Online recognition of daily activities by color-depth sensing and knowledge models

Carlos Fernando Crispim-Junior 1 Alvaro Gómez Uría 1 Carola Strumia 1 Michal Koperski 1 Alexandra Konig 2, 3 Farhood Negin 1 Serhan Cosar 1 Anh-Tuan Nghiem 1 Guillaume Charpiat 4 Francois Bremond 1 Duc Phu Chau 1
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
4 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Visual activity recognition plays a fundamental role in several research fields as a way to extract semantic meaning of images and videos. Prior work has mostly focused on classification tasks, where a label is given for a video clip. However, real life scenarios require a method to browse a continuous video flow, automatically identify relevant temporal segments and classify them accordingly to target activities. This paper proposes a knowledge-driven event recognition 5 framework to address this problem. The novelty of the method lies in the combination of a constraint-based ontology language for event modeling with robust algorithms to detect, track and re-identify people using color-depth sensing (Kinect sensor). This combination enables to model and recognize longer and more complex events and to incorporate domain knowledge and 3D information into the same models. Moreover, the ontology-driven approach enables human understanding of system decisions and facilitates knowledge transfer across different scenes. The proposed framework is evaluated with real-world recordings of seniors carrying out unscripted, daily activities at hospital observation rooms and nursing homes. Results demonstrated that the proposed framework outperforms state-of-the-art methods in a variety of activities and datasets, and it is robust to variable and low-frame rate recordings. Further work will investigate how to extend the proposed framework with uncertainty management techniques to handle strong occlusion and ambiguous semantics, and how to exploit it to further support medicine on the timely diagnosis of cognitive disorders, such as Alzheimer's disease.
Document type :
Journal articles
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal.inria.fr/hal-01658438
Contributor : Carlos Fernando Crispim-Junior <>
Submitted on : Thursday, December 7, 2017 - 3:52:23 PM
Last modification on : Thursday, February 7, 2019 - 5:09:47 PM

File

crispim_etal_sensors2016_v5.pd...
Files produced by the author(s)

Identifiers

Citation

Carlos Fernando Crispim-Junior, Alvaro Gómez Uría, Carola Strumia, Michal Koperski, Alexandra Konig, et al.. Online recognition of daily activities by color-depth sensing and knowledge models. Sensors, MDPI, 2017, 17 (7), pp.1-15. ⟨10.3390/s17071528⟩. ⟨hal-01658438⟩

Share

Metrics

Record views

368

Files downloads

129