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Abstract. We investigate the state complexity of the square operation
on languages represented by deterministic, alternating, and Boolean au-
tomata. For each k such that 1 ≤ k ≤ n−2, we describe a binary language
accepted by an n-state DFA with k final states meeting the upper bound
n2n − k2n−1 on the state complexity of its square. We show that in the
case of k = n− 1, the corresponding upper bound cannot be met. Using
the DFA witness for square with 2n states where half of them are final,
we get the tight upper bounds on the complexity of the square operation
on alternating and Boolean automata.

1 Introduction

Square is a basic unary operation on formal languages which is defined as
L2 = {uv | u ∈ L and v ∈ L}. It is known that if a language L is accepted
by a deterministic finite automaton (DFA) of n states, then the language L2

is accepted by a DFA of at most n2n − 2n−1 states [7]. This upper bound was
proven to be tight in the binary case by Rampersad [8]. If the minimal DFA
for L has more than one final state, then this upper bound cannot be met. In
such a case the upper bound is n2n−k2n−1, where k is the number of final states
in the minimal DFA for L [10].

In this paper we study the state complexity of the square of languages ac-
cepted by DFAs with more final states. Our motivation comes from the paper
by Fellah, Jürgensen, and Yu [3] on alternating finite automata (AFAs). They
provided an upper bound 2n+n+1 on the complexity of the square of a language
represented by an n-state AFA. A language is accepted by an n-state AFA if and
only if its reverse is accepted by a DFA with 2n states where 2n−1 of them are
final [1,3,5]. It follows that to prove the tightness of the upper bound 2n+n+1,
we need to find a language represented by a DFA with half of the states final
which is hard for the square operation on DFAs.

The problem seems to be interesting per se. Previously in [2], we tried to use
Rampersad’s binary witness for square [8] with k final states instead of original
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one. We were able to show the reachability of n2n − k2n−1 states in the subset
automaton of an NFA for its square. However, to prove distinguishability a third
letter was needed, so the binary case was left open. Surprisingly, in [2], we were
unable to prove the tightness of the upper bound in the case of n−1 final states.

Here we solve both these open problems. We describe a binary language
accepted by an n-state DFA with k final states meeting the upper bound
n2n−k2n−1 on the state complexity of its square providing that 1 ≤ k ≤ n−2. In
the case of k = n−1, we prove that the corresponding upper bound (2n+2)2n−2

cannot be met. To show it, we consider two cases. If the initial state is final, then
we get the upper bound (n+ 2)2n−2, and we show that it is tight in the binary
case. If the initial state is not final, then the upper bound is (n+ 3)2n−2 and is
tight in the ternary case. The tight bound for binary languages is (n+3)2n−2−1
in this case. This solves the complexity of square on DFAs completely. The bi-
nary alphabet is optimal since it is known that in the unary case, the tight upper
bound is 2n− 1 [8].

Using these results we are able to describe a binary language accepted by
an n-state AFA such that every AFA for its square has at least 2n + n + 1
states. This proves the tightness of the upper bound 2n + n+ 1 given in [3]. We
also consider Boolean finite automata (BFA) [1], and get the tight upper bound
2n + n for the square on BFAs. To prove these results, we take the reversal of a
language accepted by a DFA with 2n states with half of them final meeting the
corresponding upper bound for square on DFAs. Then this language is accepted
by an n-state BFA, and we are able to prove that every BFA for its square has
at least 2n + n states. By more careful analysis of the number of final states in
DFA for its square, we get the lower bound 2n + n+ 1 for the square operation
on AFAs. Our result can be extended for the concatenation operation just by
concatenating two of our automata with different number of states. This provides
an alternative proof of the tightness of the upper bound 2m + n + 1 for the
concatenation operation on alternating automata with m and n states [4].

2 Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ
including the empty word ε. A language is any subset of Σ∗. The concatenation
of languages K and L is the language KL = {uv | u ∈K and v ∈L}. The square
of a language L is the language L2 = LL. The cardinality of a finite set A is
denoted by |A|, and its power-set by 2A. The reader may refer to [9] for details.

