D. T. Mortensen and C. A. Pissarides, Job Creation and Job Destruction in the Theory of Unemployment, The Review of Economic Studies, vol.61, issue.3, 1994.
DOI : 10.2307/2297896

J. Malinowski, T. Keim, O. Wendt, and T. Weitzel, Matching People and Jobs: A Bilateral Recommendation Approach, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06), p.137, 2006.
DOI : 10.1109/HICSS.2006.266

URL : http://csdl.computer.org/comp/proceedings/hicss/2006/2507/06/250760137c.pdf

I. Paparrizos, B. B. Cambazoglu, and A. Gionis, Machine learned job recommendation, Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, pp.325-328, 2011.
DOI : 10.1145/2043932.2043994

M. Tinghuai, Z. Jinjuan, T. Meili, T. Yuan, A. Abdullah et al., Social network and tag sources based augmenting collaborative recommender system, IEICE Transactions on Information and Systems, vol.98, issue.4, pp.902-910, 2015.

E. Malherbe, M. Diaby, M. Cataldi, E. Viennet, and M. Aufaure, Field selection for job categorization and recommendation to social network users, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)
DOI : 10.1109/ASONAM.2014.6921646

T. Carpi, M. Edemanti, E. Kamberoski, E. Sacchi, P. Cremonesi et al., Multi-stack ensemble for job recommendation, Proceedings of the Recommender Systems Challenge on, RecSys Challenge '16, p.8, 2016.
DOI : 10.1007/s10462-009-9124-7

Y. Koren and R. M. Bell, Advances in collaborative filtering, Recommender Systems Handbook, pp.77-118, 2015.

C. Wang and D. M. Blei, Collaborative topic modeling for recommending scientific articles, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11
DOI : 10.1145/2020408.2020480

URL : http://www.cs.cmu.edu/~chongw/papers/WangBlei2011.pdf

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, NIPS, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

S. Büttcher, C. L. Clarke, and G. V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, 2010.

I. Dagan, O. Glickman, and B. Magnini, The PASCAL Recognising Textual Entailment Challenge, Machine learning challenges, ser, pp.177-190, 2006.
DOI : 10.3115/1631862.1631868

R. M. Bell and Y. Koren, Lessons from the Netflix prize challenge, ACM SIGKDD Explorations Newsletter, vol.9, issue.2, pp.75-79, 2007.
DOI : 10.1145/1345448.1345465

Y. Zhou and A. Nadaf, Embedded collaborative filtering for " cold start " prediction, 2017.

J. Weston, C. Wang, R. Weiss, and A. Berenzweig, Latent collaborative retrieval, ICML, pp.9-16, 2012.

H. Larochelle and I. Murray, The neural autoregressive distribution estimator, AISTATS, p.2, 2011.

F. Färber, T. Weitzel, T. Keim, K. Chen, G. Corrado et al., An automated recommendation approach to selection in personnel recruitment Efficient estimation of word representations in vector space, ICLR Workshop, 2003.

J. Pennington, R. Socher, and C. D. Manning, Glove: Global Vectors for Word Representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.1532-1575, 2014.
DOI : 10.3115/v1/D14-1162

Q. V. Le and T. Mikolov, Distributed representations of sentences and documents, ICML, pp.1188-1196, 2014.

M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger, From word embeddings to document distances, ICML, pp.957-966, 2015.

M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla et al., E-commerce in Your Inbox, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.1809-1818, 2015.
DOI : 10.1145/2623330.2623351

K. Q. Weinberger and L. K. Saul, Distance metric learning for large margin nearest neighbor classification, Journal of Machine Learning Research, vol.10, pp.207-244, 2009.

C. J. Burges, From RankNet to LambdaRank to LambdaMART: An overview, Journal of Machine Learning Research, 2010.

J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun et al., Signature verification using a Siamese time delay neural network, IJPRAI, vol.7, issue.04, pp.669-688, 1993.

S. Chopra, R. Hadsell, and Y. Lecun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.539-546, 2005.
DOI : 10.1109/CVPR.2005.202

URL : http://yann.lecun.com/exdb/publis/psgz/chopra-05.ps.gz

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang et al., Learning Fine-Grained Image Similarity with Deep Ranking, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.180

URL : http://users.eecs.northwestern.edu/%7Ejwa368/pdfs/deep_ranking.pdf

E. Hoffer and N. Ailon, Deep Metric Learning Using Triplet Network, International Workshop on Similarity-Based Pattern Recognition, 2015.
DOI : 10.1145/1553374.1553469

P. Neculoiu, M. Versteegh, M. Rotaru, and T. B. Amsterdam, Learning Text Similarity with Siamese Recurrent Networks, Proceedings of the 1st Workshop on Representation Learning for NLP, 2016.
DOI : 10.18653/v1/W16-1617

J. Mueller and A. Thyagarajan, Siamese recurrent architectures for learning sentence similarity, AAAI, pp.2786-2792, 2016.

P. Huang, X. He, J. Gao, L. Deng, A. Acero et al., Learning deep structured semantic models for web search using clickthrough data, Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, CIKM '13
DOI : 10.1145/2505515.2505665

URL : http://research.microsoft.com/en-us/um/people/jfgao/paper/2013/cikm2013_DSSM_fullversion.pdf

F. Zhu, J. Xie, and Y. Fang, Learning cross-domain neural networks for sketch-based 3d shape retrieval, AAAI, pp.3683-3689, 2016.

A. M. Elkahky, Y. Song, and X. He, A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems, Proceedings of the 24th International Conference on World Wide Web, WWW '15, 2015.
DOI : 10.1002/0470013192.bsa068

D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet allocation, Journal of Machine Learning Research, 2003.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing by latent semantic analysis, Journal of the American Society for Information Science, vol.41, issue.6, p.391, 1990.
DOI : 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

B. Sarwar, G. Karypis, J. Konstan, and J. , Item-based collaborative filtering recommendation algorithms, Proceedings of the tenth international conference on World Wide Web , WWW '01, pp.285-295, 2001.
DOI : 10.1145/371920.372071

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for selection, Journal of Computer and System Sciences, vol.7, issue.4, 1973.
DOI : 10.1016/S0022-0000(73)80033-9

URL : https://doi.org/10.1016/s0022-0000(73)80033-9

T. Schmitt, P. Caillou, and M. Sebag, Matching jobs and resumes: a deep collaborative filtering task, GCAI 2016, pp.124-137, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01378589

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, AISTATS, pp.249-256, 2010.

T. Development and T. , Theano: A Python framework for fast computation of mathematical expressions, " arXiv preprints

D. Kingma and J. Ba, Adam: A method for stochastic optimization, " arXiv preprint Available: https://arxiv, p.6980, 1412.

A. Y. Ng, Feature selection, L 1 vs. L 2 regularization, and rotational invariance, ICML, p.78, 2004.