L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

F. Gonard, M. Schoenauer, and M. Sebag, Algorithm selector and prescheduler in the ICON challenge, Int. Conf. on Metaheuristics and Nature Inspired Computing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01378745

N. Hansen, D. Sibylle, P. Müller, and . Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, pp.1-18, 2003.
DOI : 10.1162/106365601750190398

H. Hoos, M. Lindauer, and T. Schaub, Advances in algorithm selection for answer set programming, Theory and Practice of Logic Programming, pp.569-585, 2014.

S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, Algorithm Selection and Scheduling, Int. Conf. on Principles and Practice of Constraint Programming, pp.454-469, 2011.
DOI : 10.1007/978-3-540-74970-7_50

F. Pedregosa, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905