Y. Ariba, F. Gouaisbaut, and K. Johansson, Stability interval for time-varying delay systems, 49th IEEE Conference on Decision and Control (CDC), pp.1017-1022, 2010.
DOI : 10.1109/CDC.2010.5717071

D. Bresch-pietri, J. Chauvin, and N. Petit, Invoking Halanay inequality to conclude on closed-loop stability of a process with input-varying delay, Proceedings of the 10th IFAC Workshop on Time Delay Systems, pp.266-271
URL : https://hal.archives-ouvertes.fr/hal-00755249

C. Briat, Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints, Automatica, vol.49, issue.11, pp.49-3449, 2013.
DOI : 10.1016/j.automatica.2013.08.022

C. Briat, Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time, Systems and Control Letters, pp.63-72, 2015.

C. Briat and A. Seuret, Affine Characterizations of Minimal and Mode-Dependent Dwell-Times for Uncertain Linear Switched Systems, IEEE Transactions on Automatic Control, vol.58, issue.5, pp.1304-1310, 2013.
DOI : 10.1109/TAC.2012.2220031

S. Caliskan, H. Ozbay, and S. Niculescu, Dwell-time computation for stability of switched systems with time delays, IET Control Theory & Applications, vol.7, issue.10, pp.1422-1428, 2013.
DOI : 10.1049/iet-cta.2011.0749

URL : https://hal.archives-ouvertes.fr/hal-00935511

D. Cheng, J. Wang, and X. Hu, An Extension of LaSalle's Invariance Principle and Its Application to Multi-Agent Consensus, IEEE Transactions on Automatic Control, vol.53, issue.7, pp.53-1765, 2008.
DOI : 10.1109/TAC.2008.928332

G. Chesi, P. Colaneri, J. Geromel, R. Middleton, and R. Shorten, A Nonconservative LMI Condition for Stability of Switched Systems With Guaranteed Dwell Time, IEEE Transactions on Automatic Control, vol.57, issue.5, pp.1297-1302, 2012.
DOI : 10.1109/TAC.2011.2174665

B. Demirel, C. Briat, and M. Johansson, Supervisory control design for networked systems with time-varying communication delays, Nonlinear Analysis: Hybrid Systems, pp.94-110, 2013.

E. Fridman, On robust stability of linear neutral systems with time-varying delays, IMA Journal of Mathematical Control and Information, vol.25, issue.4, pp.393-407, 2008.
DOI : 10.1093/imamci/dnn003

E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, 2014.
DOI : 10.1007/978-3-319-09393-2

J. Geromel and P. Colaneri, Stability and Stabilization of Continuous???Time Switched Linear Systems, SIAM Journal on Control and Optimization, vol.45, issue.5, pp.1915-1930, 2006.
DOI : 10.1137/050646366

A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, 1966.

J. Hespanha, Uniform Stability of Switched Linear Systems: Extensions of LaSalle's Invariance Principle, IEEE Transactions on Automatic Control, vol.49, issue.4, pp.470-482, 2004.
DOI : 10.1109/TAC.2004.825641

J. Hespanha, D. Liberzon, and A. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, vol.44, issue.11, pp.44-2735, 2008.
DOI : 10.1016/j.automatica.2008.03.021

J. Hespanha and A. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), pp.2655-2660, 1999.
DOI : 10.1109/CDC.1999.831330

W. Jiang, E. Fridman, A. Kruszewski, and J. Richard, Switching controller for stabilization of linear systems with switched time-varying delays, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp.7923-7928, 2009.
DOI : 10.1109/CDC.2009.5400666

URL : https://hal.archives-ouvertes.fr/inria-00419360

H. Khalil, Nonlinear Systems On dwell time minimization for switched delay systems, 2002.

T. Lee and Z. Jiang, Uniform Asymptotic Stability of Nonlinear Switched Systems With an Application to Mobile Robots, IEEE Transactions on Automatic Control, vol.53, issue.5, pp.1235-1252, 2008.
DOI : 10.1109/TAC.2008.923688

D. Liberzon, Switching in Systems and Control, 2003.
DOI : 10.1007/978-1-4612-0017-8

J. Liu and A. Teel, Hybrid Dynamical Systems with Finite Memory, Recent Results on Nonlinear Delay Control Systems Advances in Delay and Dynamics Series 4, pp.261-273, 2016.
DOI : 10.1007/978-3-319-18072-4_13

J. Liu and A. Teel, Invariance principles for hybrid systems with memory, Nonlinear Analysis: Hybrid Systems, pp.130-138, 2016.