A nondeterministic finite automaton (NFA) is a quintupleA = (Q,Σ, ◦ , I, F ),
where Q is a finite set of states, Σ is a finite non-empty alphabet, ◦ : Q×Σ → 2Q

is the transition function which is naturally extended to the domain 2Q × Σ∗,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The
language accepted by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F ̸= ∅}. For a
symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦ a, and for a

word w, we write p
w−→ q if q ∈ p ◦ w. An NFA A is deterministic (DFA) (and

complete) if |I| = 1 and |q ◦ a| = 1 for each q in Q and each a in Σ. We write
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p · a = q instead of p ◦ a = {q} in such a case. The state complexity of a regular
language L, sc(L), is the smallest number of states in any DFA for L.

Every NFA A = (Q,Σ, ◦, I, F ) can be converted to an equivalent DFA
A′ = (2Q, Σ, · , I, F ′), where R · a = R ◦ a for each R in 2Q and a in Σ, and
F ′ = {R ∈ 2Q | R ∩ F ̸= ∅}. We call the DFA A′ the subset automaton of the
NFA A. The subset automaton may not be minimal since some of its states may
be unreachable or equivalent to other states.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F ), where
Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,
δ is the transition function that maps Q×Σ into the set Bn of Boolean functions
with variables {q1, . . . , qn}, gs ∈ B is the initial Boolean function, and F ⊆ Q
is the set of final states. The transition function δ is extended to the domain
Bn×Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if g =
g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA) if the initial function
is a projection g(q1, . . . , qn) = qi. For details, the reader may refer to [1,3,5,6,9].
The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the smallest
number of states in any BFA (AFA) for L. It is known that a language L is
accepted by an n-state BFA (AFA) if and only if the language LR is accepted
by an 2n-state DFA (with 2n−1 final states). We state it in the next two facts.

Fact 1 (cf. [3] Theorem 4.1, Corollary 4.2 and [5], Lemma 1). Let L be
a language accepted by an n-state BFA (AFA). Then the reversal LR is accepted
by a DFA of 2n states (of which 2n−1 are final). ⊓⊔

Corollary 2. If L is a regular language, than bsc(L) ≥ ⌈log(sc(LR))⌉ and
asc(L) ≥ ⌈log(sc(LR))⌉. ⊓⊔

Fact 3 (cf. [5], Lemma 2). If LR be accepted by a DFA A of 2n states, then
L is accepted by an n-state BFA. If LR be accepted by a DFA A of 2n states of
which 2n−1 are final, then L is accepted by an n-state AFA. ⊓⊔

3 Square on DFAs

Let us begin with the precise method of construction an NFA for the square of
some languages accepted by a minimal DFA with n states.

Construction 4. (DFA A −→ NFA N for L2(A))
Let A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) be a minimal DFA. We construct NFA
N = ({q0, q1, . . . , qn−1} ∪ {0, 1, . . . , n− 1}, Σ, ◦, I, FN ) as follows:

(a) take A and add a copy of A with the state set {0, 1, . . . , n− 1};
(b) for each symbol a and each state qi with qi · a ∈ FA, add transition (qi, a, 0);
(c) the set of initial states of N is I = {q0} if q0 /∈ F , and I = {q0, 0} otherwise;
(d) the set of final state of N is FN = {j ∈ {0, 1, . . . , n− 1} | qj ∈ FA}.
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Proposition 5 (Upper Bound). Let L be a language with sc(L) = n, and let
the minimal DFA for L have k final states. Then sc(L2) ≤ n2n − k2n−1.

