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Abstract

We provide a new sequential predictors approach for the exponential stabilization of linear time-varying systems. Our method
circumvents the problem of constructing and estimating distributed terms in the control laws, and allows arbitrarily large
input delay bounds, pointwise time-varying input delays, and uncertainties. Instead of using distributed terms, our approach
to handling longer delays is to increase the number of predictors. We obtain explicit formulas to find lower bounds for the
number of required predictors. The formulas involve bounds on the delays and on the derivatives of the delays. We illustrate
our method in three examples.
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1 Introduction

This work continues our search (which we began in Ma-
zenc and Malisoff (2017)) for predictive control methods
for time-varying systems that can be applied without
computing Lie derivatives and without computing distri-
buted terms, and which can compensate for arbitrarily
long input delays. Our work is motivated by the ubiquity
of input delays across engineering, coupled with the chal-
lenges that one may encounter when building delay to-
lerant feedback controls, if one applies traditional emu-
lation or prediction methods that can involve distribu-
ted terms. See, e.g., Bekiaris-Liberis and Krstic (2013),
Michiels and Niculescu (2007), and Richard (2003) for
overviews on delay compensating control, Sharma et al.
(2011) for constant electromechanical input delays in
muscle response in neuromuscular electrical stimulation
(or NMES), and Kamalapurkar et al. (2016) and Merad

? Corresponding author: F. Mazenc. A summary of some of
this work (with only a sketch of a proof of the theorem) ap-
peared in the proceedings of the 55th IEEE Conference on
Decision and Control; see the end of Section 1 for a compa-
rison between the present work and the conference version.
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et al. (2016) for extensions to NMES under time-varying
input delays.

For constant coefficient linear systems, it often suffices
to use linear matrix inequalities (or LMIs) to build de-
lay tolerant controls, but many important linear systems
are time-varying. For instance, when tracking reference
trajectories and linearizing around the reference trajec-
tories, we obtain time-varying linear systems, even if
the original system is time invariant. See Mazenc et al.
(2014), and Germani et al. (2002) for systems with de-
layed outputs, which lead to input delayed systems when
the output for one system is an input for another system.

Traditional input delay compensation methods can
roughly be grouped into three approaches. One appro-
ach is to solve a stabilization problem with the input
delay set equal to 0, and to then look for upper bounds
on the input delay that the resulting closed loop system
can tolerate, without sacrificing the desired stability
properties. Two advantages of this so-called emulation
approach are that (a) it makes it possible to use re-
latively simple controls for undelayed systems (such
as Lie derivative feedbacks and other approaches from
Khalil (2002)) and (b) the strict Lyapunov functions
that one obtains from solving the feedback design pro-
blem for the corresponding undelayed system can often
be transformed into Lyapunov-Krasovskii functionals,
which can in turn be used to compute bounds on the
input delays that the closed loop system can tolerate.
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See Fridman and Niculescu (2008) for background on
Lyapunov-Krasovskii functionals, and Mazenc et al.
(2008) for ways to transform strict Lyapunov functions
for undelayed systems into Lyapunov-Krasovskii functi-
onals for the corresponding input delayed systems.

Another approach is the reduction model method, where
the control is expressed implicitly as a solution of an in-
tegral equation, which can lead to challenging problems
of numerically computing controls, especially when the
system has uncertainty or the delay is time-varying. Pre-
diction is another useful method, where the states in
the controls are replaced by numerical predictions of the
states. Standard prediction or reduction model methods
can compensate for arbitrarily long input delays, and so
may have an advantage over emulation for communica-
tion networks or multi-agent problems that are prone to
long input delays, but the distributed terms in their con-
trols (which use all values of the input or the state on
some interval of times) may make them harder to imple-
ment; see Artstein (1982), Bekiaris-Liberis and Krstic
(2012), Mazenc et al. (2012), and Witrant et al. (2007).

This paper provides a new sequential predictors appro-
ach to exponential stabilization of time-varying linear
systems with time-varying input delays, and therefore
builds on recent notable works such as Najafi et al. (2013)
(which used LMI methods for time invariant linear sys-
tems to build sequential predictors) and Léchappé (2015)
(which extended Najafi et al. (2013) by studying con-
stant coefficient linear systems with time-varying delays,
which is a smaller class of systems than the time-varying
systems that we consider here). It also extends Mazenc
and Malisoff (2017), which was confined to constant de-
lays. Since we do not use any distributed terms or Lie
derivatives in our control, our work is also very different
from the classical reduction model or the more recent
prediction approaches that have been used by M. Krstic
and others (as in Bresch-Pietri and Petit (2014), Kara-
fyllis and Krstic (2013), and Krstic (2009)).

Our approach uses several dynamic extensions. Each dy-
namic extension has the same dimension as the original
system. This contrasts with the reduction model appro-
ach, where the integral equation that produces the con-
trol has the same dimension as the control. Since we do
not use distributed terms, our work differs from Ahmed-
Ali et al. (2016), Ahmed-Ali et al. (2013), and other
works that use several dynamic extensions and distribu-
ted terms. We obtain closed form control formulas and
ways to compute lower bounds on the number of requi-
red extensions. Our work is mainly a theoretical and
methodological development. However, we illustrate our
work in three examples, including a pendulum dynamics
that we studied in Mazenc et al. (2014), where we used a
reduction model approach and distributed controls but
did not cover time-varying delays.

There are several other notable works that use prediction
without using distributed terms, but which do not co-

ver the problems that we solve in the present work. The
works Ahmed-Ali et al. (2012), Cacace et al. (2016c),
Cacace et al. (2016a), and Zhou et al. (2012) focused on
time-invariant linear systems ẋ = Ax + Bu, and they
use eigenvalue conditions on A and bounds on the de-
lays or controllability conditions, without guaranteeing
robustness under uncertainty; strict feedback systems
were covered in Cacace et al. (2016b) by adding condi-
tions on the coefficient matrices of a new system that is
obtained by using a diffeomorphic transformation, but
we do not require such conditions here; Cacace et al.
(2014b) proved asymptotic stability results with pres-
cribed decay rates for linear time-invariant systems by
using partial spectrum assignment; Cacace et al. (2014c)
was also limited to time-invariant linear systems; Ger-
mani et al. (2002) used a globally drift-observability con-
dition (which we also do not require here) to cover nonli-
near systems; and Zhou (2014a) and Zhou (2014b) gave
sufficient conditions for stabilizability for time-varying
linear systems under pseudo-predictor feedback with an
integral delay system that is also not needed in the pre-
sent work. Our work is also reminiscent of Cacace et al.
(2014a), which is devoted to chain observers for time
invariant nonlinear systems with time-varying measure-
ment delays, and so does not cover the uniform global
exponential stabilization results that we present here.

