φ is a randomly-mixed
ECA if there exists two ECAs f1 : Q3 → Q and f2 : Q3 → Q and a constant
λ ∈ [0, 1], called the mixing rate, such that:

∀(x, y, z) ∈ Q3, φ(x, y, z) = (1− λ) · f1(x, y, z) + λ · f2(x, y, z) (2)

We will write φ = (f1, f2)[λ] to denote this relation. When f1 6= f2 and λ ∈ (0, 1),
we say that φ is a diploid ECA2.

It can be noted that not all randomly-mixed ECAs are diploids and that
the decomposition of a diploid is not always unique. The following proposition
clarifies this fact.

Proposition 1. Let φ be a randomly-mixed ECA, φ is a diploid if and only if
there exists λ ∈ (0, 1) and (x, y, z) ∈ Q3 such that φ(x, y, z) = λ and ∀(x, y, z) ∈
Q3, φ(x, y, z) ∈ {0, λ, 1− λ, 1}.

Indeed, if φ is a diploid such that φ = (f1, f2)[λ] then there exists a triplet
(x, y, z) ∈ Q3 such that φ(x, y, z) /∈ {0, 1}, which implies that λ = φ(x, y, z) or
λ = 1−φ(x, y, z). Moreover, it can be noted that if the mixing rate λ is different

2 The name is composed from the ancient Greek διπλοῦς (diplous), which means
twofold, double, and εἶδος (eidos), which evokes the form, the shape, the face, etc.
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from 1/2, then the decomposition of a diploid into its components f1 and f2 is
unique, up to the exchange symmetry, that is, the symmetry that exchanges f1
and f2 and inverts λ into 1− λ.

Let f1 and f2 be two different ECAs, we call a diagonal the set of diploids
that can be obtained by combining f1 and f2 with a mixing rate λ ∈ (0, 1).
Diagonals can be seen as lying on the diagonals of the hypercube [0, 1]8, where
the vertices of the hypercube represent the deterministic ECAs. They are simply
denoted by (f1, f2) = {(f1, f2)[λ], λ ∈ (0, 1)}.

Since there are 256 ECAs, there exist 256 × 256 = 65 536 couples of ECAs
that allow one to define a randomly-mixed ECA. If one is interested in diagonals
then there exist 256 · (256− 1)/2 = 32640 couples to study, taking into account
the exchange symmetry. However, the conjugation symmetry, which exchanges
the 0s and 1s, and the reflection symmetry, which exchanges the left and right
directions, can also be employed to reduce the number of couples that one may
study to explore the space of diploid rules. Let us now enumerate the number of
couples that are non-equivalent according to these symmetries.

Let R,C, T be the operators which respectively represent the reflection, the
conjugation, and the composition of both operations. Formally for an ECA f :
Q3 → Q, we define:

R(f) = f(z, y, x),
C(f) = 1− f(1− x, 1− y, 1− z),
T (f) = R ◦ C(f) = C ◦R(f) = 1− f(1− z, 1− y, 1− x).

It is straightforward to generalise the definitions above to the stochastic rules,
either by applying the symmetries to the local function or by applying them to
the configurations that define the Markov chain of the ECA (see above).

Proposition 2. Under the symmetries R, C, and T , there are 8808 non-equivalent
diagonals that define the diploid rules.

Proof. Let B be the set of ECAs which are invariant under both symmetries R
and C (and thus T ), let R, C, T be respectively the ECAs which are invariant
under only the symmetry R, C, or T only and let N represent the rules which
have no invariance. It can be easily verified that we have |B| = 23 = 8, |C| =
|T| = 24− |B| = 8, |R| = 26− |B| = 56 and |N| = 256− (|B|+ |R|+ |C|+ |T|) = 176.

Let b, r, c, t, n represent the number of classes of equivalences of the sets B,
R, C, T and N, respectively. We have b = |B| = 8, r = |R|/2 = 28, c = |C|/2 = 4,
t = |T|/2 = 4 and n = |N|/4 = 44. The total number of non-equivalent ECAs is
thus equal to b + c + r + t + n = 88, we represent each class of equivalence by
the rule which has the smallest decimal code, the minimal representative.