Proof. Let L be accepted by DFA A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) and let
|FA| = k. Construct an NFA N for L2 as described above. Since A is deter-
ministic, every reachable subset in the subset automaton of N is in the form of
{qi} ∪ S, where S ⊆ {0, 1, . . . , n − 1}. Furthermore, if qi is a final state of A,
then 0 ∈ S because of the used construction. It follows that subsets containing
a final state of A and missing 0 are unreachable. Hence the subset automaton of
N has at most n2n − k2n−1 reachable states. ⊓⊔

Notice that the upper bound given by above proposition is maximal if k = 1,
and it is n2n−2n−1 in this case. The binary witness language meeting this bound
was presented by Rampersad in 2006 [8].

Theorem 6 ([8, Theorem 1]). For every integer n ≥ 3, there exists a DFA M
with n states such that the minimal DFA accepting the language L2(M) has
n2n − 2n−1 states. ⊓⊔

Unfortunately, the square of Rampersad’s automaton with k final states does
not meet the upper bound on the state complexity in the general case. Here we
provide the binary witness automaton with k final states that meets the upper
bound n2n − k2n−1.

Theorem 7. Let n ≥ 3 and 1 ≤ k ≤ n− 2. Then there exists a minimal n-state
DFA A with k final states defined over a binary alphabet such that every DFA
for L(A)2 has at least n2n − k2n−1 states.

Proof. Let us take n-state DFA A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) with k final
states shown in Fig. 1. Notice that q0 and q1 remain non-final with every k in
this DFA and there are two cycles; one on a, (q0, q1, . . . , qn−1), of length n and
the second on b, (q2, q3, . . . , qn−1), of length n− 2.

Let us build an NFA N for L(A)2 as in Construction 4. An example of NFA
N if n = 6 and k = 2 is shown in Fig. 2.

q0 q1 q2 . . . qα qα+1 . . . qn−1

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 1. A witness DFA A with k final states meeting the bound n2n − k2n−1,
where α = n− k − 1.
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q0 q1 q2 q3 q4 q5
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a

b

a

b

a

b

a
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a

b

a

b

a

b

a

b

a

b

a

b

a

b

a
b

a, ba, b

Fig. 2. NFA N for square of L(A), if n = 6 and k = 2.

We observe that there are only two types of states reachable in the subset
automaton of N :

• {qi} ∪ S, where S ⊆ {0, 1, . . . , n− 1} and 0 ≤ i ≤ n− k − 1;

• {qi, 0} ∪ S, where S ⊆ {1, . . . , n− 1} and n− k ≤ i ≤ n− 1.

We denote this family of sets as R. We can see that in R there are exactly
(n − k)2n + k2n−1 = n2n − k2n−1 sets. Our goal is to show that the sets in R
are reachable and also pairwise distinguishable in the subset automaton of N
for L(A)2.

Let us start with reachability. We use mathematical induction by number of
elements in set/state. The sets with one and two elements are reachable, because:

−→ {q0}
a−→ {q1}

a−→ · · · a−→ {qn−k−1}
a−→ {qn−k, 0},

{qn−k, 0}
b−→ {qn−k+1, 0}

b−→ · · · b−→ {qn−2, 0}
b−→ {qn−1, 0},

{qn−1, 0}
a−→ {q0, 1}

b−→ {q0, 0},

{q0, 1}
a−→ {q1, 2}

b−→ {q0, 3}
b−→ {q0, 4}

b−→ · · · b−→ {q0, n− 1} b−→ {q0, 2},

{q0, (j − i) mod n} ai

−→ {qi, j} for i = 0, 1, . . . , n− k − 1 and j = 0, 1, . . . , n− 1.

Assume now that every set in R with t elements is reachable. We show that
then every set in R of size t+ 1 is reachable. Let S = {qi, s1, s2, . . . , st} be our
desired set in R of size t+ 1, where qi ∈ Q and 0 ≤ s1 < s2 < · · · < st ≤ n− 1.
We deal with three cases:

(1) We show the reachability of sets of the second type, so let n−k ≤ i ≤ n−1
and therefore s1 = 0. We can write i as i = α + β, where α = n − k − 1 and
0 ≤ β ≤ k, so our desired set is S = {qα+β , 0, s2, s3, . . . , st}.

