Restricted Binary Strings and Generalized Fibonacci Numbers

Abstract : We provide some interesting relations involving k-generalized Fibonacci numbers between the set $F_n^{(k)}$ of length n binary strings avoiding k of consecutive 0’s and the set of length n strings avoiding $k+1$ consecutive 0’s and 1’s with some more restriction on the first and last letter, via a simple bijection. In the special case $k=2$ a probably new interpretation of Fibonacci numbers is given.Moreover, we describe in a combinatorial way the relation between the strings of $F_n^{(k)}$ with an odd numbers of 1’s and the ones with an even number of 1’s.
Type de document :
Communication dans un congrès
Alberto Dennunzio; Enrico Formenti; Luca Manzoni; Antonio E. Porreca. 23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10248, pp.32-43, 2017, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-58631-1_3〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01656354
Contributeur : Hal Ifip <>
Soumis le : mardi 5 décembre 2017 - 15:42:16
Dernière modification le : mercredi 6 décembre 2017 - 10:47:38

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Antonio Bernini. Restricted Binary Strings and Generalized Fibonacci Numbers. Alberto Dennunzio; Enrico Formenti; Luca Manzoni; Antonio E. Porreca. 23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10248, pp.32-43, 2017, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-58631-1_3〉. 〈hal-01656354〉

Partager

Métriques

Consultations de la notice

12