We use standard notation and definitions. Throughout
the sequel, the dimensions are arbitrary, unless other-
wise noted. We omit arguments of functions when they
are clear, and we assume that the initial times t0 for our
solutions of our systems are t0 = 0, but we can write
analogs for general choices of t0 ≥ 0. We use | · | to de-
note the usual Euclidean norm and the induced matrix
norm, |φ|∞ (resp., |φ|I) is the essential supremum (resp.,
supremum over any interval I) for any bounded measu-
rable function φ, and In is the n× n identity matrix.

Our preliminary version Mazenc and Malisoff (2016) of
this work only provides a sketch of the proof of its main
result, while here we provide a complete and new proof,
and a new example from identification theory that was
not in Mazenc and Malisoff (2016). Our new proof in-
cludes a new Lyapunov-Krasovskii functional approach
that can allow smaller values for the number of requi-
red sequential subpredictors than what was required in
Mazenc and Malisoff (2016); see Remark 4.

2 Main Result

We study systems of the form

ẋ(t) = A(t)x(t) +B(t)u(t− h(t)) + δ(t), (1)

where the state x and the control u are valued in Rn and
R`, respectively, h : R→ [0,∞) is a known time-varying
delay, and δ : [0,∞) → Rn is an unknown measurable
essentially bounded function representing unmodeled fe-
atures or actuator errors. We make two assumptions:
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Assumption 1 The function h is C1 and bounded from
above by a constant ch > 0, ḣ has a finite lower bound
h ∈ R, ḣ is bounded from above by a constant lh ∈ (0, 1),

and ḣ has a global Lipschitz constant nh > 0. �

Assumption 2 The functionsA andB are bounded and
continuous, and there is a known bounded continuous
function K : [0,∞)→ R`×n such that

ẋ(t) = [A(t) +B(t)K(t)]x(t) (2)

is uniformly globally exponentially stable on Rn to 0. �

Assumption 1 can model many delays, e.g., by using a
standard denseness argument to arbitrarily closely ap-
proximate many non-C1 delays, including discontinuous
delays; see Remark 2. In terms of an integer m > 1 that
we specify later, we use the functions

Ωi(t) = t− i
mh(t) and θj(t) = Ω−1

m−j+1(Ωm−j(t)) (3)

for all i ∈ {0, ...,m} and j ∈ {1, . . . ,m}, and define

R1 = θ̇1 and Ri(t) = θ̇i(t)Ri−1(θi(t)) for i > 1. (4)

The preceding functions are used to define the coeffi-
cients in our subpredictors and to produce the required
exponential decay estimate of our transformed error vec-
tor in our theorem. Such functions exist because our up-
per bounds ch and lh ∈ (0, 1) from Assumption 1 imply
that the Ωi’s have the range R and are strictly increa-
sing. Hence, the θi’s are also strictly increasing and C1.
The inverses in (3) can be computed numerically using
standard programs, e.g., the command

g = InverseFunction[Function[t, t− h[t]/m]] (5)

in Mathematica (2015) to compute Ω−1
1 (t) for a known

choice of h(t). We also assume that the initial functions
are constant on (−∞, 0]. In terms of the constants

uc = nh
ch

(1−lh)2
+ lh

1−lh
(6)

and

b1 =
[
1 +

(
1 + uc

m

)m |A|∞] (1 + uc

m

)m |A|∞,
b2 =

[
1 +

(
1 + uc

m

)m |A|∞]2 , and

b3 = b2
(
1 + uc

m

)
,

(7)

we then prove:

Theorem 1 If Assumptions 1-2 hold, and if the constant
integer m ≥ 2 satisfies

2
(

ch
(1−lh)m

)2

(b21 + 4b23) < 1, (8)

then we can find positive constants µ1 and µ2 such that
for all solutions of (1) in closed loop with the control

u(t) = K(t+ h(t))zm(t), (9)

where zm is the last n components of the system

ż1(t) = R1(t)A(θ1(t))z1(t)

+R1(t)B(θ1(t))u(Ωm−1(t))

+L1(t)[z1(θ−1
1 (t))− x(t)]

żi(t) = Ri(t)A(Gi(t))zi(t)

+Ri(t)B(Gi(t))u(Ωm−i(t))

+Li(t)[zi(θ
−1
i (t))− zi−1(t)], 2 ≤ i ≤ m

(10)

with the choices

Li(t) = −In −Ri(t)A(Gi(t))

and Gi(t) = Ω−1
m (Ωm−i(t)),

(11)

we have

|(x(t), E(t))| ≤ µ1

(
|(x, E)|[−ch,0]e

−µ2t + |δ|∞
)

(12)

for all t ≥ 0, where E(t) = (z1(t) − x(θ1(t)), z2(t) −
z1(θ2(t)), . . . , zm(t)− zm−1(θm(t))). �

Remark 1 The zi dynamics in (10) are called the ith
sequential subpredictor for each i. By the formula

euc = lim
m→∞

((
1 + uc

m

)m/uc
)uc

, (13)

condition (8) holds if m is large enough. The estimate
(12) says that the combined (x, E) dynamics are exponen-
tially input-to-state stable (or ISS) with respect to δ; see
Khalil (2002) for ISS properties. Three key features of the
preceding construction are (a) our allowing arbitrarily
large delay bounds ch > 0, (b) the fact that our control
(9) has no distributed terms and no Lie derivatives, and
that (c) only the bottom n components of (10) are used
to compute the control. This differs from standard pre-
dictive controls that contain distributed terms, and emu-
lation controls that limit the allowable upper bounds on
the delay. Longer delays and larger values of |A|∞ lead
to larger m values. See our examples below. �

