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Stability and Robustness Analysis for a Multi-
Species Chemostat Model with Uncertainties

Frédéric Mazenc Michael Malisoff Gonzalo Robledo

Abstract— We prove stability and robustness results for
chemostat models with one substrate, an arbitrary number
of species, a constant dilution rate, and constant inputs of
the species. Unlike all previous works, we prove input-to-
state stability under uncertainties in important cases where the
controls are the input nutrient concentration and the species
inputs. Our assumptions ensure global asymptotic stability
for an equilibrium, which can allow persistence of multiple
species, when the uncertainties are zero. We allow arbitrarily
large bounds on the uncertainties in the species dynamics, and
equilibria that can be in the boundary of the state space.

Index Terms— Bioreactors, nonlinear, stability, robustness

I. INTRODUCTION

The chemostat is a mathematical model and a laboratory
device that is used for the continuous culture of microorga-
nisms. Since its introduction in [14] and [16], it has been
studied extensively, because of its vital role in ecology and
microbiology as an ideal representation of microorganism
growth, natural environments such as lakes, and wastewater
treatment processes [1]. It is used in industrial applications
that are of compelling engineering interest. See [18].

This has motivated our ongoing work (begun in [2], [3],
[8], [9], [10], [11], [12], [13], and [17]) on methods to
ensure desired asymptotic behaviors in chemostats, including
the coexistence of multiple competing species, convergence
to equilibria, or delay compensation. As noted in [18], the
classical model of competition in the chemostat is ṡ(t) = D[sin − s(t)]−

n∑
i=1

Y −1
i µi(s(t))xi(t)

ẋi(t) = xi(t)µi(s(t))−Dxi(t), i = 1, . . . , n
(1)

where n ≥ 2 microbial species (with concentrations
x1, . . . , xn) compete for a nutrient with concentration s.
The positive constants D and sin are the dilution rate and
input nutrient concentration, respectively, and Yi is a positive
yield constant related to the conversion of the substrate
into biomass for each i. The µi’s for i = 1, . . . , n are
strictly increasing, satisfy µi(0) = 0, and are assumed to be
continuously differentiable; they describe the consumption of
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the nutrient by species i. The model assumes that the growth
of species i is proportional to the nutrient consumption.

Well known results (e.g., [4] and [18]) imply that if the
preceding conditions hold and 0 < µ−1

n (D) < µ−1
n−1(D) <

. . . < µ−1
2 (D) < µ−1

1 (D) < sin, then the following com-
petitive exclusion principle holds: limt→+∞ s(t) = µ−1

n (D),
limt→+∞ xn(t) = Yn[sin−µ−1

n (D)], and limt→+∞ xi(t) =
0 if 1 ≤ i ≤ n−1. The preceding conditions imply that only
the nth species persists, because it only needs the lowest
nutrient concentration.

However, multiple species are often observed to persist in
chemostats with one substrate, which motivated many works
on ways to explain coexistence in chemostats. There are
several approaches to explaining coexistence in bioreactor
models, including models whose qualitative behavior and
analytical treatment are considerably more complex than (1)
and we refer to [2], [5], [7], [8], [11], [13], [15], and [19]
without claiming completeness. Nevertheless, we will focus
our attention on the approach from [17], which introduces
a model with constant inputs x0

i ≥ 0 of the ith competing
species (for i = 1, . . . , n) described by the system ṡ(t) = D[sin − s(t)]−

n∑
i=1

Y −1
i µi(s(t))xi(t)

ẋi(t) = xi(t)µi(s(t)) +D[x0
i − xi(t)], 1 ≤ i ≤ n.

(2)

In [17], the authors obtained sufficient conditions ensuring
the coexistence of multiple species. The work [17] used
polytopic Lyapunov functions, which were also used in [3].

However, it is well known that chemostats can contain
uncertainties (e.g., unmodeled features, or uncertainties in
the input concentrations, which are common in applications).
Therefore, an even more accurate model than (2) is

ṡ(t) = D[sin−s(t)]−
n∑
i=1

µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t))

+D[x0
i − xi(t)] + δi(t), 1 ≤ i ≤ n,

(3)

where the µi’s are as before, and the unknown measurable
essentially bounded functions δi : [0,+∞) → [di, d̄i] for
i = 0, 1, . . . , n represent uncertainties and have known upper
and lower bounds d̄i and di, respectively, and where we used
a change of coordinates (based on a scaling of the xi’s and
x0
i ’s) to remove the Yi’s. Two of our assumptions will be

that d0 > −Dsin and di ≥ −Dx0
i for i = 1, 2, . . . , n; see

Section II for our assumptions. Therefore, all solutions of (3)
with initial states (s(0), x(0)) in X = (0,+∞)n+1 remain
in X for all t ≥ 0, so (3) has the state space X , and (3) will
be the subject of this paper.



