VaryLaTeX: Learning Paper Variants That Meet Constraints

Mathieu Acher 1 Paul Temple 1 Jean-Marc Jezequel 1 José Ángel Galindo Duarte 2 Jabier Martinez 3 Tewfik Ziadi 3
1 DiverSe - Diversity-centric Software Engineering
Inria Rennes – Bretagne Atlantique , IRISA_D4 - LANGAGE ET GÉNIE LOGICIEL
3 MoVe - Modélisation et Vérification
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : How to submit a research paper, a technical report, a grant proposal , or a curriculum vitae that respect imposed constraints such as formatting instructions and page limits? It is a challenging task, especially when coping with time pressure. In this work, we present VaryL A T E X, a solution based on variability, constraint programming , and machine learning techniques for documents written in L A T E X to meet constraints and deliver on time. Users simply have to annotate L A T E X source files with variability information, e.g., (de)activating portions of text, tuning figures' sizes, or tweaking line spacing. Then, a fully automated procedure learns constraints among Boolean and numerical values for avoiding non-acceptable paper variants, and finally, users can further configure their papers (e.g., aesthetic considerations) or pick a (random) paper variant that meets constraints, e.g., page limits. We describe our implementation and report the results of two experiences with VaryL A T E X.
Type de document :
Communication dans un congrès
VaMoS 2018 - 12th International Workshop on Variability Modelling of Software-Intensive Systems, Feb 2018, Madrid, Spain. ACM, pp.83-88, 〈10.1145/3168365.3168372〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01659161
Contributeur : Paul Temple <>
Soumis le : mardi 12 décembre 2017 - 18:46:27
Dernière modification le : dimanche 7 octobre 2018 - 01:11:08

Fichier

varyLaTeX.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mathieu Acher, Paul Temple, Jean-Marc Jezequel, José Ángel Galindo Duarte, Jabier Martinez, et al.. VaryLaTeX: Learning Paper Variants That Meet Constraints. VaMoS 2018 - 12th International Workshop on Variability Modelling of Software-Intensive Systems, Feb 2018, Madrid, Spain. ACM, pp.83-88, 〈10.1145/3168365.3168372〉. 〈hal-01659161〉

Partager

Métriques

Consultations de la notice

916

Téléchargements de fichiers

218