Remark 2 A motivation for (9)-(10) is that the maxi-
mum delay is divided among the predictors, and each pre-
dictor refers to a specific and constant time ahead. The
C1 property of h is needed to ensure the C1 properties
of the θi’s in our stabilization analysis. Using Gaussian
smoothing and interpolation, we can sometimes approxi-
mate discontinuous delays (which violate Assumption 1)
by delays h(t) that satisfy Assumption 1, and then we
can use h(t) in our analysis, so our Assumption 1 is wi-
dely applicable through delay approximations. However,
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one cannot extend our result to arbitrary sawtooth shaped
delays (which arise from sampling), as illustrated by

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + u(tk), t ∈ [tk, tk+1)
(14)

with the sample times tk = 2πk for all integers k ≥ 0,
where the control values u(tk) are arbitrary, since (14)
cannot be globally asymptotically stabilized to 0 by any
feedback. To see why (14) cannot be globally asymptoti-
cally stabilized to 0, first notice that the function

γ(t) = cos(t)x1(t)− sin(t)x2(t) (15)

satisfies γ̇(t) = − sin(t)u(tk) along all solutions of (14)
for all t ∈ [tk, tk+1) and integers k ≥ 0, which gives

γ(2π(k + 1))− γ(2πk) =

∫ 2π(k+1)

2πk

γ̇(s)ds = 0 (16)

so (15) gives x1(2π(k + 1)) = γ(2π(k + 1)) = γ(2πk) =
. . . = γ(0) = x1(0) for all integers k ≥ 0, so x1(t) cannot
converge to 0. �

3 Proof of Theorem 1

We use this lemma, which we prove in the appendix:

Lemma 1 The θi’s in (3) and the constant (6) satisfy

|θ̇i(t)− 1| ≤ uc

m and |θ−1
i (t)− t| ≤ ch

1−lh
1
m

(17)

for all t ≥ 0 and i ∈ {1, 2, . . . ,m}. �

By Lemma 1 and our definition of the Ri’s in (4), we get

|Ri(t)| ≤
(
1 + uc

m

)m
, 1 ≤ i ≤ m, (18)

where throughout the proof, all equalities and inequali-
ties are for all t ≥ 0, unless otherwise indicated. In terms
of the states zi of (10), set ξi(t) = zi−1(θi(t)) for i ≥ 1,
where z0 = x. The rest of the proof has four parts.

Part 1: Error Dynamics. We first derive a useful formula
for the dynamics of the error E = (E1, . . . , Em), where

Ei(t) = zi(t)− ξi(t) = zi(t)− zi−1(θi(t)) (19)

for all i ∈ {1, ...,m}. Our formulas (3) give

ξ̇1(t) = θ̇1(t)A(θ1(t))ξ1(t) + θ̇1(t)δ(θ1(t))

+ θ̇1(t)B(θ1(t))u(θ1(t)− h(θ1(t)))

= R1(t)A(θ1(t))ξ1(t) + θ̇1(t)δ(θ1(t))

+R1(t)B(θ1(t))u(Ωm(θ1(t))),

(20)

because
θ−1
i (t) ≤ t for all t ≥ 0, (21)

since (21) is equivalent to Ωm−i+1(t) ≤ Ωm−i(t), which
is equivalent to m − i + 1 ≥ m − i, so θ1(t) ≥ t. Since
Ωm(θ1(t)) = Ωm−1(t), we then have

ξ̇1(t) = R1(t)A(θ1(t))ξ1(t)

+R1(t)B(θ1(t))u (Ωm−1(t)) + θ̇1(t)δ(θ1(t)).
(22)

Hence, (19) and the z1 dynamics in (10) give

Ė1(t) = R1(t)A(θ1(t))E1(t) + L1(t)E1(θ−1
1 (t))

− θ̇1(t)δ(θ1(t)) .
(23)

If 2 ≤ i ≤ m, then we have Gi−1 ◦ θi = Ω−1
m ◦ Ωm−i+1 ◦

Ω−1
m−i+1 ◦ Ωm−i = Gi, where ◦ denotes composition, so

ξ̇i(t) = θ̇i(t) {Ri−1(θi(t)) [A(Gi(t))zi−1(θi(t))

+B(Gi(t))u(Ωm−i+1(θi(t)))]

+Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

−zi−2(θi(t))]}
= Ri(t)B(Gi(t))u(Ωm−i+1(θi(t)))

+θ̇i(t)Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

− zi−2(θi(t))] +Ri(t)A(Gi(t))ξi(t),

(24)

by our definition of the Ri’s. Since Ωm−i+1(θi(t)) =
Ωm−i(t), we deduce that for all i ∈ {2, . . . ,m}, we get

Ėi(t) = Li(t)[zi(θ
−1
i (t))− zi−1(t)]

− θ̇i(t)Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

− zi−2(θi(t))] +Ri(t)A(Gi(t))Ei(t)
= Ri(t)A(Gi(t))Ei(t) + Li(t)Ei(θ−1

i (t))

− θ̇i(t)Li−1(θi(t))Ei−1(θ−1
i−1(θi(t))) .

(25)

Since θ1 = G1, this gives these error dynamics:

Ė1(t) = R1(t)A(G1(t))E1(t)

+L1(t)E1(θ−1
1 (t))− θ̇1(t)δ(θ1(t))

Ėi(t) = Ri(t)A(Gi(t))Ei(t) + Li(t)Ei(θ−1
i (t))

− θ̇i(t)Li−1(θi(t))

×Ei−1(θ−1
i−1(θi(t))), 2 ≤ i ≤ m

(26)

We require the following preliminary analysis.

Part 2: Fundamental System. We first study the system

ṡi(t) = Ri(t)A(Gi(t))si(t) + Li(t)si(θ
−1
i (t))

= −si(t)− Li(t)
[
si(t)− si(θ−1

i (t))
] (27)
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for a fixed i ∈ {1, 2, . . . ,m}, where the second equality
used our choices Li(t) = −In −Ri(t)A(Gi(t)). By (21),
we obtain

ṡi(t) = −si(t)− Li(t)
∫ t

θ−1
i

(t)

Ri(l)A(Gi(l))si(l)dl

+Li(t)

∫ t

θ−1
i

(t)

(In +Ri(l)A(Gi(l)))si(θ
−1
i (l))dl.