In the next section, we provide our theorem for (3), which
uses sin and the x0

i ’s as controls. Our work is novel in its
use of the model (3), which we believe has not been studied
in the presence of nonzero uncertainties. Our new Lyapunov
construction is the key ingredient for proving valuable input-
to-state stability (ISS) robustness properties, which cannot be
deduced from the polytopic Lyapunov functions from [17].
Also, the equilibria that we stabilize are in the boundary of
X when at least one x0

i is 0, so the present paper covers a
broad class of equilibria. Hence, this work provides a new
theoretical result with valuable implications for future real
time applications to bioprocess engineering.

II. ASSUMPTIONS, DEFINITIONS, AND MAIN RESULT

We will prove ISS properties for the dynamics for the error
E(t) = (s(t)− s∗, x(t)−x∗) with respect to the disturbance
vector δ = (δ0, δ1, . . . , δn), for a large class of possible
equilibrium points E∗ = (s∗, x∗), where (s, x) is the state
of (3), x∗ = (x1∗, . . . , xn∗), and x = (x1, . . . , xn). The
ISS framework is used extensively in engineering; see [6]
for ISS for systems without state constraints. To allow state
constraints, we use a variant of the usual ISS property.

To explain this variant, we first need two definitions.
Let K∞ be the set of all continuous strictly increasing
unbounded functions γ : [0,+∞) → [0,+∞) such that
γ(0) = 0; and let KL be the set of all continuous functions
β̄ : [0,+∞) × [0,+∞) → [0,+∞) such that (i) for each
t ≥ 0, the function f(s) = β̄(s, t) is of class K∞ and (ii)
for each s ≥ 0, the function g(t) = β̄(s, t) is nonincreasing
and satisfies limt→+∞ g(t) = 0. By ISS of a system of the
form Ė(t) = F(E(t), δ(t)) with respect to a pair (D,S),
we mean that there exist β ∈ KL and γ ∈ K∞ such
that |E(t)| ≤ β(|E(0)|, t) + γ(|δ|[0,t]) holds for all t ≥ 0,
all solutions E(t) of this system that have initial states
E(0) ∈ S , and all measurable essentially bounded functions
δ : [0,+∞)→ D. Here and in the sequel, |·| is the Euclidean
norm, and | · |[0,t] (resp., | · |∞) is the essential supremum
over [0, t] for all t ≥ 0 (resp., over [0,+∞)). Assume:

Assumption 1: The µi’s in (3) have the Monod form

µi(s) = mis
ai+s

for i = 1, 2, . . . , n, (4)

where the mi’s and ai’s are known positive constants. �
Assumption 2: The constants s∗ > 0 and sin are such that

µi(s∗) < D for i = 1, 2, . . . , n

and sin = s∗ +
n∑
i=1

µi(s∗)x0
i

D−µi(s∗) ,
(5)

the x0
i ’s are nonnegative constants, and 0 < D < µn(sin).�

From Assumption 2, we obtain µn(s∗) < µn(sin), so since
µn is strictly increasing, it follows that s∗ ∈ (0, sin). We can
always satisfy Assumption 2 for all constants D ∈ (0,mn),
by first fixing s∗ > 0 such that µi(s∗) < D for all i, and
then picking the x0

i ’s to be large enough so that D < µn(sin)
and sin > 0, i.e., we view sin as a constant control. By
the symmetry of the system (3) in its components xi, we
can replace the condition D < µn(sin) by the condition
that D < µi(sin) for any i, by renumbering the species. By

Assumption 2, it follows that when the δi’s in (3) are 0, the
system (3) has the equilibrium E∗ = (s∗, x∗), where

xi∗ =
Dx0

i

D−µi(s∗) for i = 1, ..., n. (6)

We can allow many xi∗’s through different choices of x0
i ’s,

i.e., we also use the x0
i ’s as controls. Since the x0

i ’s are non-
negative, we have E∗ ∈ [0,+∞)n+1; and E∗ ∈ (0,+∞)n+1

when the x0
i ’s are all positive. Our assumptions on the

unknown measurable essentially bounded functions δi in (3)
are as follows, where P = {i ∈ {1, 2, . . . , n} : x0

i > 0}:
Assumption 3: We have δ(t) ∈ [d0, d̄0]× . . .× [dn, d̄n] for

almost all t ≥ 0, where the known constants di and d̄i ≥ 0
are such that Dsin+d0 > 0, d̄0 < 0.5Ds∗, and Dx0

i +di > 0
for all i ∈ P , and di = 0 for all i ∈ {1, 2, . . . , n} \ P . �

We can prove the following result, where (s(t), x(t)) is
the state of (3):

Theorem 1: If Assumptions 1-3 hold, then for all con-
stants x > 0 and s̄ ≥ sin, the dynamics for the error vector
E = (s, x)−E∗ have the ISS property with respect to (D,S)
with the disturbance set D = [d0, d̄0] × . . . × [dn, d̄n] and
S = {E : E + E∗ ∈ (0, s̄]× (0,+∞)n−1 × (x,+∞)}. �

Before discussing our proof, we make several remarks
about the novelty and value of our theorem.