We say that a couple of rules (f, g) is invariant under the symmetry S if
(a): (f, g) = (S(f), S(g)) or (b): (f, g) = (S(g), S(f)). Unfortunately, it is not
possible to obtain the equivalence classes of the diagonals by only considering the
couples formed by the minimal representatives and the exchange symmetry. For
example, if one considers the two ECAs 0 and 255, 0 is a minimal representative
but not 255, but, obviously, it is not possible to form a couple of two minimal
representative rules that would generate an equivalent diagonal.
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Let S = QQ3

denote the ECA space and Sd = S×S be the space of couples of
ECAs. Taking similar notations as we did for the ECA space, let Bd be the set
of couples that are invariant under both symmetries R and C, and Rd, Cd and
Td the set of couples that are invariant under only the symmetry R, C and T ,
respectively, and let Nd be the set of couples that have no invariance. Note that
Sd contains 256 repetitive couples, that is, couples in the form (f, f).

Invariance by R and C. The set Bd is formed by the couples (f, g) such
that: (1) (f, g) = (R(f), R(g)) or (2) (f, g) = (R(g), R(f)) ; and such that:
(3) (f, g) = (C(f), C(g)) or (4) (f, g) = (C(g), C(f)). Let B1d be the set of
couples which verify (1) and (3), we have

∣∣B1d∣∣ = |B× B| = 8 · 8 = 64. Let B2d be
the set of couples which verify (1) and (4) and which do not belong to B1d. It can
be easily verified that B2d = {(f, g), f ∈ R, g = C(f)}, which gives

∣∣B2d∣∣ = |R| = 56.
Let B3d be the set of couples which verify (2) and (3) and which do not belong to
B1d. Similarly, it can be easily verified that B3d = {(f, g), f ∈ C, g = R(f)}, which
gives

∣∣B3d∣∣ = |C| = 8. In a similar way: B4d = {(f, g), f ∈ T, g = R(f) = C(f)},
which gives

∣∣B4d∣∣ = |T| = 8.

One may easily verify that the sets B1d, B
2
d, B

3
d, B

4
d form a partition of Bd. We

thus have : |Bd| = 64 + 56 + 8 + 8 = 128 + 8 = 136. Given that Bd contains 8
repetitive couples and given that each pair of non-repetitive couples (f, g) and
(g, f) counts for one diagonal, the number of diagonals that can be generated
by elements of Bd is #(Bd) = (136− 8)/2 = 64.

Invariance by R only. The set Rd is formed by the couples such that: (1)
(f, g) = (R(f), R(g)) or (2) (f, g) = (R(g), R(f)), and such that: (3) (f, g) /∈ Bd.

Let R1d be the set of couples that verify condition (1) and not condition (2),
and let R2d be the set of couples that verify condition (2) but not condition (1).
We have: R1d = (B ∪ R) × (B ∪ R), which gives

∣∣R1d∣∣ = 64 · 64 = 4096. We have:

R2d = {(f, g) ∈ Sd, f ∈ S\ (B∪R), g = R(f)}, which gives:
∣∣R2d∣∣ = 256− (56 + 8) =

192. As Rd = (R1d ∪ R2d) \ Bd, we find that |Rd| = 4096 + 192− 136 = 4152. Given
that Rd contains |R| = 56 repetitive couples, and given that each quadruplet
(f, g), (g, f), (C(f), C(g)), (C(g), C(f) counts for one non-equivalent diagonal,
we have: #(Rd) = (4152− 56)/4 = 4096/4 = 1024.

Invariance by C only and by R ◦ C only. The same arguments as seen
above can be repeated. We count: |Cd| = |Td| = 256 + 240 − 136 = 360. The
number of non-equivalent diagonals found in Cd and Td is: #(Td) = #(Cd) = 88

No invariance. We now enumerate the number of couples which show no
invariance by R, C or R ◦ C. We have Nd = Sd \ (Bd ∪ Rd ∪ Cd ∪ Td) and we
count: |Nd| = 256.256 − (136 + 4152 + 360 + 360) = 65536 − 5008 = 60528.
Since this set of couples contains |N| = 256 − (8 + 56 + 8 + 8) = 176 repetitive
couples and since the exchange symmetry and the symmetries C, R or R ◦ C
allow one to associate 8 different couples in one equivalence class, we find that
the number of non-equivalent diagonals that can be generated by elements of Nd
is #(Nd) = (60528− 176)/8 = 7544.