(28)

To study stability properties for (28), we use Q(si) =
|si|2/2, and the lower bound θ−1

i (t) ≥ t−ch/((1−lh)m),
which follows from the second bound in (17).

By our choices (7) of b1 and b2, our second bound in
(17) from Lemma 1, and (18), it follows that the time
derivative of Q along the trajectories of (28) satisfies

Q̇(t) ≤ −|si(t)|2 + b1|si(t)|
∫ t

t− ch
1−lh

1
m

|si(l)|dl

+ b2|si(t)|
∫ θ−1

i
(t)

θ−1
i

(
t− ch

1−lh

1
m

)|si(r)||θ̇i(r)|dr, (29)

by using the change the variables r = θ−1
i (l). Here and

in what follows, all inequalities and equalities are for all
t ≥ 2ch/(m(1− lh)), unless otherwise indicated. Hence,
since (21) is satisfied, the bounds (17) give

Q̇(t) ≤ −|si(t)|2 + b1|si(t)|
∫ t

t− ch
1−lh

1
m

|si(l)|dl

+ b3|si(t)|
∫ t

t− 2ch
1−lh

1
m

|si(r)|dr.
(30)

We can apply Young’s inequality si(t)r ≤ 1
4 |si(t)|

2 + r2

twice for suitable r ≥ 0, and then Jensen’s inequality
(applied to the convex integrand |si|2), to get

Q̇(t) ≤ − 1
2 |si(t)|

2 +
b21ch

(1−lh)m

∫ t

t− ch
1−lh

1
m

|si(l)|2dl

+
2b23ch

(1−lh)m

∫ t

t− 2ch
1−lh

1
m

|si(r)|2dr,

(31)

where the first application was

b1|si(t)|
∫ t

t− ch
(1−lh)m

|si(l)|dl

≤ 1
4 |si(t)|

2 +
b21ch

(1−lh)m

∫ t

t− ch
(1−lh)m

|si(l)|2dl,

(32)

and the second one was analogous, except with b1 and
ch in (32) replaced by b3 and 2ch, respectively.

Since our condition (8) allows us to find a constant λ > 1
that is close enough to 1 so that

λ
(

ch
(1−lh)m

)2

(b21 + 4b23) < 1
2 , (33)

it follows from (31) that we can also find a constant
c0 > 0 such that the time derivative of

Q](si,t) = Q(si(t))

+ chλ
(1−lh)m

(
b21

∫ t

t− ch
1−lh

1
m

∫ t

w

|si(r)|2drdw

+2b23

∫ t

t− 2ch
1−lh

1
m

∫ t

w

|si(r)|2drdw

)

along all solutions of (28) satisfies

Q̇] ≤ −c0Q](si,t), (34)

where (34) was obtained using the relations∫ t

t− jch
1−lh

1
m

∫ t

w

|si(r)|2drdw

≤ jch
(1−lh)m

∫ t

t− jch
1−lh

1
m

|si(r)|2dr

and

d
dt

(∫ t

t− jch
1−lh

1
m

∫ t

w

|si(r)|2drdw

)
= jch

(1−lh)m |si(t)|
2 −

∫ t

t− jch
(1−lh)m

|si(r)|2dr

for j = 1 and j = 2 and where si,t(`) = si(t + `) for all
` ∈ [−2ch/((1− lh)m), 0]. For instance, we can choose

c0 =

min

{
1− 2λ

(
ch

(1−lh)m

)2

(b21 + 4b23), (λ−1)(1−lh)m
2λch

}
.

This concludes our analysis of (27).

Part 3: Input-to-State Stability of the Error Dynamics
(26). We first study the dynamics for

E](t) =
(
E1(θ−1

1 ◦ θm(t)), E2(θ−1
2 ◦ θm(t)), . . . , Em(t)

)
with the disturbance δ(θm(t)). We can find positive con-
stants θ and θ̄ such that θ ≤ (θ−1

i ◦ θm)′(t) ≤ θ̄ hold for
all t ≥ 0 and i ∈ {1, 2, . . . ,m}. To find θ and θ̄, first note
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that for each i ∈ {1, 2, . . . ,m}, we have

θ−1
i ◦ θm = (Ω−1

m−i+1 ◦ Ωm−i)
−1 ◦ Ω−1

1

= Ω−1
m−i ◦ Ωm−i+1 ◦ Ω−1

1 ,

so the chain rule gives

(θ−1
i ◦ θm)′(t) =

(
1− m−i

m ḣ(θ−1
i ◦ θm(t))

)−1

×
(

1− m−i+1
m ḣ(Ω−1

1 (t))
)

×
(

1− 1
m ḣ(Ω−1

1 (t))
)−1

so the existence of the constants θ and θ̄ follows from
the lower and upper bounds on ḣ from Assumption 1.

Hence, the decay estimate (34) along trajectories of (27),
combined with Young’s inequality and our choice of the
quadratic part of Q], implies that along all solutions of
the dynamics for

(E]1(t), E]2(t)) = (E1(θ−1
1 ◦ θm(t)), E2(θ−1

2 ◦ θm(t))),

we have

d
dtQ

](E]2,t) ≤ −
θc0
2 Q](E]2,t)

+ 2θ̄4

θc0
|θ̇2|2∞|L1|2∞Q](E

]
1,t)

d
dtQ

](E]1,t) ≤ −
θc0
2 Q](E]1,t) + θ̄4

θc0
|θ̇1|2∞|δ|2∞,

(35)

where the first inequality used Young’s inequality to get

θ̄2|E2(θ−1
2 ◦ θm(t))||θ̇2|∞|L1|∞|E1(θ−1

1 ◦ θm(t))|

≤ θc0
2 Q](E]2,t) + 2θ̄4

θc0
(|θ̇2|∞|L1|∞)2Q](E]1,t),

and the second inequality in (35) was obtained in an
analogous way. Hence, the function

