. Remerciements, Ce travail a été financé en partie par l'Agence Nationale de la Recherche (projet ANR-13-INSE-0007 MetaLibm)

. Bibliographie, Alexandre dit Sandretto and A. Chapoutot. Validated Explicit and Implicit Runge-Kutta Methods, Reliable Computing, vol.22, pp.78-103, 2016.

P. Beck and M. Nehmeier, Parallel Interval Newton Method on CUDA, International Workshop on Applied Parallel Computing, pp.454-464, 2012.
DOI : 10.1007/978-3-642-36803-5_34

S. Boldo, Formal Verification of Programs Computing the Floating-Point Average, Proc. 17th International Conference on Formal Engineering Methods, pp.17-32, 2015.
DOI : 10.1112/S1461157000000176

URL : https://hal.archives-ouvertes.fr/hal-01174892

S. Boldo, S. Graillat, and J. Muller, On the robustness of the 2Sum and Fast2Sum algorithms, 2016. Preprint available at https

S. Boldo and G. Melquiond, Arithmétique des ordinateurs et preuves formelles, Informatique Mathématique : une photographie en 2013, pp.189-220, 2013.

N. Brunie, Contributions to Computer Arithmetic and Applications to Embedded Systems Accessible depuis https, 2014.

S. Collange, M. Daumas, and D. Defour, GPU Computing Gems Jade Edition, chapter Interval arithmetic in CUDA, pp.99-107, 2011.

J. L. Comba and J. Stolfi, Affine arithmetic and its applications to computer graphics, Proceedings of SIBGRAPI'93 -VI Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, pp.9-18, 1993.

M. Cornea, J. Harrison, and P. T. Tang, Scientific Computing on Itanium R -based Systems, 2002.

M. Daumas and G. Melquiond, Certification of bounds on expressions involving rounded operators, ACM Transactions on Mathematical Software, vol.37, issue.1, pp.1-20, 2010.
DOI : 10.1145/1644001.1644003

URL : https://hal.archives-ouvertes.fr/hal-00127769

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242, 1971.
DOI : 10.1007/BF01397083

J. Eckmann, A. Malaspinas, and S. O. Kamphorst, A Software Tool for Analysis in Function Spaces, pp.147-167, 1991.
DOI : 10.1007/978-1-4613-9092-3_13

E. Hansen and G. Walster, AN OVERVIEW OF GLOBAL OPTIMIZATION USING INTERVAL ANALYSIS, 2003.
DOI : 10.1016/B978-0-12-505630-4.50021-3

O. Heimlich, Interval arithmetic in GNU Octave, SWIM 2016 : Summer Workshop on Interval Methods, 2016.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.
DOI : 10.1137/1.9780898718027

C. Jeannerod, A Radix-Independent Error Analysis of the Cornea-Harrison-Tang Method, ACM Transactions on Mathematical Software, vol.42, issue.3, pp.1-1920, 2016.
DOI : 10.1137/050645671

URL : https://hal.archives-ouvertes.fr/hal-01050021

C. Jeannerod, N. Louvet, and J. Muller, Further analysis of Kahan???s algorithm for the accurate computation of $2\times 2$ determinants, Mathematics of Computation, vol.82, issue.284, pp.2245-2264, 2013.
DOI : 10.1090/S0025-5718-2013-02679-8

C. Jeannerod and S. M. Rump, Improved Error Bounds for Inner Products in Floating-Point Arithmetic, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.2, pp.338-344, 2013.
DOI : 10.1137/120894488

URL : https://hal.archives-ouvertes.fr/hal-00840926

C. Jeannerod and S. M. Rump, On relative errors of floating-point operations : optimal bounds and applications, 2014. Preprint available at https

F. Johansson, Arb, ACM Communications in Computer Algebra, vol.47, issue.3/4, pp.166-169, 2013.
DOI : 10.1145/2576802.2576828

URL : https://hal.archives-ouvertes.fr/hal-01394258

M. Joldes, Rigorous Polynomial Approximations and Applications, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00657843

W. Kahan, Pracniques: further remarks on reducing truncation errors, Communications of the ACM, vol.8, issue.1, p.40, 1965.
DOI : 10.1145/363707.363723

D. E. Knuth, The Art of Computer Programming Seminumerical Algorithms, 1998.

P. Langlois, Outils d'analyse numérique pour l'automatique ? Chapitre 1, Traité IC2 dirigé par Alain Barraud. Hermès Science, pp.19-52, 2002.

C. Q. Lauter, Arrondi correct de fonctions mathématiques : fonctions univariées et bivariées, certification et automatisation Accessible depuis http, 2008.

G. Lecerf and J. Van-der-hoeven, Evaluating Straight-Line Programs over Balls, 23rd IEEE Symposium on Computer Arithmetic, pp.142-149, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01225979

N. Louvet, Algorithmes compensés en arithmétique flottante : précision, validation , performances, 2007.

M. Martel, Interprétation abstraite pour la précision numérique, Informatique Mathématique : une photographie en 2013, pp.145-185, 2013.

