
HAL Id: hal-01659543
https://inria.hal.science/hal-01659543

Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language Modelling for Collaborative Filtering:
Application to Job Applicant Matching

Thomas Schmitt, François Gonard, Philippe Caillou, Michèle Sebag

To cite this version:
Thomas Schmitt, François Gonard, Philippe Caillou, Michèle Sebag. Language Modelling for Col-
laborative Filtering: Application to Job Applicant Matching. ICTAI 2017 - 29th IEEE International
Conference on Tools with Artificial Intelligence, Nov 2017, Boston, United States. pp.1-8. �hal-
01659543�

https://inria.hal.science/hal-01659543
https://hal.archives-ouvertes.fr

Language Modelling for Collaborative Filtering:
Application to Job Applicant Matching

Thomas Schmitt∗‡, François Gonard†∗‡, Philippe Caillou∗, Michele Sebag∗
∗LRI, CNRS–INRIA–Univ. Paris-Sud, Université Paris-Saclay 91405 Orsay Cedex, France

†IRT SystemX, 8 avenue de la Vauve 91127 Palaiseau Cedex, France
Email: {firstname.lastname}@inria.fr

‡Equal contributions for first and second authors

Abstract—This paper addresses a collaborative retrieval prob-
lem, the recommendation of job ads to applicants. Specifically,
two proprietary databases are considered. The first one focuses
on the context of unskilled low-paid jobs/applicants; the second
one focuses on highly qualified jobs/applicants. Each database
includes the job ads and applicant resumes together with the
collaborative filtering data recording the applicant clicks on job
ads.

The proposed approach, called LAJAM, focuses on the semi-
cold start recommendation problem of recommending new job
ads to known applicants. This setting is relevant to the temporary
job sector, of increasing importance for current job markets.
LAJAM learns a continuous language model on the job ad space,
trained to comply with the collaborative filtering metrics. This
language model, implemented as a neural net, can flexibly take
into account heterogeneous additional information, e.g. related
to the posting time and geolocation of the job ads.

The merits of the LAJAM approach are demonstrated com-
paratively to the state of the art on the thoroughly studied
CiteULike database. The comparison of the public CiteULike
database with the proprietary databases sheds some light on the
specific difficulties of the job applicant matching problem.

I. INTRODUCTION

As many economic sectors have been impacted by data
science, ranging from commerce to tourism and from travel to
education, a question is whether and how the field of employ-
ment can also benefit from the conjunction of extensive data
resources and machine learning algorithms. This paper focuses
on the frictional unemployment phenomenon, manifested as
significant numbers of job positions are unfilled, although there
exist a significant number of unemployed people who are qual-
ified for these jobs [1]. Frictional unemployment is tentatively
explained from the cost and asymmetry of information for
recruiters and applicants. The information issue at the root
of frictional unemployment is tackled in this paper, aimed to
automatically match job ads and resumes.

Several approaches have been proposed to facilitate the
recruitment task, using diverse types of data to describe
applicants: curriculum vitae [2], track record of past jobs
[3] and/or profiles in social networks [4]. However, such
resources might be poorly informative for those who need
them the most. Unemployment is known to mainly affect

T. Schmitt’s PhD is funded by the Lidex Institut de la Société Numérique
at Université Paris-Saclay. F. Gonard’s PhD is funded by the French Program
Investissements d’Avenir.

both categories of unskilled people, and young people. In the
category of unskilled young people, the unemployment rate is
close to 40% (as of France in 2015). Yet, these people have a
resume with moderately informative content, neither including
any information about academic degrees or diplomas, nor on
past jobs and track records. A job/applicant matcher, or JAM
in the following, thus finds little signal in these resumes.
When considering young highly skilled people, a JAM faces
another kind of difficulty: an applicant might describe her
expertise using rare words (e.g. the title of her PhD) whereas
a job advertisement might describe the sought skills using an
entirely different vocabulary1. Domain resources such as field-
based ontologies can be used to enrich the documents and
facilitate their matching, though they face some limitations
due to the rapid pace of change in science and technology,
and the emergence of new jobs.

This paper aims to learn a JAM, automatically recommend-
ing job ads to applicants. While the recommendation of job ads
to applicants and the recommendation of resumes to recruiters
are formally equivalent problems, both problems are different
in practice and only the former recommendation problem is
considered in the remainder of the paper. A specificity of the
study is to consider two large-size proprietary databases. The
first database concerns low-paid jobs and unskilled people.
Indeed the low-paid job sector is less profitable than the high-
paid job sector, and has been underlooked in the literature
[2], [5], [6]; it also presents specific difficulties due to the
low signal-to-noise in the resumes. The second dataset con-
siders PhD-level resumes and industrial job ads targeted at
PhDs. Each database includes the resume and job ad corpora,
augmented with the collaborative filtering matrix reporting
applicant clicks on job ads.

Two scientific questions are investigated in this paper. The
first question is whether the relevance of a job ad to an
applicant can only be determined from the (hidden) prefer-
ences of the applicant − in other words, whether job/resume
matching is a pure collaborative filtering task [7], [8]. A second
possibility will be investigated, suggesting that job/resume

1For instance, a PhD title might read Novel Copolyimide Membranes for
pervaporation to be applied in the separation of aromatic/aliphatic mixtures
while a job ad relevant to the PhD expertise might ask for a researcher on
comparative genomics of different microorganisms in order to identify specific
genes and islands involved in horizontal transfer.

matching should rather be viewed as a machine translation
task: despite their different formulations, the job ads relevant to
an applicant are said to be consistent if one can learn a metric
on the job ad space accounting for the collaborative filtering
matrix. The main contribution presented in this paper is a JAM
system called LAJAM for Language Model-based JAM, that
learns an ad hoc continuous language model on the top of the
job ad space. This continuous language model, implemented
as a neural net and trained to comply with the collaborative
filtering matrix, brings some answers to the above questions.