We are now in position to add the set cardinals calculated above to find how
many non-equivalent diagonals there are to generate all the possible diploids:
#(Sd) = 64 + 1024 + 88 + 88 + 7544 = 8808. ut



6 Nazim Fatès

To introduce an order on these 8808 couples of diploid generators, we may simply
use the lexicographic order on the pair of decimal codes attached to each rule. In
other words, given two pairs of rules(f, g) and (f ′, g′) we say that (f, g) ≤ (f ′, g′)
if and only if f < f ′ or if f = f ′ and g ≤ g′. As seen above, the couples may
be grouped by sets of equivalent pairs of size 2 (elements of Bd), 4 (elements
of Rd, Cd, Td), or 8 (elements of Nd). We call a minimal representative the pair
which has the smallest code in its class of equivalence.

3 First steps in the space of diploids

As already mentioned, there exists a plethora of interesting questions that can
be asked on stochastic cellular automata. As a first step, we propose to examine
a simple question: given a diagonal (f1, f2), what kind of qualitative change may
happen to the diploids of this diagonal when λ is varied? In particular, we want
to know if there exists some values of λ where the behaviour of the system
changes drastically. Here again, the answer we give may vary widely depending
on how we estimate the“behaviour” of our cellular automaton. We thus simply
propose to use two macroscopic parameters: the density, the ratio of the states
1 and the kinks density, the ratio of the occurrence of the length-2 patterns 01

and 10.
The exhaustive study of the 8808 diagonals is a daunting task, we thus need

to focus on some families of diploids. We propose to begin our examination with
the diagonals that are formed with the most simple rules: the null rule, the
identity rule, and the inversion rule.

3.1 Experimental protocol

For a given ring size n and a configuration x ∈ QL, we call the density the
ratio d(x) = |x|1/n where |x|1 = |{i ∈ L, xi = 1}| and kinks density the ratio
dk(x) = (|x|10 + |x|x01)/n where |x|qq′ = |{i ∈ L, xi = q and xi+1 = q′}|. For
each couple of rules (f, g) we will sample the value of d and dk of the stochastic
mixtures of two ECAs for a system composed of n = 10 000 cells. We vary λ
from 0 to 1 by increasing λ from 0 to 0.05 by steps of 0.01, then from 0.05 to
0.95 by steps of 0.05, and then from 0.95 to 1 by steps of 0.01. The step length is
made smaller for high and small values of λ to give a more precise view close to
the special points λ = 0 and λ = 1, where important modifications may occur.
Indeed, the transition from a deterministic system to a non-deterministic one is
likely to produce an abrupt change of behaviour; however, we leave for future
work the study of such effects and we concentrate on the changes which occur for
non-extremal values, as they are in some sense more surprising. For each diploid,
we start from a uniform initial condition where each cell has an equal probability
to be in state 0 or 1; we let the system evolve during Ttrans = 5 000 time steps and
we sample the value of the parameters d and dk to have a numerical estimation of
the asymptotic density, that is, the average value we would obtain if the system’s
size would tend to infinity and if the sampling operation was repeated an infinite
number of times. We sample only one value of this density for each value of α.
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Fig. 1: Density as a function of λ for the diagonals (0,22) and (0,150).

3.2 Mixtures with the null rule (ECA 0)

Fig. 2: Space-time diagrams of diploids (0,73) with (left): λ = 0.25, (middle):
λ = 0.50, right: λ = 0.75. Time goes from bottom to top. Cells in state 0 and 1

are respectively represented by squares in white or blue (or dark gray).

We applied the protocol described above for the 159 minimal non-equivalent
diagonals in the form (0, f). Figure 1 shows the estimation of the asymptotic
density as function of the mixture rate in two diagonals where a qualitative
modification of the behaviour occurs. This type of brutal change of behaviour
is well-known and is called a second-order phase transition: the function d(λ)
is continuous but its derivative is not. There exists a critical mixing rate λc
which separates a behaviour where the system converges to 0L (passive phase)
and a behaviour with a stationary non-zero density (active phase). If the system
were composed of an infinite number of cells, the property stated above would be
exact. However, because of finite-size effects, it should be noted that even for the
active phase, there exists a small but non-zero probability to reach the absorbing
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state 0L, for example if all the cells apply rule 0 at the same time step. Regnault
studied these type of phenomenon of convergence and he gave analytical results
for a particular α-asynchronous ECA rule (see below) [10]. Second-order phase
transitions were detected in no less than 34 diagonals (0, f) and where f is found
in the following ECA list: 18, 22, 26, 28, 30, 50, 54, 58, 60, 62, 78, 90, 94, 110,
122, 126, 146, 150, 154, 156, 158, 178, 182, 186, 188, 190, 202, 206, 218, 22, 234,
238, 250, 254 (see also Tab. 1 p. 11).