O. Møller, Quasi double-precision in floating point addition, BIT, vol.7, issue.6, pp.37-50, 1965.
DOI : 10.1007/BF01975722

R. Moore, Interval analysis, 1966.

R. Moore, Methods and applications of interval analysis, SIAM Studies in Applied Mathematics, 1979.
DOI : 10.1137/1.9781611970906

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefèvre et al., Handbook of Floating- Point Arithmetic, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

P. Nataraj and K. Kotecha, Higher Order Convergence for Multidimensional Functions with a New Taylor-Bernstein Form as Inclusion Function, Reliable Computing, vol.9, issue.3, pp.185-203, 2003.
DOI : 10.1023/A:1024618415645

M. Nehmeier, J. Wolff-von-gudenberg, and J. Pryce, On Implementing the IEEE Interval Standard P1788, FEMTEC 2013 : 4th International Congress on Computational Engineering and Sciences, p.103, 2013.

A. Neumaier, Interval methods for systems of equations, 1990.
DOI : 10.1017/CBO9780511526473

H. D. Nguyen, Efficient algorithms for verified scientific computing : Numerical linear algebra using interval arithmetic, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00560188

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

URL : http://www.oishi.info.waseda.ac.jp/~ogita/doc/sum040921.ps.gz

K. Ozaki, T. Ogita, F. Bünger, and S. Oishi, Accelerating interval matrix multiplication by mixed precision arithmetic. Nonlinear Theory and Its Applications, IEICE, vol.6, issue.3, pp.364-376, 2015.
DOI : 10.1587/nolta.6.364

URL : https://www.jstage.jst.go.jp/article/nolta/6/3/6_364/_pdf

S. Putot, HDR : Static Analysis of Numerical Programs and Systems, 2012.

N. Revol, K. Makino, and M. Berz, Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, The Journal of Logic and Algebraic Programming, vol.64, issue.1, pp.135-154, 2005.
DOI : 10.1016/j.jlap.2004.07.008

URL : https://hal.archives-ouvertes.fr/inria-00071850

N. Revol and F. Rouillier, Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library, Reliable Computing, vol.2, issue.3, pp.275-290, 2005.
DOI : 10.1007/978-3-7091-8577-3_15

URL : https://hal.archives-ouvertes.fr/inria-00072090

N. R. Revol and P. Théveny, Numerical Reproducibility and Parallel Computations: Issues for Interval Algorithms, IEEE Transactions on Computers, vol.63, issue.8, pp.1915-1924, 2014.
DOI : 10.1109/TC.2014.2322593

URL : https://hal.archives-ouvertes.fr/hal-00916931

G. Revy, Implementation of binary floating-point arithmetic on embedded integer processors ? Polynomial evaluation-based algorithms and certified code generation Accessible depuis https, 2009.

S. Rump, Fast and parallel interval arithmetic, Bit Numerical Mathematics, vol.39, issue.3, pp.534-554, 1999.
DOI : 10.1023/A:1022374804152

S. Rump, INTLAB ??? INTerval LABoratory, Developments in Reliable Computing, pp.77-104, 1999.
DOI : 10.1007/978-94-017-1247-7_7

URL : http://www.ti3.tu-harburg.de/publications/Intlab.ps.gz

S. Rump, Fast interval matrix multiplication, Numerical Algorithms, vol.89, issue.1, pp.1-34, 2012.
DOI : 10.1002/zamm.200700158

S. Rump and M. Kashiwagi, Implementation and improvements of affine arithmetic. Nonlinear Theory and Its Applications, IEICE, vol.6, issue.3, pp.341-359, 2015.

S. M. Rump, Error estimation of floating-point summation and dot product, BIT Numerical Mathematics, vol.11, issue.3, pp.201-220, 2012.
DOI : 10.1137/0611023

S. M. Rump, F. Bünger, and C. Jeannerod, Improved error bounds for floating-point products and Horner???s scheme, BIT Numerical Mathematics, vol.31, issue.1, pp.293-307, 2016.
DOI : 10.1137/050645671

URL : https://hal.archives-ouvertes.fr/hal-01137652

S. M. Rump and C. Jeannerod, Improved Backward Error Bounds for LU and Cholesky Factorizations, SIAM Journal on Matrix Analysis and Applications, vol.35, issue.2, pp.684-698, 2014.
DOI : 10.1137/130927231

URL : https://hal.archives-ouvertes.fr/hal-00841361

S. M. Rump, T. Ogita, and S. Oishi, Accurate Floating-Point Summation Part I: Faithful Rounding, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.189-224, 2008.
DOI : 10.1137/050645671

URL : http://www.ti3.tu-harburg.de/paper/rump/RuOgOi07I.pdf

P. H. Sterbenz, Floating-Point Computation, 1974.

J. Stolfi and L. De-figueiredo, Self-Validated Numerical Methods and Applications, Monograph for 21st Brazilian Mathematics Colloquium, 1997.

P. Théveny, Numerical Quality and High Performance in Interval Linear Algebra on Multi-Core Processors, 2014.

L. N. Trefethen, Computing Numerically with Functions Instead of Numbers, Mathematics in Computer Science, vol.1, issue.1, pp.9-19, 2007.
DOI : 10.1007/s11786-007-0001-y

W. Tucker, The Lorenz attractor exists Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, pp.1197-1202, 1999.

W. Tucker, Validated Numerics ? A Short Introduction to Rigorous Computations, 2011.

J. H. Wilkinson, Error analysis of floating-point computation, Numerische Mathematik, vol.3, issue.1, pp.319-340, 1960.
DOI : 10.1007/BF01386233