The paper is organized as follows. Section II briefly reviews
and discusses related work, considering the main three aspects
relevant to the JAM problem: natural language processing,
recommendation systems and metric learning. Section III de-
scribes the considered proprietary databases, the experiments
conducted to assess their quality and the difficulty of the
matching problem. Section IV presents a detailed overview
of the proposed LAJAM system. Section V describes the
experimental setting used to validate the approach. Section VI
reports on LAJAM experimental results comparatively to state-
of-art approaches [8]. The paper concludes with a discussion
and some perspectives for further research.

II. RELATED WORK

The field of automatic job/applicant matching (JAM) is
hindered by the lack of extensive public resources, able to
foster algorithm design and assessment on a grand scale,
as was done for the field of computer vision by, e.g., the
ImageNet dataset [9]. This lack of publicly available data
resources is explained from the privacy requirements, and the
difficulty of resume anonymization. To our best knowledge,
the only large scale public JAM databases were proposed in
the frame of the RecSys 2016 and RecSys 2017 challenges.
The RecSys 2016 (respectively 2017) database includes over 1
million job ads (resp. 1.3 million), 780,000 resumes (resp. 1.4
million), and their interactions available for circa .01% of the
resume/job pairs (resp. .001%) [6]. The anonymization was
enforced through encoding resumes and job ads using 90,000
binary features (replacing raw text by IDs), besides perturbing
the data by adding and removing clicks.

Early related work was rooted on Natural Language Pro-
cessing (NLP), considering manually designed features [2]
or bag-of-words representation [5], possibly enriched using
domain resources such as job ontologies. On top of these rep-
resentations, a similarity was designed or learned to estimate
the relevance of a resume w.r.t. a job ad, possibly taking into
account the resume structure through weighted similarities on
the resume subparts [5].

The JAM problem features specific characteristics compared
to “pure” NLP problems such as Information Retrieval (IR)
[10] and Recognizing Textual Entailment (RTE) [11]. Indeed,
a JAM could learn whether a resume is ”relevant” to a job
query, or whether the skills required by a job can be ”entailed”
by a resume; however, the resume and the job ad are of similar
size, whereas a document is usually much more detailed than
a query in IR (resp., than a statement in RTE). Another

difference is that the notion of relevance or entailment could
in principle be logically inferred. Quite the contrary, the match
between a user and a recruiter depends on hidden information
(e.g. the applicant’s and recruiter’s positive or negative biases).
In other words, what people do (clicking on job ads or
resumes) can hardly be logically inferred from what they say
(the contents of the resumes and job ads).

The potential importance of individual preferences suggests
that a JAM can better be handled in terms of recommendation
and collaborative filtering [7]. Recommender systems come
in three modes:
The most usual mode, referred to as warm-start
recommendation and illustrated by the Netflix challenge
[12], aims to recommend known items to known users. Note
that the warm-start recommendation mode is hardly relevant
to the JAM context, as an item (job ad) is no longer available
after the position has been fulfilled.
The full-cold start recommendation mode aims to
recommend new items to new users; this mode is the most
usual one in the JAM context, where new applicants are
looking for newly opened positions.
Finally, the semi-cold start recommendation mode aims
to recommend new items to known users. This mode is
relevant to the JAM context in the case of the temporary work
sector, where applicants interact with the hiring agency on
a regular basis and the current recommendations exploit the
past interactions.

Full- and semi-cold start recommendation2 are made possi-
ble by the side information describing the users and the items.
In the JAM context, a job position (respectively an applicant) is
associated with a job ad (resp., a resume) usually augmented
with a job posting date and geolocation. The JAM problem
thus defines a collaborative retrieval task [14].

As far as JAM tackles (semi)-cold start recommendation,
approaches relying exclusively on the collaborative filtering
matrix, e.g. based on matrix factorization [7], [14], on re-
stricted Boltzman machines [15], or learning a continuous
embedding of the items [13] are not applicable. Some interme-
diate representation capturing both the collaborative filtering
information and the user/item description must thus be defined.
In early approaches [16], [2], manually designed text features
are used to recode the collaborative filtering matrix, defining
the probability of a resume to be clicked upon by a recruiter,
conditionally to the presence of such features in respectively
the resume and the job ad. This more general representation of
the collaborative filtering matrix thus allows one to both take
into account the textual content-based features, and address
the cold-start recommendation problem.

Overall, JAM systems involve two issues: finding represen-
tation(s) for resumes and/or job ads, and a distance on top of
these representations, amenable to predict whether a (resume,
job ad) pair is well-suited to each other. Related works along

2For some authors [13], ”cold start” means that ”some users come with
a limited interaction history”. In the remainder of this paper, semi-cold start
refers to the recommendation of brand new items to known users.

these directions build upon the continuous language modelling,
mapping words [17], [18], sentences or documents [19] onto
vectors. A distance between documents follows from the NLP
embedding into a Euclidean space, or can be defined using
Word Movers Distance [20]. Such continuous embeddings
can thus be used for (semi) cold start recommendation [21].
Another possibility builds upon supervised learning and rank-
ing [22], [23], where the metric on the Euclidean space is
optimized to maximize a classification or ranking criterion.
Notably, Siamese neural networks [24], [25] optimize the input
embedding in a continuous space w.r.t. the associated metric
[26], [27]. Such approaches have been used to achieve job
title normalization and classification [28] or learning sentence
similarity [29]. In Information Retrieval, Deep Structured
Semantic Mode (DSSM) optimizes the similarity in the latent
space according to clickthrough data [30] (see also [31]).
Multi-view DNN [32] further extends DSSM to non-Siamese
architectures, where different types of information involved in
the query/documents are associated with different embeddings.