Q]2(E]1,t, E
]
2,t) =

Q](E]2,t) +

(
1 +

(
2θ̄2|θ̇2|∞|L1|∞

θc0

)2
)
Q](E]1,t)

(36)

satisfies

Q̇]2 ≤ −
θc0
2

(
Q]
(
E]1,t
)

+Q]
(
E]2,t
))

+

(
1 +

(
2θ̄2|θ̇2|∞|L1|∞

θc0

)2
)

θ̄4

θc0
|θ̇1|2|δ|2∞

(37)

and so is an ISS Lyapunov-Krasovskii functional for the

(E]1(t), E]2(t)) dynamics. Continuing in a similar way (by
adding one component of E] at a time) provides positive

constants ωi and ηi such that

Q]m(E]t ) =

ω1Q
](E]1,t) + . . .+ ωm−1Q

](E]m−1,t) + ωmQ
](E]m,t)

satisfies

Q̇]m(E]t ) ≤ −η1Q
]
m(E]t ) + η2|δ|2∞ (38)

along all solutions of the E] dynamics.

Part 4: ISS of (1) with Our Control (9). By (19), we have

zm(t) = ξm(t) + Em(t) = zm−1(θm(t)) + Em(t)

= zm−2(θm−1(θm(t))) + Em−1(θm(t)) + Em(t),
(39)

and therefore we can argue inductively to get

zm(t) = x(θ1(...θm−1(θm(t))...))

+ E1(θ2(...θm(t)...)) + ...+ Em(t).
(40)

The formulas θi(t) = Ω−1
m−i+1(Ωm−i(t)) then give

θm−1(θm(t)) = Ω−1
2 (Ω1(Ω−1

1 (Ω0(t)))) = Ω−1
2 (t). We

deduce that θ1(...θm−1(θm(t))...) = Ω−1
m (t), and so

zm(t) = x(Ω−1
m (t)) + E1(θ2(...θm(t)...)) + ... + Em(t).

Hence, our control (9) can be written as

u(t− h(t)) = K(t)[x(Ω−1
m (t− h(t)))

+ E1(θ2(...θm(t− h(t)...))) + ...+ Em(t− h(t))].
(41)

Since Ωm(t) = t− h(t), the closed loop system is then

ẋ(t) = (A(t) +B(t)K(t))x(t)

+{B(t)[K(t)E1(θ2(...θm(t− h(t)...)))

+...+K(t)Em(t− h(t))] + δ(t)}.
(42)

Also, Assumption 2 provides a C1 bounded function P
such that the Lyapunov function V (t, x) = x>P (t)x has

a quadratic lower bound in |x| and satisfies V̇ ≤ −|x(t)|2
along all solutions of (2) (using (Khalil, 2002, Theorem
4.14)). Then the triangle inequality gives

V̇ ≤ − 1
2 |x(t)|2 + 2|P |2∞|δ]|2∞

≤ − 1
2|P |∞V (t, x(t)) + 2|P |2∞|δ]|2∞

≤ − 1
2|P |∞V (t, x(t))

+ 2(m+ 1) (|P |∞|B|∞|K|∞)
2

×
(
|E1(θ2(...θm(t− h(t)...)))|2 + . . .

+ |Em(t− h(t))|2 + |δ|2∞
)

(43)

along all solutions of (42), where δ] is the quantity in
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curly braces in (42) viewed as a sum of m+ 1 terms.

Also, for all i ∈ {1, 2, . . . ,m− 1}, we have

|Ei(θi+1 ◦ . . . ◦ θm(t− h(t)))|2

= 2Q(Ei(θi+1 ◦ . . . ◦ θm(t− h(t))))

= 2Q(E]i (Mi(t))) ≤ 2
ωi
Q]m

(
E]Mi(t)

) (44)

where Mi(t) = θ−1
m ◦ θi ◦ θi+1 ◦ . . . ◦ θm(t − h(t)) =

Ω1 ◦ Ω−1
m−i+1 ◦ Ωm(t), and

|Em(t−h(t))|2 = 2Q(Em(t−h(t))) ≤ 2
ωm
Q]m

(
E]Mm(t)

)
whereMm(t) = t− h(t) = Ωm(t). We can find positive

constantsM and M̄ such thatM≤ Ṁi(t) ≤ M̄ for all
t ≥ 0 and i ∈ {1, 2, . . . ,m}, by reasoning as we did to
obtain θ and θ̄. This and (43) give the decay estimates

V̇ ≤ − 1
2|P |∞V (t, x(t))

+ 2(m+ 1)(|P |∞|B|∞|K|∞)2

×

(
m∑
i=1

2
ωi
Q]m

(
E]Mi(t)

)
+ |δ|2∞

)

and

d
dtQ

]
m

(
E]Mi(t)

)
≤ −Mη1Q

]
m

(
E]Mi(t)

)
+ M̄η2|δ|2∞

which imply that

Q]+

(
E]]t
)

= V (t, x(t))

+
(

1 + 2(m+1)
Mη1

(|P |∞|B|∞|K|∞)2
)

×
m∑
i=1

2
ωi
Q]m

(
E]Mi(t)

) (45)

admits constants d0 > 0 and d1 > 0 such that the ISS
Lyapunov-Krasovskii decay condition

Q̇]+(E]]t ) ≤ −d0Q
]
+(E]]t ) + d1|δ|2∞ (46)

holds along all solutions of the dynamics for

E]](t) =
(
x(t), E]M1(t), . . . , E

]
Mm(t)

)
. (47)