Let s2 = 1, and take the set {qα+β−1, 0, s3−1, . . . , st−1}, which is in R and
is reachable because it has t elements. Then we have

{qα+β−1, 0, s3 − 1, . . . , st − 1} a−→ {qα+β , 0, 1, s3, . . . , st} = S.
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Let s2 ≥ 2 and take the set {qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1}, which
is in R and is reachable because it has t elements. Then we have

{qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1} a−→ {qα+1, s2 · bn−1−β , . . . , st · bn−1−β}

bβ−1

−−−→ {qα+β , 0, s2 · bn−2, . . . , st · bn−2} = {qα+β , 0, s2, . . . , st} = S.

(2) Next we show the reachability of sets of the first type in the next two
steps. Let i = 0. We distinguish between three cases of s1.

Firstly let s1 = 0. We start from the set reached previously in (1) to achieve S

in case of s2 = 1 by {qn−1, 0, s3−1, . . . , st−1, n−1} a−→ {q0, 0, 1, s3, . . . , st} = S.
Otherwise, if desired s2 ≥ 2, we reach S using previously reached set

{q0, 0, 1, s3 − s2 + 1, . . . , st − s2 + 1} a−→ {q1, 1, 2, s3 − s2 + 2, . . . , st − s2 + 2}

bn−2

−−−→ {q0, 0, 2, s3 − s2 + 2, . . . , st − s2 + 2} bs2−2

−−−→ {q0, 0, s2, . . . , st} = S.

Secondly let s1 ≥ 1. Then the set S′ = {qn−1, 0, s2−s1, . . . , st−s1} is reached

in (1). If s1 = 1, then S′ a−→ S, otherwise s1 ≥ 2, and S′ aabn−2bs1−2

−−−−−−−−→ S.

(3) Let 1 ≤ i ≤ n−k−1. Now we can reach the remaining sets of the first type

using sets achieved in (2) like this {q0, (s1 − i) mod n, . . . , (st − i) mod n} ai

−→
{qi, s1, . . . , st} = S.

Let us continue with proving distinguishability of reached sets. Note that in
N we have

{n− 1} b−→ {2} a−→ {3} bn−2

−−−→ {3} abn−2

−−−−→ {4} abn−2

−−−−→ · · · abn−2

−−−−→ {n− 1}.

This means that the word w = b(abn−2)n−3 is accepted from the state n − 1.
Let us read w from a different state t, 2 ≤ t ≤ n − 2. First we have t ◦ b ∈
{3, 4, . . . , n− 1}. Next {3, 4, . . . , n− 1} ◦ (abn−2)n−3 = {0}, so w is not accepted
from t. Similarly, reading w from {0, 1} results in the set {0}, thus w is not
accepted from {0, 1} either. Moreover, w is not accepted from {qi}, because
{qi} ◦ w ⊆ {qj , 0}, where either j = 0 if i < n − 1, or j = n − 1 if i = n − 1.
Therefore w is accepted by N from and only from the state n − 1. Notice that
each state t in {1, 2, . . . , n−1} has exactly one in-transition on a going from the
state t−1, so the word an−1−tw is accepted by N only from state t, 0 ≤ t ≤ n−2.
It follows that two sets {qi}∪ S and {qj}∪ T in R are distinguishable if S ̸= T .

Now consider two distinct subsets {qi} ∪ S and {qj} ∪ S in R. Without loss
of generality, we have 0 ≤ i < j ≤ n− 1. We will discuss three cases:

(1) Let i = 0 and j = 1. Then

{q0} ∪ S
(abn−2)n−2

−−−−−−−→ {q0, 0}
a−→ {q1, 1}

an−k−1

−−−−−→ {qn−k, 0, n− k},

{q1} ∪ S
(abn−2)n−2

−−−−−−−→ {qn−1, 0}
a−→ {q0, 1}

an−k−1

−−−−−→ {qn−k−1, n− k}.
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Now we can distinguish these sets because they differ in the element from the
second automaton copy.