A related approach is that of collaborative topic regression
(CTR) [8]. For the sake of self-containedness, CTR is briefly
described as it will be used as baseline method in the exper-
iments (Section VI). The motivating application concerns the
recommendation of scientific articles in an online scientific
community framework; the collaborative filtering matrix indi-
cates whether a user’s library contains a given article. CTR
combines ideas from collaborative filtering based on latent
factor models, and content analysis based on probabilistic
topic modelling and specifically Latent Dirichlet Allocation
(LDA) [33]. Each LDA topic (e.g., ”artificial intelligence”) is
characterized as a distribution on the vocabulary space. The
j-th article is associated a latent description θj , with θj [k] the
percentage of the k-th topic in the article (e.g., a given article
might be described as 70% “artificial intelligence”, 20% “high
performance computing” and 10% “application”). Eventually,
latent descriptions ui of the user and θj + εj of the article are
optimized3, such that 〈ui, θj + εj〉 best fits the collaborative
matrix Mi,j ,

(u∗, ε∗) = arg min
u,ε

{ ∑
i,j ci,j(Mi,j − 〈ui, θj + εj〉)2

+λu||u||22 + λv||ε||22

}
with λu and λv respectively the weights of the regularization
terms preventing CTR from overfitting the data, ci,j = 1 if
Mi,j = 1 (the j-th document is in the i-th user’s library), and
.01 otherwise.

III. EXPLORATORY ANALYSIS

This section describes the two anonymized large-scale and
proprietary databases considered in this study, kindly provided
by Web hiring agency Qapa4 and non-profit organization
ABG5.

3εj is added, allowing the article latent description to diverge from its
(fixed) topic proportion θj , to better fit the collaborative information.

4https://www.qapa.fr/
5http://www.intelliagence.fr/

A. Data

The Qapa database, focused on low-paid temporary jobs and
unskilled applicants, gathers 5 million resumes, 4 million job
ads and circa 11 million interactions over Jan. 2012- July 2015.
An applicant is not required to provide a resume as they often
do not have any. An applicant might access the Qapa platform
using her mobile phone and writing a few (possibly colloquial)
sentences; her description will also be enriched from her clicks
on the job ads. The ABG database, focused on PhD applicants
and job ads for PhDs in industry, gathers 10,000 job ads,
14,000 resumes and 68,000 clicks, recorded over the 2010-
2015 period. To a job ad (resp. a resume) are usually attached
a date and a city converted in geolocation (respectively, a
date; the applicant geolocation is not available due to privacy
constraints). Besides the job ad and resume corpora, each
database involves the collaborative filtering matrix M, with
Mi,j = 1 iff the i-th applicant clicked on the j-th job ad).
Job ads and resumes are written in French, except for the ABG
database where circa 30% of the job ads are in English (Table
I). As shown on Fig. 1, job ads and resumes do not follow
the same word distributions, neither for the unqualified job
sector (Fig. 1 top left) nor for the qualified one (top right).
This distribution gap explains why a direct matching between
job ads and resumes does not yield good results (as shown by
complementary experiments, omitted for brevity). Likewise,
qualified vs unqualified resumes (respectively, job ads) follow
different word distribution as shown in Fig. 1 bottom left (resp.
bottom right).

The Qapa platform was drastically extended in April 2015,
using another 2,000 skill features from the official French
job ontology; applicants and recruiters can and do use these
features to enrich their job ads or resumes. In the following,
the excerpt of the Qapa database recorded over 2015 May-
July (56,000 job ads and 31,000 resumes) is considered. An
excerpt of the ABG data is considered, retaining job ads and
resumes such that each applicant has clicked on at least two
job ads and each job ad has been clicked upon by at least two
applicants (10,400 job ads, 8,400 resumes).

Qapa ABG
jobs in thousands (# wd) 56 (60) 10.4 (113)

resumes in thousands (# wd) 31 (46) 8.4 (-)
clicks in thousands (spars.) 226 (13.10−5) 63 (71.10−5)

TABLE I
DETAILS OF THE QAPA AND ABG EXCERPT DATABASES, RESPECTIVELY

RECORDED IN MAY-JULY 2015 AND APR. 2010-SEPT 2015

B. NLP Representations and Metrics

The primary representation of job ads and resumes is
that of bags of words (using tf-idf to limit the impact of
common words). Linear or non-linear dimensionality reduction
techniques have been used to map job ads and resumes onto
IRD: Latent Semantic Analysis (LSA, with D = 200 singular
vectors) [34], Latent Dirichlet Allocation (LDA, with D = 200
topics) [33], or sentence2vec [19]. The collaborative represen-
tation of the j-th job ad is the set of applicants clicking on