J. Mancilla-aguilar and R. Garcia, On converse Lyapunov theorems for ISS and iISS switched nonlinear systems, Systems & Control Letters, vol.42, issue.1, pp.47-53, 2001.
DOI : 10.1016/S0167-6911(00)00079-7

J. Mancilla-aguilar and R. Garcia, An extension of LaSalle's invariance principle for switched systems, Systems & Control Letters, vol.55, issue.5, pp.376-384, 2006.
DOI : 10.1016/j.sysconle.2005.07.009

F. Mazenc and M. Malisoff, Trajectory Based Approach for the Stability Analysis of Nonlinear Systems with Time Delays, IEEE Transactions on Automatic Control, vol.60, issue.6, pp.1716-1721, 2015.
DOI : 10.1109/TAC.2014.2361593

URL : https://hal.archives-ouvertes.fr/hal-01100347

F. Mazenc and M. Malisoff, Reduction model approach for systems with a time-varying delay, 2015 54th IEEE Conference on Decision and Control (CDC), pp.7723-7727, 2015.
DOI : 10.1109/CDC.2015.7403440

URL : https://hal.archives-ouvertes.fr/hal-01248071

F. Mazenc and M. Malisoff, Extension of Razumikhin's theorem for time-varying systems with delay, 2016 American Control Conference (ACC), pp.84-88
DOI : 10.1109/ACC.2016.7524896

F. Mazenc, M. Malisoff, and Z. Lin, Further results on input-to-state stability for nonlinear systems with delayed feedbacks, Automatica, vol.44, issue.9, pp.44-2415, 2008.
DOI : 10.1016/j.automatica.2008.01.024

URL : https://hal.archives-ouvertes.fr/hal-00857808

F. Mazenc, M. Malisoff, and S. Niculescu, Stability analysis for systems with timevarying delay: trajectory based approach, Proceedings of the 54th IEEE Conference on Decision and Control, pp.1811-1816, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01248070

F. Mazenc, M. Malisoff, and H. Ozbay, Stability analysis of switched systems with timevarying discontinuous delays, Proceedings of the American Control Conference, pp.5177-5181
URL : https://hal.archives-ouvertes.fr/hal-01660128

W. Michiels and E. Verriest, A look at fast varying and state dependent delays from a system theory point of view, 2011.

A. Morse, Supervisory control of families of linear set-point controllers - Part I. Exact matching, IEEE Transactions on Automatic Control, vol.41, issue.10, pp.1413-1431, 1996.
DOI : 10.1109/9.539424

P. Naghshtabrizi, J. Hespanha, and A. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems & Control Letters, vol.57, issue.5, pp.378-385, 2008.
DOI : 10.1016/j.sysconle.2007.10.009

P. Pepe, -. F. Siam-jour, M. Mazenc, and A. H. Malisoff, Stabilization in the Sample-and-Hold Sense of Nonlinear Retarded Systems, SIAM Journal on Control and Optimization, vol.52, issue.5, pp.3053-3077, 2014.
DOI : 10.1137/130943182

E. Sontag, Mathematical Control Theory, 1998.
DOI : 10.1007/978-1-4612-0577-7

Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems, Communications and Control Engineering Series, 2011.
DOI : 10.1007/978-0-85729-256-8

L. Vu and K. Morgansen, Stability of Time-Delay Feedback Switched Linear Systems, IEEE Transactions on Automatic Control, vol.55, issue.10, pp.2385-2390, 2010.
DOI : 10.1109/TAC.2010.2053750

Y. Wang, X. Sun, and F. Mazenc, Stability of switched nonlinear systems with delay and disturbance, Automatica, vol.69, pp.69-78, 2016.
DOI : 10.1016/j.automatica.2016.02.015

URL : https://hal.archives-ouvertes.fr/hal-01391683

F. Wirth, A Converse Lyapunov Theorem for Linear Parameter-Varying and Linear Switching Systems, SIAM Journal on Control and Optimization, vol.44, issue.1, pp.210-239, 2005.
DOI : 10.1137/S0363012903434790

M. Wu, Y. He, J. She, and G. Liu, Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, pp.40-1435, 2004.

D. Xie and Y. Wu, Stabilisation of time-delay switched systems with constrained switching signals and its applications in networked control systems, IET Control Theory & Applications, vol.4, issue.10, pp.2120-2128, 2010.
DOI : 10.1049/iet-cta.2009.0016

G. Xie and L. Wang, Periodical stabilization of switched linear systems, Journal of Computational and Applied Mathematics, vol.181, issue.1, pp.176-187, 2005.
DOI : 10.1016/j.cam.2004.11.026

P. Yan and H. Ozbay, Stability analysis of switched time-delay systems Robust stabilization of parameter varying time delay systems by switched controllers, SIAM Journal on Control and Optimization Applied and Computational Mathematics, pp.47-936, 2008.

H. Yang, V. Cocquempot, and B. Jiang, On stabilization of switched nonlinear systems with unstable modes, Systems and Control Letters, pp.703-708, 2009.

B. Zhou and A. Egorov, Razumikhin and Krasovskii stability theorems for time-varying time-delay systems, Automatica, vol.71, pp.71-281, 2016.
DOI : 10.1016/j.automatica.2016.04.048