(2) Let i = 0 and j ≥ 2. Then

{q0} ∪ S
bn−1−ja−−−−−→ {q1} ∪ S1,

{qj} ∪ S
bn−1−ja−−−−−→ {q0} ∪ S′

1.

If the subsets S1 and S′
1 are the same, then we continue as in (1), otherwise we

continue as in case of S ̸= T .

(3) Let i ≥ 1. Then

{qi} ∪ S
an−j

−−−→ {qi+(n−j)} ∪ S1,

{qj} ∪ S
an−j

−−−→ {q0} ∪ S′
1.

Similarly as in (2), if the subsets S1 and S′
1 are the same we continue as in (1)

or (2), otherwise we continue as in case of S ̸= T . ⊓⊔

3.1 Square if |F | = n − 1

Recall that the automaton in the proof of Theorem 7 must have at least two
non-final states. We show that for every language L accepted by an n-state DFA
A = (Q,Σ, ·, q0, F ) with a single non-final state, the state complexity of L2 never
meets the upper bound set in Proposition 5. In particular, we show:

(a) if q0 ∈ F , then sc(L2) ≤ (n+ 2)2n−2 and this bound is tight if |Σ| ≥ 2;
(b) if q0 /∈ F , then sc(L2) ≤ (n+ 3)2n−2 and this bound is tight if |Σ| ≥ 3.

First, we consider the case of |F | = n− 1 and q0 ∈ F .

Lemma 8. Let n ≥ 3 and let L be a regular language accepted by an n-state
DFA A = (Q,Σ, δ, q0, F ) with n − 1 final states, where q0 ∈ F . Then sc(L2) ≤
(n+ 2)2n−2, and this bound is tight if |Σ| ≥ 2.

Proof. The formula for the upper bound is based on the observation that q0 is
initial and also accepting in A, so the initial state in the subset automaton for
L(A)2 is {q0, 0}. It follows that for every i ∈ {0, 1, . . . , n − 1} if {qi} ∪ X is
reachable, then i ∈ X. So we consider the following family R of possible sets in
the subset automaton for L(A)2 :

R =
{
{q0, 0} ∪X | X ⊆ {1, 2, . . . , n− 1}

}
∪{

{q1, 1} ∪X | X ⊆ {0, 2, 3, . . . , n− 1}
}

∪{
{qi, 0, i} ∪X | 2 ≤ i ≤ n− 1, X ⊆ {1, 2, . . . , n− 1} \ {i}

}
.

This family consists of (n+ 2)2n−2 sets. Hence sc(L2) ≤ (n+ 2)2n−2. To prove
the tightness of this upper bound, we introduce the DFA A shown in Fig. 3 and
we show that every DFA for L(A)2 has at least (n+2)2n−2 states. Notice that A
has the same structure as the DFA in the Fig. 1, so the proof continues similarly
as the proof of Theorem 7. ⊓⊔

7



q0 q1 q2 q3 . . . qn−1

a

b

a

b

a, b a, b a, b

a

b

Fig. 3. A witness DFA A with n−1 final states meeting the bound (n+2)2n−2,
where q0 ∈ F .

Now we consider the case where |F | = n− 1 and q0 /∈ F .

Lemma 9. Let n ≥ 3. Let L be a regular language accepted by an n-state DFA
A = (Q,Σ, ·, q0, F ), where |F | = n− 1 and q0 /∈ F . Then sc(L2) ≤ (n+ 3)2n−2,
and the bound is tight if |Σ| ≥ 3. The bound (n + 3)2n−2 − 1 can be met by a
binary language.