10 3 10 4 10 5 10 6 10 7

job

10 3

10 4

10 5

10 6

10 7

cv

Qapa dataset

02

52

102

152

202

252

302

352

402

10 2 10 3 10 4 10 5 10 6

job

10 2

10 3

10 4

10 5

10 6

cv

ABG dataset

02

52

102

152

202

252

302

10 2 10 3 10 4 10 5 10 6

ABG dataset

10 2

10 3

10 4

10 5

10 6

Qa
pa

 d
at

as
et

cv

02

52

102

152

202

252

302

352

402

10 3 10 4 10 5 10 6 10 7

ABG dataset

10 3

10 4

10 5

10 6

10 7
Qa

pa
 d

at
as

et
job

02

52

102

152

202

252

302

Fig. 1. Word distributions in Qapa and ABG databases in negative log scale.
Top left: word is located at position x, y with x (resp. y) being the word
frequency in Qapa jobs (resp. resumes). Top right: in ABG. Bottom left (resp.
right): word frequency in Qapa resumes vs ABG resumes (resp. in Qapa jobs
vs ABG jobs). The color indicates the distribution density (the redder, the
more dense).

this job ad, noted M·,j . The similarity used together with the
primary (respectively, reduced or collaborative) representation
is the cosine similarity:

sim(u, v) =
〈u, v〉
‖u‖2‖v‖2

C. Quality of the collaborative filtering matrix M
Let m (respectively n) denote the number of users or appli-

cants (resp. the number of items or job ads). The quality of the
m×n collaborative filtering matrixM is assessed as follows.
A lesioned matrix is defined by selecting 10% (i, j) pairs such
thatMi,j = 1 and setting them to 0 (removing at most 1 item
per user). Mainstream recommendation approaches (see e.g.
[35]) are used to re-estimate all Mi,j such that Mi,j = 0,
with

M̂i,j =

n∑
k=1

sim(j, k)Mi,k (1)

For content item-based recommendation, sim(j, k) stands
for the cosine similarity among the initial or reduced rep-
resentations of the j-th and k-th items. Only the reduced
LSA representation is considered in this section (the other
representations bring no improvement upon LSA); the as-
sociated recommendation will be referred to as LSA-based
recommendation and denoted LSA-bl in the following.
For M-based recommendation, sim(j, k) stands for the
cosine similarity among their collaborative representation, that
is, M·,j and M·,k.

0 200 400 600 800
number of recommendations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

Qapa -based
Qapa LSA-bl
ABG -based
ABG LSA-bl

Fig. 2. M-based and LSA-based recommendation in warm-start mode on
Qapa and ABG: average recall per-user (fraction y(T) of removed clicks
recommended with rank lesser than T), averaged over 10 runs. LSA-based
recommendation is dominated by M-based recommendation, particularly so
for the ABG database, which is blamed on the smaller size of the corpus.

D. Assessment of the databases

The quality of a database is estimated from the recall@T
performance indicator, defined per user as the fraction of
removed clicks ranked in the top-T M̂i,j values, averaged
over 10 runs. The performance indicators are measured for
the LSA-based (with dimension 600) and M-based recom-
mendation approaches.

As displayed in Fig. 2, for 52% of Qapa (resp. 44% of
ABG) applicants, the relevant recommendations appear in
the top-200 (out of 56,000 job ads for Qapa and 14,000 for
ABG); this ranking is considered to be acceptable by the Qapa
and ABG experts. For a significant fraction of the applicants
however, the first relevant recommendation is ranked below
the top 10,000, being thus useless in a real-world setting. For
both databases, the M-based (item-based) similarity is more
effective than the LSA one; a tentative interpretation is that
the similarity of any two job ads is better captured from the
applicant behaviors, than from the actual wording of the job
ad (even after the dimensionality reduction achieved by LSA).

Surprisingly, a small world structure is observed on the job
ads: defining two job ads to be adjacent if they have been
clicked upon by a same applicant, it appears that any two
Qapa (resp. ABG) job ads are at most 6-step (resp. 8-step)
distant. We shall return to this remark in Section VII.

IV. OVERVIEW OF LAJAM

This section presents the proposed Language Model-based
JAM (LAJAM) system, focusing on the semi-cold start problem
of recommending brand new job ads to a known user. As said,
this approach is suited to the temporary work sector, of prime
importance in today’s labor market6.

Overall, LAJAM proceeds by i) learning a mapping from
the job ad space onto IRd, such that this mapping reflects the
job similarity derived from matrix M; ii) using this mapping
together with M to rank the job ads for each applicant.

6As of 2017, 90% of the work contracts in France fall in the temporary
work sector, for an average duration of one week.

A. Continuous language model for job ads

Letting (j, k) be a pair of job ads, boolean similarity
simM(j, k) is set to 1 iff the j-th and k-th job ads have been
clicked upon by at least one same applicant, and 0 otherwise7:

simM(j, k) =

{
1 if 〈M·,j ,M·,k〉 > 0
0 otherwise (2)

The language model φ, represented by a parameter vector
W ∈ IRL, maps the initial or reduced description spaces (tf-
idf, LSA or LDA) of the job ads onto IRd, such that it induces
a similarity noted simW compliant with the collaborative
filtering similarity simM:

simW (yj , yk) > simW (yj , y`) if simM(j, k) > simM(j, `)

where yj (resp., yk, y`) stands for the initial or reduced repre-
sentation of the j-th (resp, k-th, `-th) job ad, and simW (yj , yk)
is the cosine of vectors φ(yj), φ(yk). Mapping φ is learned
using a Siamese neural architecture [24] (Fig. 3). Taking
inspiration from [25], the elementary loss associated to any
(j, k) job ad pair is the sum of two terms (to be minimized):

LW (j, k) = simM(j, k)× (1− simW (yj , yk))

+ (1− simM(j, k))×
[
simW (yj , yk)

]
+

(3)

where A+ stands for max(A, 0). The first term in Eq. (3) is
meant to maximize the cosine similarity of φ(yj) and φ(yk)
for similar j and k. The second term is meant to push away
the representations φ(yj) and φ(yk) of two dissimilar j and k
job ads, thus preventing the discovery of trivial (constant) φ
embeddings.