Remark 1: Our choice of S in Theorem 1 corresponds to
the requirement that (s(0), x(0)) ∈ (0, s̄] × (0,+∞)n−1 ×
(x,+∞). However, since s̄ ≥ sin and x̄ > 0 are arbitrary, we
conclude that when the δi’s are zero, all solutions (s(t), x(t))
of (3) starting in X = (0,+∞)n+1 remain in X at all
positive times and satisfy limt→+∞(s(t), x(t)) = (s∗, x∗).
This ensures persistence of the ith species for all i ∈ P (and
limt→+∞ xi(t) = 0 for all i ∈ {1, . . . , n} \ P). �

Remark 2: We do not restrict the values of d̄i ≥ 0 for
i ≥ 1, so Theorem 1 ensures ISS under arbitrarily large sup
norms on the δi’s for i ≥ 1. A key ingredient in our proof
is a Lyapunov-like function V and a function T3 ∈ K∞
such that V satisfies the usual Lyapunov positive definiteness
and decay conditions along all solutions E(t) of the error
dynamics for all t ≥ T3(|E(0)|). Using V instead of the
polytopic Lyapunov functions from [17] allows us to prove
key ISS results that were beyond the scope of [17]. �

III. SKETCH OF PROOF OF THEOREM 1

A. Preliminary State Bounds

Since (3) is forward complete on X = (0,+∞)n+1, we
can first fix any solution (s(t), x(t)) of (3) all of whose
components are positive for all t ≥ 0 for which E(0) ∈ S.
Set s̄] = s̄+ (d̄0/D) and

(s̃, x̃) = (s− s∗, x− x∗). (7)

Then Assumption 3 implies that s(t) ≤ s̄] for all t ≥ 0. We
next produce functions Ti ∈ K∞ for i = 1, 2, 3, whose class
K∞ properties will be used later to build an ISS estimate
that is valid for all times t ≥ 0, using three lemmas. Our
first lemma is:

Lemma 1: If Assumptions 1-3 hold, then there is a T1 ∈
K∞ such that s(t) ≤ sin + (d̄0/D) for all t ≥ T1(|s̃(0)|).�



Proof: (Sketch.) If there is a tl ≥ 0 such that s(tl) ≤
sin + (d̄0/D), then for all t > tl, we have s(t) ≤ sin +
(d̄0/D). Next, consider the case where s(0) > sin +(d̄0/D).
Consider any t ≥ 0 such that min`∈[0,t] s(`) > sin +(d̄0/D).
For any such t, we also have max`∈[0,t] ṡ(`) < 0. Then since
D < µn(sin), and since µn is nondecreasing and Dx0

n+dn ≥
0 and s∗ < sin ≤ s(`) for all ` ∈ [0, t], we deduce from (3)
that ẋn(`) ≥ 0 and so also xn(`) ≥ xn(0) ≥ x for all
` ∈ [0, t], and ṡ(`) ≤ −µn(s(`))xn(`) for all ` ∈ [0, t], so

tµn(sin)x ≤
∫ t

0
µn(sin)xn(`) d`

≤ s(0)− s(t) ≤ s(0)− s∗ ≤ |s̃(0)|.
(8)

Hence, t ≤ |s̃(0)|/(µn(sin)x), so there is a t∗ ∈
[0, 2|s̃(0)|/(µn(sin)x)] such that s(t∗) ≤ sin + (d̄0/D).
Hence, we can choose T1(r) = 2r/(µn(sin)x).

Set σ(t) = s(t) + x1(t) + . . .+ xn(t) for all t ≥ 0 and

C = 2

(
sin +

n∑
i=1

x0
i + 1

D

n∑
i=0

d̄i

)
(9)

and fix any constant λ1 > 1. We prove:
Lemma 2: If Assumptions 1-3 hold, then there is a T2 ∈

K∞ such that σ(t) ≤ λ1C holds for all t ≥ T2(|E(0)|). �
Proof: (Sketch.) By (3), we have σ̇(t) ≤ 0.5CD −

Dσ(t) for all t ≥ 0. It follows that σ(t) ≤ u(t) for all
t ≥ 0, where u is the solution of the initial value problem

u̇(t) = CD
2 −

1
2Du(t), u(0) = σ(0). (10)

Since λ1 > 1, we deduce that σ(t) ≤ u(t) ≤ λ1C for all
t ≥ 0 if σ(0) ∈ (0, λ1C]. Hence, there exists a function
T [2 ∈ K∞ such that σ(t) ≤ λ1C for all t ≥ T [2(σ(0)) when
σ(0) > λ1C. Therefore, the lemma will follow once we
choose a function T2 ∈ K∞ such that T2(|E(0)|) ≥ T [2(σ(0))
holds for all solutions of (3) such that σ(0) > λ1C.