It can be noted that the diagonals (0,250) and (0,254) correspond to two
cases of oriented site percolation: in this problem an infinite grid is formed of
sites which can be open with probability p and closed with probability 1 − p
and starting from a particular site, a fluid flows from open site to open site
in a given direction. There exists a critical threshold for p for which the fluid
percolates, that is, has the possibility to travel arbitrary distances in the medium.
The critical threshold has been measured with Monte Carlo simulations and
various analytical estimates have been proposed. One may report to the study
by Taggi [14] for more details and for a more general view on such percolation
operators with various neighbourhoods.

We did not observe any phase transitions within the diagonals formed by
ECA 0 and the ECAs with an odd code, that is, the rules for which f(0, 0, 0) = 1.
Figure 2 shows the space-time diagrams of three diploids taken in the diagonal
(0,73) with λ ∈ {0.25, 0.5, 0.75}. These samples allow one to understand why
the mixtures between rule 0 and an “odd” rule does not create any interest-
ing structure: on the one hand, the null rule has a tendency to remove the 1s
independently on any information on the neighbourhood. On the other hand,
the odd rule may create a 1 in any place where there are three successive 0s.
This idea needs of course to be studied with more attention and if possible by
analytical means.

3.3 Mixtures with the identity rule : α-asynchronous ECA

The diploids defined with a mixture of the identity rule (ECA 204) and another
ECA rule correspond to the α-asynchronous CA (where the mixing rate λ cor-
responds to the synchrony rate α). Such a family of rules has been studied quite
in detail both numerically and analytically but there are still many challenges
in their understanding [3,6,13,4]. The most surprising aspect of α-asynchronous
CA is their great diversity of behaviour. There are 9 diagonals which contain a
second-order phase transition for the density, but, contrarily to “mixed-with-0”
diploids, it is not possible to predict the respective positions of the absorbing and
active phases. For example, for ECA 50, the active phase is for high values of α
and the absorbing phase is for low values, while the situation is inverted for ECA
6 or ECA 138. We refer to our survey on asynchronous for more information on
this topic and on closely-related questions [6].
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Fig. 3: Analysis of the diagonals (13,51) and (15,51). (top) Kinks density as a
function of λ; (bottom) space-time diagrams for two arbitrary values of λ.
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Fig. 4: Analysis of the diagonals (57,51) and (160,51). (top) Kinks density as a
function of λ; (bottom) space-time diagrams for two arbitrary values of λ.
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3.4 Mixtures with the inversion rule (ECA 51)

An interesting family of diploids to study is formed by the rules obtained as
a mixture with ECA 51, that is, the rule f(x, y, z) = 1 − y. Contrarily to the
previous families of diagonals, we did not observe any phase transition related
to the evolution of the density. However, a new behaviour appears: there are
some rules for which the kinks density take extremal values and become close
(or equal) to 0 or 1.

First, let us examine the cases where the kinks density is close to 0. This
happens in 16 diagonals (f, 51) for the rules f which have the following codes: 1,
3, 5, 7, 9, 11, 13, 15, 25, 27, 29, 33, 37, 45, 73, and 77. The diagonals formed with
rules written in bold font show the presence of a critical threshold: they converge
to a zero kink value only for sufficiently high values of λ (see also Tab. 1). The
other rules seem to remove the kinks for any value of the mixing rate. A peculiar
behaviour appears for the diagonal (33,51) where the kinks disappear very slowly
for high values of λ. Experiments do not show a critical phenomenon here. Fig. 3
displays the evolution of the kinks density for the diagonals (13,51) and (15,51).