Overall, φ is trained to minimize the loss defined as:

L(W) =
∑
j

∑
k∈V (j)

LW (j, k) (4)

where j ranges over all job ads and k ranges over a subset
V (j) (see below).

yj

φW

φ(yj)

yk

φW

φ(yk)

LW (j, k)

Fig. 3. Mapping φ from the job ad space onto IRd is trained using a Siamese
neural net architecture, such that the simW (φ-based similarity) complies with
simM.

B. Discussion

In principle, the computational cost is quadratic in the
number of job ads, hindering the computational tractability
of the optimization problem (Eq. 4). The challenge is to
both enforce the compliance of simW w.r.t. simM, and the

7Refined similarities, e.g., taking into account the number of applicants
clicking on both job ads, have been considered. These are omitted in the rest
of the paper as they make no significant difference in the experiments, due
to the extreme sparsity of the collaborative filtering matrix.

computational tractability of the approach. In practice, the
dissimilar pairs outnumber the similar pairs by a factor 104

(on average, an Qapa applicant clicks on 7.4 job ads; a ABG
applicant, on 4.3 job ads). The idea is thus to restrict the
number of considered pairs (j, k) by imposing k ∈ V (j),
where V (j) includes: i) all k such that simM(j, k) = 1; and
ii) K as many dissimilar job ads (with K a hyper-parameter
set to 10 in the experiments), thus aggressively subsampling
the dissimilar job ads.

Two subsampling options have been considered. The first
one uniformly samples the dissimilar job ads, taking inspira-
tion from negative sampling [17]. A large sized V (j) is how-
ever required to be representative of the many dissimilar pairs,
adversely affecting the computational cost. In the experiments,
the size of V (j) is set to 10 times the number of job ads similar
to j. The second option consists of sampling the nearest-miss
job ads w.r.t. φ, defined as the dissimilar job ads nearest to
j according to the current mapping φ. This option will not
be considered in the following: preliminary experiments show
that, though it succeeds in pushing away the dissimilar job ads,
these are replaced by other dissimilar job ads and the value of
the loss only very slowly decreases along the training epochs.

C. LAJAM Recommendation

Eventually, the fit between the (known) i-th user and a
new job y is computed by replacing the LSA- or M-based
similarity in Eq. (1) by the φ-based similarity:

F(i, y) =

n∑
j=1

simW (y, yj)Mi,j

with y (respectively yj) the initial or reduced representation
of the new job (resp. the j-th job). The recommendations to
the i-th user are ordered by decreasing value of F(i, y).

The computational complexity of the recommendation is
optimized by limiting the search to the nearest neighbors of
the current job ad (with logarithmic complexity in the number
n of job ads) taking inspiration from [36].

V. EXPERIMENTAL SETTING

This section presents the experimental setting and the per-
formance indicators used to comparatively assess LAJAM.

A. Databases

A JAM approach can best be evaluated on real-world
databases. As discussed in Section II however, such databases
are not public due to privacy constraints, hindering the
reproducibility of the experimental evaluation and the fair
assessment of the performances. For this reason, besides the
proprietary Qapa and ABG databases (Section III), LAJAM is
also evaluated on the public CiteULike database and compared
to CTR using same folds and same experimental setting8 [8].
CiteUlike (Section II) is concerned with two functionalities:

8Data are available at http://www.citeulike.org/faq/data.adp. The public im-
plementation of CTR, available at http://www.cs.cmu.edu/˜chongw/citeulike/
is used, with 250 iterations.

warm-start recommendation and semi-cold start recommen-
dation (recommending new articles to known users), referred
to as ”out-of-matrix” recommendation in [8]. The database
includes 16,980 articles using a tf-idf description on a 8,000
words vocabulary. Only article titles and abstracts are con-
sidered, including 67 words on average. The collaborative
filtering matrix M describes the subset of articles in the
individual library of each of the 5,551 platform users. M
sparsity is 22.10−4 (less sparse than Qapa and ABG by an
order of magnitude).

B. Goal of experiments and performance indicators

The goal is to assess LAJAM performances in warm-start
and semi-cold start mode. The performance indicators are the
recall@20 and recall@100 (fraction of removed clicks ranked
in the top-20 or top-100 recommendations). On CiteULike in
semi-cold start mode, LAJAM is compared to CTR and two
baselines: LSA-bl achieves content item-based recommenda-
tion (Eq. 1) using an LSA representation with cosine simi-
larity; LDA-bl achieves content item-based recommendation
using an LDA representation with dot product similarity.

On the Qapa and ABG databases, LAJAM is evaluated
in warm-start and semi-cold start modes, comparatively to
LSA-bl and LDA-bl (the latter is omitted for brevity as it is
dominated by LSA-bl). In warm-start mode, the performance
indicators are averaged on 10 runs, considering each a lesioned
collaborative matrix built by randomly removing 10% of the
clicks, subject to removing at most 1 click per user. In semi-
cold start mode, the performance indicators are assessed along
a standard 10 fold CV procedure (where each fold includes
all users and 1/10th of the job ads).