Proof. We start with the upper bound. Suppose we have constructed an NFA
N from the DFA A as described in Construction 4. Consider the corresponding
subset automaton of N . We first show that two distinct subsets of this automa-
ton, {qi}∪S and {qj}∪S, where {i, j} ⊆ S are equivalent. If a word w is rejected

from state {qi} ∪ S then s
w−→ 0 for each element s in S. It follows that w is

rejected from {qj}∪S because {qj}∪S
w−→ {q0, 0}. Likewise, if w is rejected from

{qj}∪S then w is rejected from {qi}∪S. Excluding these equivalent subsets gives
us the family R of (n+3)2n−2 reachable and pairwise distinguishable subsets of
the subset automaton of N , which is:

R ={{q0} ∪X | X ⊆ {0, 1, . . . , n− 1}} ∪
{{qi } ∪X | X ⊆ {0, 1, . . . , n− 1}, 0 ∈ X, i /∈ X}.

To prove the tightness of this upper bound, we introduce the DFA B shown
in Fig. 4 and we show that every DFA for L(B)2 has at least (n+3)2n−2 states.
Construct an NFA N for the square of L(B)2 as described in Construction 4.
Let us show that each set in R is reachable in the subset automaton of N and
that all these sets are pairwise distinguishable.

q0 q1 q2 q3 . . . qn−2 qn−1
a

b

a, b a, b a, b a, b a

b

a

b

Fig. 4. A binary DFA B with sc(L2(B)) = (n+ 3)2n−2 − 1.
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We prove the reachability by induction on the size of subsets. The basis,
where |S| ≤ 2, holds true up to one set, namely {q0, n− 1}, since we have

−→ {q0}
a−→ {q1, 0}

b−→ {q2, 0}
b−→ · · · b−→ {qn−2, 0}

b−→ {q0, 0},

{qn−2, 0}
a−→ {qn−1, 0, 1}

b−→ {qn−1, 0, 2}
b−→ · · · b−→ {qn−1, 0, n− 2} b−→ {qn−1, 0},

{qn−1, 0}
a−→ {q0, 1}

b−→ {q0, 2}
b−→ · · · b−→ {q0, n− 2}.

We deal with {q0, n − 1} later. Now assume that each set in R of size t is
reachable. Let S = {qi, s1, s2, . . . , st} be a set of size t+1. Consider several cases.

(1) Let i = 1, so s1 = 0. Then {q0, s2 − 1, . . . , st − 1} a−→ {q1, 0, s2, . . . , st},
where the former set of size t is reachable by induction hypothesis.

(2) Let 1 ≤ i ≤ n− 2, so S = {qi, 0, s2, s3, . . . , st}.
If s2 = 1, then {qi−1, 0, s3 − 1, . . . , st − 1} a−→ S.

If s2≥2 and st≤n−2, then {qi−1, 0, s2 − 1, . . . , st − 1} b−→ S.

If s2≥2 and st=n−1, then {qi−1, 0, s2−1, . . . , st−1−1, n−1} b−→ S.
This induction step with case (1) as the basis proves case (2) by induction on i.

(3) Let i = n− 1, so S = {qn−1, 0, s2, s3, . . . , st}. Consider two cases of st.

If st ≤ n−2, then {qn−2, 0, s3−s2, . . . , st−s2}
abs2−1

−−−−→ S.

If st = n− 1, then {qn−2, 0, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.
The starting set is reachable by induction on t in both cases.

(4) Let i = 0, so S = {q0, s1, s2, . . . , st}. We consider four cases of s1 and st:

If s1 = 0, st ≤ n−2, then {qn−1, 0, n−1, s3−s2, . . . , st−s2}
abs2−1

−−−−→ S.

If s1 = 0, st = n−1, then {qn−1, 0, n−1, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.

If s1 ≥ 1, st ≤ n−2, then {qn−1, 0, s2−s1, . . . , st−s1}
abs1−1

−−−−→ S.

If s1 ≥ 1, st = n−1, then {qn−1, 0, s2−s1, . . . , st−1−s1, n−2} abs1−1

−−−−→ S.
The starting sets are considered in case (3).