Also, for all t ≥ 0 and i ∈ {1, 2, . . . ,m}, we can use (21)
to obtain θ−1

i ◦ θm ◦Mi(t) = θ−1
i ◦ Ω−1

m−i+1 ◦ Ωm(t) ≤
Ω−1
m−i+1 ◦Ωm(t) ≤ t. Hence, there are positive constants

c1 and c2 such that along all solutions of the dynamics

for E]] and for all i ∈ {1, 2, . . . ,m}, we have

|Ei(θ−1
i ◦ θm ◦Mi(t))|2

≤ Q]+
(
E]]t
)
≤ c1

(
|(x, E)|2[−ch,0]e

−c2t + |δ|2∞
)

along all solutions of the dynamics for (47) for all t such
that mini θ

−1
i ◦ θm ◦ Mi(t) ≥ 0. The final exponential

ISS estimate for the (x, E) dynamics can now be deduced
from the quadratic structure of V andQ, the invertibility
of the functionsHi = θ−1

i ◦θm◦Mi for all i, the existence

of positive constants ha and hb such thatH−1
i (t) ≥ hat−

hb for all i and t ≥ 0 (which follows from our bounds

on ḣ from Assumption 1 and the Mean Value Theorem),
and the subadditivity of the square root. This proves
Theorem 1. �

Remark 3 Our proof of Theorem 1 shows that our con-
trol can be written as

u(t− h(t)) = K(t)x(t)+

K(t)[E1(θ2(...θm(t− h(t)...)))+

...+ Em(t− h(t))],

(48)

which may at first seem to contradict our assumption that
the current value of the state x(t) is not available to use
in the feedback control for (1). However, since

θ2 ◦ . . . ◦ θm(t− h(t))

= Ω−1
m−1 ◦ Ωm−2 ◦ Ω−1

m−2 ◦ Ωm−3 ◦ . . . ◦ Ω−1
1 ◦ Ωm(t)

= Ω−1
m−1 ◦ Ωm(t) = θ−1

1 (t)

holds for all t ≥ 0, we can use (19) to get

E1(θ2(...θm(t− h(t)...)))

= z1(θ−1
1 (t))− ξ1(θ−1

1 (t)) = z1(θ−1
1 (t))− x(t),

(49)

so the two terms in (48) and (49) containing x(t) cancel.
Hence, our control (9) does not require current values
x(t). �

Remark 4 Instead of (8), the main result in Mazenc
and Malisoff (2016) required that m satisfy

max
{

1, 4
(
b1√

2
+ b3

)
ch

1−lh

}
< m, (50)

where the bi are as defined in (7). The statement of the
theorem in Mazenc and Malisoff (2016) is the same as
in our theorem above for the special case where δ = 0,
except for the condition on m. The sketch of the proof of
the main result in Mazenc and Malisoff (2016) had the
same structure as the complete proof we gave above with
the same choice of Q, except that instead of (31), it used
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the estimates

Q̇(t) ≤ − 1
2 |si(t)|

2

+ (b1/
√

2)2

b1/
√

2+b3

∫ t

t− ch
1−lh

1
m

|si(l)|2dl

+
b23

b1/
√

2+b3

∫ t

t− 2ch
1−lh

1
m

|si(r)|2dr

≤ − 1
2 |si(t)|

2

+
(
b1√

2
+ b3

)∫ t

t− 2ch
1−lh

1
m

|si(r)|2dr,

(51)

which follow from Jensen’s and Young’s inequalities,
using the fact that (50) implies that

2ch
m(1−lh) <

1
b1/
√

2+b3
, (52)

as well as the estimate (r2 + s2)/(r+ s) ≤ r+ s, with the

choices r = b1/
√

2 and s = b3. Then (50) implies that
there are constants c0 > 0 and λ > 1 such that along all
solutions of the fundamental system (27), the function

Q]old(si,t) = Q(si(t))

+λ
(
b1√

2
+ b3

)∫ t

t− 2ch
1−lh

1
m

∫ t

w

|si(r)|2drdw

satisfies a decay estimate of the form (34), except with

Q] replaced by Q]old. By replacing (50) by (8), we can
allow smaller values m, which is useful in applications.
In the next section, we compare the values of m that can
be obtained from (50) with the ones that we can obtain
using our improved formula (8), in two examples.

4 Examples

Assumptions 1-2 hold for broad classes of systems of the
form ẋ(t) = A(t)x(t) +B(t)u(t− h(t)), including all sy-
stems with constant controllable pairs (A,B). We first
illustrate Theorem 1 in a scalar case. Then we revisit
the linearized pendulum from Mazenc et al. (2014). Our
work Mazenc et al. (2014) covered the linearized pendu-
lum under constant delays, using a predictive controller
with distributed terms. Hence, this section improves on
Mazenc and Malisoff (2017) and Mazenc et al. (2014) in
the case of the pendulum because in what follows, we
allow nonconstant delays and because our control has
no distributed terms. We also study a dynamics from
identification theory with a time-varying delay, which we
studied under constant delays in Mazenc et al. (2008).

4.1 Scalar Example

Consider the scalar case

ẋ(t) = rx(t) + u(t− h(t)) + δ(t) (53)

for any constant r > 0 with the oscillating delay

h(t) = 1 + α sin(t) (54)

for any constant α ∈ (0, 1). Then Assumptions 1-2 are
satisfied using n = 1, A = r, B = 1, K = −2r, ch =
1+α, and nh = lh = α, so our ISS conclusion from The-
orem 1 is satisfied using the control u(t) = −2rzm(t),
where zm is the mth component of the dynamic exten-
sion from Theorem 1, under our conditions on m. To
compute lower bounds on the allowable values of m, no-
tice that in terms of our notation (6)-(7), we have

b1 = r
(
1 + r

(
1 + uc

m

)m) (
1 + uc

m

)m
,

b2 =
(
1 + r

(
1 + uc

m

)m)2
, uc = 2α

(1−α)2 ,

and b3 =
(
1 + r

(
1 + uc

m

)m)2 (
1 + uc

m

)
.

(55)

Hence, our requirement on m ≥ 2 from (50) is

m− 4 1+α
1−α

[
r√
2

(
1 + r

(
1 + uc

m

)m) (
1 + uc

m

)m
+
(
1 + r

(
1 + uc

m

)m)2 (
1 + uc

m

)]
> 0.