C. Hyper-parameters

LSA-bl and LDA-bl use a 200-dim representation.
Two neuronal architectures have been considered for LA-

JAM. In all cases, the dimension D of the input is the tf-
idf dimension (8,000 for CiteULike and 10,000 for Qapa
and ABG). The shallow architecture is a D-200 network
with tanh activations, initialized so as to reproduce the LSA
representation. The deep architecture is a D-1,000-1,000-200
network, with 2 dense hidden layers and tanh activations. It is
initialized so as to reproduce the LSA representation on the last
layer. This architecture is selected based on a previous study
[37]. The weights are augmented with a noise initialized as
in [38] with multiplicative factor 10−3. All architectures are
implemented in Theano [39] and optimized using Adam [40].

For Qapa and ABG, the word description is augmented
with the posting time and geolocation attached to each job ad.
For fairness, LSA-bl and LDA-bl use an enriched similarity
accounting for this extra information:

sim(j, k)→ sim(j, k)− λ1dg(j, k)− λ2dt(j, k) (5)

where dg(j, k) (respectively dt(j, k)) is the Euclidean distance
between the geolocations (resp. the posting time) of the j-th
and k-th job ads and the λ weights are selected by grid search
to optimize the recall on the training set.

VI. EXPERIMENTAL VALIDATION

This Section reports on the experimental validation of
LAJAM. All reported computational times are obtained on 16
CPU cores (Intel Xeon E7 @ 2.20GHz).

A. Comparative assessment on CiteULike

Table II reports the Recall@20 and Recall@100 on the
CiteULike dataset in semi-cold start mode [8]. Surprisingly,
CTR only slightly improves on LDA-bl; even more surprising
is the fact that LSA-bl significantly dominates both LDA-bl
and CTR.

A tentative interpretation for these facts goes as follows.
Let Θi denote the sum, over all documents selected by the
i-th user, of their LDA representation. LDA-bl recommends
to the i-th user the documents with LDA representation θ and
highest dot product 〈θ,Θi〉.
On the other hand, LSA-bl recommends to the i-th user the
documents with LSA representation x and highest sum of
cosine(x, xi) where xi ranges over the LSA representation
of the documents selected by the i-th user. With no loss of
generality (regarding the LSA baseline recommendation) let us
assume that all LSA representations have L2 norm set to 1, and
let Λi denote the sum of the xi. The LSA baseline recommends
to the i-th user the documents with LSA representation x and
highest dot product 〈x,Λi〉.
In both cases, a “center of attraction” for the i-th user is
defined from the data (Θi for LDA and Λi for LSA) and the
recommended documents are those nearest to this center in L2

norm (using a dot product). An important difference, beyond
how the representations are defined, is that the document
representations lie on the L1 unit hypersphere in the LDA
case, and on the L2 unit hypersphere in the LSA case. After
the celebrated discussion about the comparative effects of
L2 vs L1 regularization [41], given a convex objective (here
the distance to the center of attraction), the isolines thereof
intersect an L1 ball in a more sparse and more instable manner
as for an L2 ball. Said otherwise, small differences in the
document representation have more impact in the LDA case
than in the LSA case.

CTR improves on LDA-bl: it operates on the same search
space and adjusts the “center of attraction” for the i-th user
(replacing Θi by ui). Likewise, LAJAM with a shallow archi-
tecture improves on LSA-bl: it operates on the same search
space and adjusts the metric (modifying the LSA vectors).
With a deep architecture however, LAJAM is dominated by
both shallow-LAJAM and LSA-bl (though it still improves on
CTR in a statistically significant manner).

B. Warm-start recommendation on Qapa and ABG

As shown on Fig. 4, shallow-LAJAM is dominated by the
M-based recommendation in the beginning of the Recall
curves (for p < 100) and it dominates the baselines for p >
100. The improvement concerns circa 20% of the applicants,
for whom the relevant recommendations by LAJAM are in the
top 1,000 (as opposed to, below the 10,000 rank for LSA- and
M-based recommendation). Deep-LAJAM, slightly dominated

R@20 R@100
LSA-bl .332± .001 .631± .003
LDA-bl .247± .005 .584± .005
CTR .271± .001 .587± .001
shallow LAJAM .327± .004 .652± .005
deep LAJAM .279± .005 .606± .006

TABLE II
SEMI-COLD START PERFORMANCE ON CITEULIKE: RECALL@20 AND

RECALL@100 PERFORMANCES OF LSA-BL, LDA-BL, CTR AND LAJAM
WITH SHALLOW AND DEEP NEURONAL ARCHITECTURES (PERFORMANCE

AVERAGED USING A 5-FOLD CROSS-VALIDATION). THE TRAINING
COMPUTATIONAL TIME IS 10 MIN FOR SHALLOW-LAJAM AND 20 MIN FOR

DEEP-LAJAM.

0 200 400 600 800
number of recommended jobs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

Qapa -based
Qapa LSA-bl
Qapa LAJAM
ABG -based
ABG LSA-bl
ABG LAJAM

Fig. 4. Warm-start performance on Qapa (56,000 job ads) and ABG
(10,000 job ads): Recall y(p), percentage of recovered clicks in the top p
recommendations, averaged out of 10 runs, for shallow LAJAM (dashed line)
vs LSA-bl (dotted line) and the M-based recommendation (plain line).

by shallow-LAJAM, has been omitted for readability. The
fact that M-based recommendation does not improve when
p increases, and reaches a plateau with moderate performance
suggests that a pure collaborative filtering approach is not
appropriate to tackle the JAM problem. The computational
time is ca. 7 hours (resp. 50 minutes) for shallow-LAJAM
training and 4 minutes (resp. 12’) for recommendation for all
users for Qapa (resp. ABG). The training computational time
of deep-LAJAM is twice that of shallow-LAJAM.