This proves reachability. To prove distinguishability, notice that the word bn

is accepted by NFA N only from state n−1. It follows that an−1−tbn is accepted
only from state t, 0 ≤ t ≤ n − 1. Hence two sets {qi} ∪ S and {qj} ∪ T are
distinguishable if S ̸= T . Consider two sets {qi} ∪ S, {qj} ∪ S where 0 ≤ i <
j ≤ n− 1 and assume that {i, j} ⊈ S. Let i = 0 and S ⊆ {0, 1, . . . , n− 1}. Then
j /∈ S and we have

{q0} ∪ S
an−1−jbn−−−−−−→ {q0, 0}

a−→ {q1, 0, 1},

{qj} ∪ S
an−1−jbn−−−−−−→ {qn−1, 0}

a−→ {q0, 1},

where the resulting states differ in state 0. If i ≥ 1, then we use an−j to get the
case above.

Up to now, we reached all sets in R except for {q0, n− 1}. This set remains
unreachable because of the inability to reach it by a nor b from other state.
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Hence sc(L2(B)) = (n + 3)2n−2 − 1. To reach the set {q0, n − 1}, we add one
more symbol to B. We define the transitions on the symbol c as follows:

δ(q0, c) = q0; δ(qi, c) = qi+i if 1 ≤ i ≤ n− 2; δ(qn−1, c) = q0.
Denote the resulting DFA over {a, b, c} by C. Then in the corresponding subset
automaton for L2(C) the set {q0, n− 1} is reachable from {q0, n− 2} by c. Thus
sc(L2(C)) = (n+ 3)2n−2. ⊓⊔

As a corollary of the two lemmas above, we get the next result.

Corollary 10. Let n ≥ 3 and L be a language over Σ accepted by an n-state
DFA in which n− 1 states are final. Then sc(L2) ≤ (n+3)2n−2, and this bound
is tight if |Σ| ≥ 3. The bound (n+ 3)2n−2 − 1 is met by a binary language. ⊓⊔

We tested the state complexity of square on all binary automata with 3, 4
and 5 states where the initial state is the only non-final state. But we did not
find any binary automaton with the state complexity of its square greater than
(n + 3)2n−2 − 1. The following result shows that this lower bound is tight for
every n ≥ 4 on a binary alphabet.

Theorem 11. Let n ≥ 4 and L be a binary language accepted by an n-state
DFA in which n − 1 states are final. Then sc(L2) ≤ (n + 3)2n−2 − 1, and this
bound is tight.

Proof Idea.We already showed the witness language with sc(L2) ≥ (n+3)2n−2−1
in Lemma 9. It remains to show that the upper bound (n + 3)2n−2 cannot be
met in binary case.

The reason of missing the upper bound by one was not reaching the {q0, n−1}
in the subset automaton for the square in the first place. So to find a harder DFA
for square than B in Fig. 4 we need to reach all possible distinguishable states.
We found out that our desired automaton must have certain transitions to reach
them. For example, transitions on a must form a permutation and transitions
on b are exactly as in DFA B in Fig. 4. But these certain transitions plus our
original restrictions for this case counteract our effort to distinguish these states.
It follows that if some subset automaton for the square has (n+3)2n−2 reachable
states, many of them are equivalent. Thus the state complexity (n+ 3)2n−2 − 1
is the best that we can do. ⊓⊔

3.2 Square on unary DFAs

To complete the overview about the square operation on deterministic automata
we should not forget unary alphabets. We refer to the paper by Rampersad [8]
once again. Notice that the complexity of square in this case is exponentially
smaller than in the binary case.

Theorem 12 ([8, Theorems 3 and 4 with k = 2]). Let L be a unary language
with sc(L) = n. Then sc(L2) ≤ 2n− 1 and the bound is tight.

10



4 Square on AFAs and BFAs

Fellah, Jürgensen, and Yu in [3, Theorem 9.3] showed that if a language K is
accepted by an m-state AFA and a language L is accepted by an n-state AFA,
then the language KL is accepted by an AFA of at most 2m + n + 1 states.
It follows that 2n+n+1 is an upper bound for the square on AFAs. Here we use
our results from the previous section to prove tightness of this upper bound. For
the square on BFAs, we get the tight upper bound 2n + n. Recall that asc(L) is
the smallest number of states in any AFA for L and bsc(L) is defined analogously.