(56)

For any constants α ∈ (0, 1) and r > 0, we can
compute the left side of (56) as a function φα,r(m)
of m and choose m such that φα,r(m) > 0, since
limm→+∞ φα,r(m) = +∞. For instance, if α = 1/7 and
r = 1/2, then φ1/7,1/2(22) = 0.847755, and 22 is the
smallest integer m for which (56) is satisfied for these
α and r values. On the other hand, our condition (8)
holds with m = 12 with the preceding parameter values
for α and r, so Theorem 1 applies with m = 12. Hence,
our new condition (8) on m produced a 45% reduction
in the required number m of sequential subpredictors,
as compared with (50). If we change the α value to
α = 1/5 and keep the other parameters the same, then
the smallest values of m for which (56) and (8) are sa-
tisfied are m = 31 and m = 17, respectively, so our new
method for computing the number of required subpre-
dictors again produces significant reductions in m. In
general, increasing α can require increasing m, with our
new method in this work producing smaller minimum
allowable m values. See Fig. 1 for a comparison between
the method for finding m from Mazenc and Malisoff
(2016) with the method from Theorem 1 above for the
preceding scalar dynamics.

4.2 Pendulum

Consider the model ṙ1(t) = r2(t)

ṙ2(t) = − gl sin(r1(t)) + 1
Ml2 v(t− h(t))

(57)
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Fig. 1. Criteria for Choosing m in Scalar Example. Top:
φ1/7,1/2(m) Showing Smallest Value m = 22 for Which (56)
is satisfied. Bottom: Left Side of (8) with |A|∞ = r = 1/2
Showing Smallest Value m = 12 for which (8) Holds.

of the simple pendulum with a time-varying delay h(t),
where g = 9.8 m/s is the gravitational constant, l is the
pendulum length in meters, M is the pendulum mass,
and v is the input. As in Mazenc and Malisoff (2017) and
Mazenc et al. (2014), our control objective is to track a
given C1 reference trajectory (r1,s(t), r2,s(t)) such that
ṙ1,s(t) = r2,s(t). Using the error variables r̃i = ri−ri,s(t)
for i = 1, 2 and the change of feedback

u(t− h(t)) =
1

Ml2
v(t− h(t))− ṙ2,s(t)−

g

l
sin(r1,s(t)),

we obtain the tracking system
˙̃r1(t) = r̃2(t)
˙̃r2(t) = g

l [sin(r1,s(t))− sin(r̃1(t) + r1,s(t))]

+u(t− h(t)).

(58)

Our work in Mazenc et al. (2014) showed that when
r1,s(t) = ωt and ω > 0 is a large enough constant and
the delay is the constant h = 1, the linearization{

ẋ1(t) = x2(t)
ẋ2(t) = − gl cos(ωt)x1(t) + u(t− h),

(59)

of (58) at 0 has the globally exponentially stabilizing

distributed control u defined by

u(t) = −0.6x1(t)− 0.4x2(t)

−
∫ t
t−1

(
0.6(t− r − 1) + 0.4

)
u(r)dr.

(60)

Our work Mazenc and Malisoff (2017) provided globally
asymptotically stabilizing sequential predictor controls
for the nonlinear system (58) when h is constant. Ho-
wever, it is not obvious how to extend Mazenc and Ma-
lisoff (2017) to time-varying delays. Therefore, we apply
Theorem 1 to its linearization (59) using the delay (54),
where α ∈ (0, 1) is a known constant, but analogous rea-
soning applies for any delay h(t) satisfying Assumption
1.

To this end, first note that for any choice of the constant
ω > 0, Assumption 2 is satisfied using

A(t) =

[
0 1

− gl cos(ωt) 0

]
, B =

[
0

1

]
,

and K(t) =
[
g
l cos(ωt)− 1 − 1

] (61)

and condition (50) becomes

m
4 −

1+α
1−α

[
max{g/l,1}√

2

(
1+max

{
g
l , 1
}
umc,m

)
umc,m

+
(
1 + max

{
g
l , 1
}
umc,m

)2
uc,m

]
> 0, where uc,m = 1 + uc

m .

(62)

Condition (62) holds for any choices of α and l, by choo-
sing m large enough. For instance, if we pick α = 1/7,
any ω > 0, any l > g, and m = 47, then we get the value
0.376057 for the left side of (62), and 47 is the smallest
integer m such that (62) holds with the preceding para-
meter choices. On the other hand, (8) holds withm = 25
with the preceding parameter choices, so Theorem 1 ap-
plies with m = 25. Hence, we get a 47% reduction in the
value of m using our new condition (8). See Fig. 2 for a
comparison between the two conditions (8) and (62) for
choosingm for the pendulum example. If we change α to
α = 1/5 and keep the other parameters the same, then
the conditions (8) and (62) for choosingm give the mini-
mum allowable values m = 38 and m = 73, respectively,
so our new method again gives smaller values for the
minimum required numbers m of sequential predictors,
and in general, larger α’s can require larger m values.

4.3 Identification Theory Example

Theorem 1 applies to general time-varying linear sys-
tems for which the pairs (A(t), B(t)) are uniformly con-
trollable and in particular allows nonzero drift, but in
the special case where the drift is 0, Theorem 1 gives
an explicit lower bound on the allowable m values. To
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Fig. 2. Criteria for Choosing m in Pendulum Example. Top:
φ1/7,1(m) Showing Smallest Value m = 47 for Which (62) is
satisfied. Bottom: Left Side of (8) with |A|∞ = 1 Showing
Smallest Value m = 25 for which (8) Holds.

illustrate this point, consider the system

ẋ(t) = −N (t)N T (t)[u(t− h(t)) + δ(t)] (63)

in which N : R→ Rn is a continuous function such that
(i) |N (t)| = 1 for all t ∈ R and (ii) there are constants
α′ ∈ (0, 1), β′ > 0 and c̃ > 0 such that for all t ∈ R, we
have

α′In ≤
∫ t+c̃

t

N (τ)N T (τ)dτ ≤ β′In , (64)

where M1 ≤ M2 for matrices M1 and M2 means that
M2−M1 is positive semi-definite, and where the dimen-
sion n of the state x is arbitrary.

The system (63) is a benchmark model from identifica-
tion theory, which we studied in Mazenc et al. (2008),
using emulation methods. See (Anderson, 1977, Appen-
dix A.1) for the derivation of (63) in a special case where
the uncertainty δ = 0, where the dynamics are shown to
arise when one wishes to identify coefficients of a stable
plant transfer function, and see Aeyels and Sepulchre
(1994), Aeyels et al. (1998), and Peuteman and Aeyels
(2002) for more recent results on (63). However, the pre-
ceding papers do not cover time-varying input delays, so
our sequential subpredictors work seems novel and sig-
nificant, even in the special case of identification dyna-
mics.