C. Semi cold-start recommendation on Qapa and ABG

Table III reports the performance of deep and shallow
LAJAM on the Qapa and ABG databases, comparatively to
LSA-bl. LDA-bl is omitted due to its lower performances9.
Four settings are considered, where the job ad representation
includes: i) the words only; ii) the words and the geoloca-
tion; iii) the words and the posting time; iv) the words, the
geolocation and the posting time.

A first remark regards the utmost importance of the geoloca-
tion on Qapa, and of the posting time for ABG. This confirms
the difference of the low vs highly qualified job sectors
and the importance of letting the system learn how to take
these information into account. Specifically, on the Qapa data
the geolocation information yields an improvement of circa
12% for LSA-bl and 4% for LAJAM. In the meanwhile, the

9On Qapa, LDA-bl yields .26 for Recall@20 and .62 for Recall@100. On
ABG, it yields .15 for Recall@20 and .41 for Recall@100 (words only).

geolocation information does not yield any extra performance
on the ABG dataset; a tentative interpretation for this fact is
that PhDs and post-docs are used to geographic mobility. On
the other hand, the time information yields an improvement
of circa 30% on the ABG data (spanning over 5 years) and
makes little difference on the Qapa dataset (spanning over 3
months).

Note that LSA-bl benefits from a considerable advantage,
exploiting the geolocation and posting time distances with
optimal weights (Eq. (5)). In contrast, LAJAM learns from
scratch how to best exploit the geolocation and time infor-
mation, expressed via 3 features among 10,000+ ones (the
word features). A more informed LAJAM initialization will be
considered in further work for a fair comparison with LSA-bl.

A second remark is that deep-LAJAM is always dominated
by shallow LAJAM: this is blamed on the lack of regularization
for the deep architecture, already noted on the CiteULike
problem.

For the word-only setting, shallow-LAJAM very signifi-
cantly outperforms the baseline on Qapa: by 9% regarding
the Recall@20 and 5% regarding the Recall@100.

On ABG, shallow-LAJAM is dominated by LSA-bl in the
word-only setting for the Recall@20 performance indicator,
and slightly though significantly dominates the baseline for
the Recall@100 indicator. Shallow-LAJAM likewise dominates
the baseline in the word+geolocation setting.

VII. CONCLUSION AND PERSPECTIVES

The paper contribution focuses on the automatic matching
of job ads and applicants, based on proprietary datasets
illustrating both blue-collar and white-collar job markets. The
proposed LAJAM approach succeeds in learning an ad hoc
language model on the job ad space, accounting for the
collaborative filtering metrics and flexibly exploiting extra
information such as geolocations and posting times. The
performances of LAJAM have been successfully assessed on
the public CiteULike dataset, comparatively to CTR [8] and
two baselines using content item-based recommendation on
the top of an LSA (resp. an LDA) representation. A limitation
of the approach is that deep-LAJAM currently lags behind
shallow-LAJAM. On-going work is concerned with alleviating
this limitation, through considering more data or regularizing
the optimization objective.

A short-term perspective is to reconsider the training loss
and the uniform sampling of the dissimilar job ad pairs. The
current loss yields a contracting language model: if jobs i
and j are similar, and j and k are similar (while i and k are
dissimilar), the resulting language model tends to locate i and
k close to each other by transitivity. In order to prevent the
contraction of the language model space, one should enforce
the selection of 2-step dissimilar job pairs (i, k) and push them
away. In CiteULike, the job ads are structured as a small world
of diameter 2.3; therefore most dissimilar job ad pairs are 2-
step distant. Quite the contrary, in Qapa and ABG, job ads are
structured as a small world with diameter circa respectively 6
for Qapa and 8 for ABG (section III): the uniform selection

Semi-cold start Qapa ABG
− geoloc time geo-time CPU − geoloc time geo-time CPU

LSA-bl R@20 .404± .007 .636± .003 .439± .007 .656± .003 5 min .254± .010 .258± .008 .574± .008 .579± .009 5 minLSA-bl R@100 .694± .005 .829± .003 .713± .005 .835± .002 .522± .012 .528± .013 .814± .007 .817± .007
LAJAM (shallow) R@20 .495± .006 .549± .006 .523± .005 .558± .006 200min .226± .008 .260± .009 .391± .009 .392± .011 25minLAJAM (shallow) R@100 .743± .007 .784± .005 .764± .006 .790± .005 .544± .008 .599± .006 .761± .009 .755± .008

LAJAM (deep) R@20 .475± .007 .499± .006 .483± .006 .503± .007 400min .200± .008 .199± .008 .312± .008 .336± .009 75 minLAJAM (deep) R@100 .725± .007 .748± .007 .731± .006 .752± .006 .493± .010 .492± .011 .705± .007 .717± .008
TABLE III

SEMI-COLD START SETTING: SHALLOW-, DEEP-LAJAM AND LSA-BL RECALL@20 AND RECALL@100 PERFORMANCES ON QAPA (5,600 JOB ADS) AND
ABG (1,040 JOB ADS) (10-FOLD CV). THE TRAINING TIME IS REPORTED IN THE CPU COLUMN; THE RECOMMENDATION TIME (FOR ALL USERS) IS 27’

FOR LSA-BL(RESP. 46’ FOR SHALLOW-LAJAM) ON QAPA AND 6’ FOR BOTH ON ABG.

of the dissimilar job ad pairs thus is unlikely to select 2-step
distant dissimilar job ad pairs, and to efficiently prevent the
contraction of the language model space.