We represented examples of the space-time diagrams of the four diploids:
(13,51)[.2],(13,51)[.8], (15,51)[.2], and (15,51)[.8] in Fig. 3,. The space-time di-
agrams of the diploids which remove the kinks show that the qualitative be-
haviour of these rules is quite regular: they tend to form blinking regions of
consecutive 0s and 1s. This blinking phenomenon is joined to a random walk
of the frontiers. The regions disappear when their frontiers meet (annihilation
phenomenon) which allows to infer that all these diploids solve the global syn-
chronisation problem [7]: from any initial condition, they converge to the deter-
ministic period-2 cycle where the uniform configurations 0L and 1L alternate.
Interestingly, Richard has shown that it is not possible to solve this problem
with a deterministic cellular automaton (see Ref. [11] and the extended version
of Ref. [7]), but as it can be seen here, solving the problem with diploids is rather
easy. It can be shown analytically that the convergence time of the diploid (15,51)
scales quadratically with the number of cells. The proof of this property relies on
a coupling with the shift rule (ECA 170) with an α-asynchronous updating [7].

Let us now turn our attention on the diagonals which show values of the
kinks density which are close or equal to 1. There are 15 such diagonals (f, 51)
where f has the code: 32, 34, 40, 42, 56, 57, 58, 104, 106, 122, 160, 162,
168, 170, 232. The rules written in bold font show the presence of a critical
threshold: they converge to configurations where the states 0 and 1 alternate
(high kinks density) only for a sufficiently high values of the mixing rate λ. The
other diagonals seem to contain diploids which attain a kinks density of 1 for any
value of λ ∈ (0, 1). The diagonal (57,51) shows a slowdown of the convergence
for high values of λ.

As it can be seen on Fig. 4, this behaviour can be associated to another form
of symmetry breaking: the creation of a pattern where all the cells alternate their
state in space and time. Here again, the synchronisation of the whole system is
achieved by the random movements of the frontiers between non-synchronised
regions, which act as defects which annihilate when they meet.
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Table 1: List of diagonals where second-order phase transitions were observed.
The first column shows the order parameter for which the critical phenomenon is
observed, the second and third columns show the two elements of the diagonal.
param. diagonal with rule list

dens. 0 (null) 18, 22, 26, 28, 30, 50, 54, 58, 60, 62, 78, 90, 94, 110,
122, 126, 146, 150, 154, 156, 158, 178, 182, 186, 188,
190, 202, 206, 218, 22, 234, 238, 250, 254

dens. 204 (identity) 6, 18, 26, 38, 50, 58, 106, 134, 146

kinks dens. 51 (inversion) 9, 13, 32, 40, 45, 73, 104, 106, 122, 160, 168, 232

4 Discussion

This note constitutes a first step in the exploration of the space of the diploids.
Such mixtures of two deterministic rules have been studied by various authors
and it would be interesting to compile and ‘digest” the various phenomena that
were studied on such models. Here, we systematically explored the mixtures
formed with three “blind” rules which do not depend on their neighbourhood:
the null rule, the identity rule and the inversion rule, and obtained some quite
puzzling observations.

First, in the space of diploids, the occurrence of second-order phase tran-
sitions is not a rare phenomenon. So far, similar observations were linked to
percolation phenomena [14], to the study of the effects of asynchronism [6], or
rely on specific constructions. Note that if one takes a “randomly” chosen rule
in the space of the elementary stochastic rules S8, this rule is most likely a
positive-rate rule, that is, for each neighbourhood there is a non-zero probability
to reach both states. As a consequence, the chances to observe a phase transition
by slightly modifying this rule is quite small (see Ref. [8] for more explanations).
By contrast, the space of diploids may prove an appropriate subset of rules to
find various forms of critical phenomena.

The second interesting aspect observed with our diploids is their ability to
produce various forms of symmetry breaking: their inherent randomness allow
them to easily create patterns with alternating states, or to reach homogeneous
and synchronised blinking configurations. So far, diploids have provided simple
solutions to the density classification problem (Fukś’ rule, Schüle’s rule and the
traffic-majority rule) [5] or to the global synchronisation problem [7]. It is an
open question to know how such models may perform some more complex forms
of decentralised computations, and, if possible, solve problems that would be
difficult or impossible to solve without the help of randomness3.

3 The author is grateful to Victor Roussanaly for his work on this topic as an intern
in the Loria laboratory from June to August 2013. He also expresses his sincere
recognition to Jordina Francès de Mas for her attention when reading the manuscript.
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