Theorem 13 (Square on AFAs). Let n ≥ 2. Let L be a regular language over
Σ with asc(L) = n. Then asc(L2) ≤ 2n+n+1, and the bound is tight if |Σ| ≥ 2.

Proof. From given upper bound from [3, Theorem 9.3] we know that asc(L2) ≤
2n + n + 1. For tightness, let LR be the language accepted by the DFA A
defined in the proof of Theorem 7 with 2n states where half of the state are
final, that is, k = 2n−1. By Fact 3, L is accepted by AFA with n states. Us-
ing Theorem 7 we know that sc((LR)2) = 2n22

n − 2n−122
n−1. By Corollary 2,

asc(L2) ≥ ⌈log(sc((LR)2))⌉ = 2n + n.
Suppose for a contradiction that L2 is accepted by an AFA with 2n + n

states. By Fact 1, the language (L2)R is accepted by a 22
n+n- state DFA with

22
n+n−1 final states. It follows that the minimal DFA for (L2)R has at most

22
n+n−1 final states. However, the minimal DFA for the language (L2)R has

2n22
n−2n−122

n−1 = 2n−122
n

+2n−122
n−1 states, where 2n−122

n−1

+2n−122
n−1−1

of them are non-final. Thus the number of final states in the minimal DFA for
(L2)R is 2n−1(22

n

+ 22
n−1)− 2n−1(22

n−1

+ 22
n−1−1), and since n ≥ 2, we get

2n−1(22
n

+ 22
n−1)− 2n−1(22

n−1

+ 22
n−1−1) =

22
n

2n−1(1 +
1

2
− 1

22n−1 − 1

22n−1+1
) >

22
n+n−1(1 +

1

2
− 1

4
− 1

4
) = 22

n+n−1.

Hence the minimal DFA for (L2)R has more than 22
n+n−1 final states, a contra-

diction. It follows that asc(L2) ≥ 2n + n+ 1. ⊓⊔

Theorem 14 (Square on BFAs). Let n ≥ 2. Let L be a regular language over
Σ with bsc(L) = n. Then bsc(L2) ≤ 2n + n, and the bound is tight if |Σ| ≥ 2.

Proof. The upper bound follows from the upper bound 2m+n on the complexity
of the concatenation operation on BFAs [5, Theorem 4]. Let LR be a language
accepted by DFA A from Fig. 1 with 2n states and one final state. By Fact 3, L
is accepted by an n-state BFA. We are able to determine the state complexity
of (LR)2 using Theorem 7: sc

(
(LR)2

)
= 2n · 22n − 22

n−1. By Corollary 2,

bsc(L2) ≥ ⌈log
(
2n · 22

n

− 22
n−1

)
⌉ = 2n + n.

⊓⊔
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5 Conclusions

We studied the state complexity of the square of languages represented by de-
terministic, alternating, and Boolean finite automata. First, for each k such that
1 ≤ k ≤ n − 2, we showed that the upper bound n2n − k2n−1 on the square of
languages represented by n-state DFAs with k final states is tight in the binary
case. Then we analysed the case of n − 1 final states, where we proved that
the bound (2n + 2)2n−2 cannot be met. We provided the tight upper bound
(n + 2)2n−2 for the case when the initial state is final and we found a binary
witness. When the initial state is the only non-final state, we obtained the upper
bound (n + 3)2n−2 with a ternary witness. In the binary case we proved that
the tight upper bound is (n+ 3)2n−2 − 1.

Finally, we used our results on the square on DFAs to describe binary witness
languages meeting the upper bounds 2n + n+ 1 and 2n + n for square on alter-
nating and Boolean finite automata, respectively. Our results can be extended
for the concatenation operation just by concatenating two of our automata with
different number of states. This provides an alternative solution for the open
problem stated by Fellah, Jürgensen, and Yu in [3].
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