To apply our method to (63), first note that (Mazenc et
al., 2008, Lemma 8) says that with the choices

κ = 1 + c̃
2 + 1

4α′ c̃
4 and

P (t) = κIn +
∫ t
t−c̃
∫ t
s
N (l)N T (l) dl ds,

(65)

the function V (x, t) = xTP (t)x satisfies

V̇ ≤ −α′|x|2/2 (66)

along all trajectories ẋ(t) = −N (t)N T (t)x(t), and
|P (t)| ≤ κ + c̃2 for all t ≥ 0, which implies that As-
sumption 2 is satisfied with K = In.

Hence, Theorem 1 applies for all choices of h(t) that
satisfy Assumption 1. Since (63) has the drift A(t) = 0,
our constant b1 is zero and b2 = 1, and our condition (8)
on m becomes

2
(

ch
(1−lh)m

)2

4
(
1 + uc

m

)2
< 1. (67)

By multiplying (67) through by m4 and taking square
roots of both sides and finally completing the square, we
obtain the explicit requirement√√√√(√2ch

1− lh

)2

+
2
√

2chuc
1− lh

+

√
2ch

1− lh
< m (68)

on the number m of sequential subpredictors for our
conclusions of Theorem 1 to hold for our system (63).

5 Conclusions and Future Work

We designed exponentially ISS sequential predictor con-
trollers for a large class of time-varying linear systems
that satisfy a uniform controllability condition, under
general conditions on the time-varying input delays. Our
closed loop systems are ISS with respect to additive un-
certainty, and our controls do not contain any distribu-
ted terms of the type that would otherwise arise when
using reduction model controllers. By allowing arbitra-
rily large bounds on the input delays, we also overcame
a possible challenge in applying emulation methods to
systems that can have long input delays. Our strategy
for compensating for large delay bounds involves incre-
asing the numbers of sequential subpredictors, and our
theorem provides a useful mechanism for computing the
required number of subpredictors.

We hope to extend our work to adaptive systems, where
additional dynamic extensions would make it possible
to identify unknown parameters. We also hope to co-
ver nonlinear systems with time-varying delays, by buil-
ding sequential predictors for the linear parts, and then
proving that the controls ensure local stabilization of
the original nonlinear systems and using the Lyapunov
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decay conditions to estimate the region of attraction,
which would be a sequential predictor analog of our work
in Mazenc and Malisoff (2014) on local stabilization of
nonlinear systems under reduction model controls. Fi-
nally, we plan to merge our methods with the methods
in Malisoff and Zhang (2015) for state constrained curve
tracking problems, using robust forward invariance.

Appendix: Proof of Lemma 1

Fix any i ∈ {1, 2, . . . ,m} and t ≥ 0. By (3), we have
θi(t) = Ω−1

m−i+1(Ωm−i(t)) and Ωm−i(t) = Ωm−i+1(t) +
1
mh(t), so

θi(t) = t+ Ω−1
m−i+1

(
Ωm−i+1(t) + 1

mh(t)
)

−Ω−1
m−i+1 (Ωm−i+1(t)) .

(A.1)

Hence, the Mean Value Theorem provides a w ∈ R (de-
pending on t and i in general) such that

θi(t) = t+ 1
Ω̇m−i+1(w)

1
mh(t). (A.2)

Therefore, Assumption 1 gives

|θi(t)− t| ≤ 1
1−lh

1
mh(t) ≤ ch

1−lh
1
m . (A.3)

Hence, the second inequality in (17) follows by replacing
t by θ−1

i (t) in (A.3).

To check the first inequality in (17), first note that

θ̇i(t) =
1−m−i

m ḣ(t)

1−m−i+1
m ḣ(Ω−1

m−i+1
(Ωm−i(t)))

=
1−m−i+1

m ḣ(t)

1−m−i+1
m ḣ(Ω−1

m−i+1
(Ωm−i(t)))

+
1
m ḣ(t)

1−m−i+1
m ḣ(Ω−1

m−i+1
(Ωm−i(t)))

.

(A.4)

Since Ωm−i(t) = Ωm−i+1(t) + 1
mh(t), the function

Gi(t) = Ω−1
m−i+1

(
Ωm−i+1(t) + 1

mh(t)
)

(A.5)

is such that

θ̇i(t) =
1−m−i+1

m ḣ(t)

1−m−i+1
m ḣ(Gi(t))

+
1
m ḣ(t)

1−m−i+1
m ḣ(Ω−1

m−i+1
(Ωm−i(t)))

= m−i+1
m

ḣ(t+Gi(t)−Ω−1
m−i+1

(Ωm−i+1(t)))−ḣ(t)

1−m−i+1
m ḣ(Gi(t))

+ 1
m

ḣ(t)

1−m−i+1
m ḣ(Ω−1

m−i+1
(Ωm−i(t)))

+ 1 ,

(A.6)

by writing ḣ(t) in the first numerator in (A.6) as ḣ(t) =

(ḣ(t)− ḣ(Gi(t)) + ḣ(Gi(t)). It follows that

|θ̇i(t)− 1| ≤ m−i+1
m nh

|Gi(t)−Ω−1
m−i+1

(Ωm−i+1(t))|
1−m−i+1

m lh

+ 1
m

lh
1−m−i+1

m lh
,

(A.7)

using the Lipschitz constant nh for ḣ. Hence, our choice
of Gi and the Mean Value Theorem applied to Ω−1

m−i+1
give

|θ̇i(t)− 1| ≤ m−i+1
m nh

|Ωm−i+1(t)+ 1
mh(t)−Ωm−i+1(t)|

(1−m−i+1
m lh)

2

+ 1
m

lh
1−m−i+1

m lh

≤ 1
m
m−i+1
m nh

ch

(1−m−i+1
m lh)

2 + 1
m

lh
1−m−i+1

m lh
.

The lemma now follows from our formula (6) for uc.
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