A long-term research perspective is to exploit LAJAM in
“what if” reasoning mode, and to identify the skills that a
user should most preferably acquire in order to maximize
his job opportunities in a given context: in other words,
to extend LAJAM from the recommendation of jobs, to the
recommendation of professional training.

Acknowledgments

The authors wish to warmly thank the Qapa and ABG
CEOs, particularly Stéphanie Delestre, for many fruitful dis-
cussions; without their generous help this study would not
have been possible.

REFERENCES

[1] D. T. Mortensen and C. A. Pissarides, “Job creation and job destruction
in the theory of unemployment,” The Review of Economic Studies, 1994.

[2] J. Malinowski, T. Keim, O. Wendt, and T. Weitzel, “Matching people and
jobs: A bilateral recommendation approach,” in HICSS, vol. 6. IEEE,
2006, p. 137.

[3] I. Paparrizos, B. B. Cambazoglu, and A. Gionis, “Machine learned job
recommendation,” in RecSys. ACM, 2011, pp. 325–328.

[4] M. Tinghuai, Z. Jinjuan, T. Meili, T. Yuan, A.-D. Abdullah, A.-R.
Mznah, and L. Sungyoung, “Social network and tag sources based
augmenting collaborative recommender system,” IEICE Transactions on
Information and Systems, vol. 98, no. 4, pp. 902–910, 2015.

[5] E. Malherbe, M. Diaby, M. Cataldi, E. Viennet, and M.-A. Aufaure,
“Field selection for job categorization and recommendation to social
network users,” in Proc. of the IEEE/ACM International Conf. ASONAM.

[6] T. Carpi, M. Edemanti, E. Kamberoski, E. Sacchi, P. Cremonesi,
R. Pagano, and M. Quadrana, “Multi-stack ensemble for job recom-
mendation,” in Proc. of the RecSys Challenge. ACM, 2016, p. 8.

[7] Y. Koren and R. M. Bell, “Advances in collaborative filtering,” in
Recommender Systems Handbook, 2015, pp. 77–118.

[8] C. Wang and D. M. Blei, “Collaborative topic modeling for recommend-
ing scientific articles,” in ACM SIGKDD.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[10] S. Büttcher, C. L. A. Clarke, and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. MIT Press, 2010.

[11] I. Dagan, O. Glickman, and B. Magnini, “The PASCAL recognising
textual entailment challenge,” in Machine learning challenges, ser.
LNCS. Springer, 2006, no. 3944, pp. 177–190.

[12] R. M. Bell and Y. Koren, “Lessons from the Netflix prize challenge,”
ACM Sigkdd Explorations Newsletter, vol. 9, no. 2, pp. 75–79, 2007.

[13] Y. Zhou and A. Nadaf, “Embedded collaborative filtering for” cold start”
prediction,” arXiv preprint arXiv:1704.02552, 2017.

[14] J. Weston, C. Wang, R. Weiss, and A. Berenzweig, “Latent collaborative
retrieval,” in ICML, 2012, pp. 9–16.

[15] H. Larochelle and I. Murray, “The neural autoregressive distribution
estimator.” in AISTATS, vol. 1, 2011, p. 2.

[16] F. Färber, T. Weitzel, and T. Keim, “An automated recommendation
approach to selection in personnel recruitment,” AMCIS, 2003.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR Workshop, 2013.

[18] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–43.

[19] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014, pp. 1188–1196.

[20] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, “From word
embeddings to document distances,” in ICML, 2015, pp. 957–966.

[21] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla,
V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product
recommendations at scale,” in ACM SIGKDD, 2015, pp. 1809–1818.

[22] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” Journal of Machine Learning
Research, vol. 10, pp. 207–244, 2009.

[23] C. J. Burges, “From RankNet to LambdaRank to LambdaMART: An
overview,” Journal of Machine Learning Research, 2010.

[24] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a Siamese time
delay neural network,” IJPRAI, vol. 7, no. 04, pp. 669–688, 1993.

[25] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR. IEEE,
2005, pp. 539–546.

[26] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen,
and Y. Wu, “Learning fine-grained image similarity with deep ranking,”
in CVPR, 2014.

[27] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in
International Workshop on Similarity-Based Pattern Recognition, 2015.

[28] P. Neculoiu, M. Versteegh, M. Rotaru, and T. B. Amsterdam, “Learning
text similarity with Siamese recurrent networks,” ACL 2016, 2016.

[29] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity.” in AAAI, 2016, pp. 2786–2792.

[30] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” in CIKM.

[31] F. Zhu, J. Xie, and Y. Fang, “Learning cross-domain neural networks
for sketch-based 3d shape retrieval,” in AAAI, 2016, pp. 3683–3689.

[32] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning
approach for cross domain user modeling in recommendation systems,”
in WWW. ACM, 2015.

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, 2003.

[34] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.

[35] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” in WWW, 2001, pp. 285–295.

[36] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, “Time
bounds for selection,” J. Comput. Syst. Sci., 1973.

[37] T. Schmitt, P. Caillou, and M. Sebag, “Matching jobs and resumes: a
deep collaborative filtering task,” in GCAI 2016, vol. 41, 2016, pp. 124–
137.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in AISTATS, vol. 9, 2010, pp. 249–256.

[39] Theano Development Team, “Theano: A Python framework for fast
computation of mathematical expressions,” arXiv preprints. [Online].
Available: http://arxiv.org/abs/1605.02688

[40] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint. [Online]. Available: https://arxiv.org/pdf/1412.6980

[41] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational
invariance,” in ICML, 2004, p. 78.