To find T2, first note that our formulas for σ and sin give

σ(0) = s̃(0) +
n∑
i=1

x̃i(0) + s∗ +
n∑
i=1

Dx0
i

D−µi(s∗)

≤ |s̃(0)|+
n∑
i=1

|x̃i(0)|+ sin +
n∑
i=1

x0
i .

(11)

We next consider two cases. Case 1: If |E(0)| ≤ (sin +
x0

1 + . . . + x0
n)/(n + 1), then the inequality in (11) gives

σ(0) ≤ λ1C, so this case does not produce any restriction
on the allowable values of T2. Case 2: If |E(0)| > (sin +
x0

1 + . . .+ x0
n)/(n+ 1), then we use the fact that (11) gives

T [2((n+ 1)|E(0)|+ sin +x0
1 + . . .+x0

n) ≥ T [2(σ(0)). Setting
a∗ = (sin + x0

1 + . . .+ x0
n)/(n+ 1), we can then take

T2(`) = T1(`) +

 (`/a∗)T
[
2

(
2(n+ 1)a∗

)
, 0 ≤ ` ≤ a∗

T [2
(
(n+ 1)(`+ a∗)

)
, ` > a∗

to satisfy our requirements.
We next fix any constant λ2 ∈ (0, 1) and set

sλ = λ2 min

s∗,
Dsin + d0

D + λ1C
n∑
i=1

mi
ai

 (12)

and xiλ = λ2 min
{
xi∗, x

0
i + (di/D)

}
for all i and prove:

Lemma 3: If Assumptions 1-3 hold, then there is a
function T3 ∈ K∞ such that s(t) ≥ sλ and xi ≥ xiλ hold
for all t ≥ T3(|E(0)|) and all i ∈ P . �

Proof: (Sketch.) For all t ≥ T2(|E(0)|), Lemma 2 gives
xi(t) ≤ λ1C for all i ∈ {1, 2, . . . , n}. Hence, for all t ≥
T2(|E(0)|), (3) and our formula (4) for the µi’s give

ṡ(t) ≥ D(sin − s(t))− λ1C
n∑
i=1

mis(t)
ai

+ d0 (13)

and

ẋi(t) ≥ −Dxi(t) +Dx0
i + di for all i ∈ P. (14)

The right side of (13) is bounded below by (Dsin +d0)(1−
λ2) > 0 if t is such that s(t) ≤ sλ. Also, for each i ∈ P , the
right side of (14) is bounded below by (1−λ2)(Dx0

i +di) >
0 if t is such that xi(t) ≤ xiλ. Hence, for each t0 ≥ 0 such
that s(t0) ≥ sλ, we have s(t) ≥ sλ for all t ≥ t0; and for
each i ∈ P , and for each t0 ≥ 0 such that xi(t0) ≥ xiλ,
we have xi(t) ≥ xiλ for all t ≥ t0. Therefore’, it suffices to
choose T3 ∈ K∞ such that: (i) If s(0) < sλ, then s(t) ≥ sλ
for some t ∈ [0, T3(|E(0)|)] (which implies that s(t) ≥ sλ
for all t ≥ T3(|E(0)|), by the preceding argument) and (ii)
for each i ∈ P such that xi(0) < xiλ, we have xi(t) ≥ xiλ
for some t ∈ [0, T3(|E(0)|)] (which implies that xi(t) ≥ xiλ
for all t ≥ T3(|E(0)|), also by the preceding argument).

To find T3 ∈ K∞, first note that if we pick any constant

TL >
1

1−λ2
max

{
sλ

Dsin+d0
,max

{
xiλ

Dx0
i+di

: i ∈ P
}}

then the Fundamental Theorem of Calculus and the positi-
veness of s(t) and the xi(t)’s imply that: (A) If s(0) < sλ,
then s(`) ≥ sλ for some ` ∈ [0, TL], hence for all ` ≥ TL
and (B) if i ∈ P is such that xi(0) < xiλ, then xi(`) ≥ xiλ
for some ` ∈ [0, TL], hence for all ` ≥ TL. Conditions (A)-
(B) follow because s(`) ≥ s(0) + `(Dsin + d0)(1− λ2) for
all ` such that maxr∈[0,`] s(r) < sλ, and xi(`) ≥ xi(0) +
`(1 − λ2)(Dx0

i + di) for all ` such that maxr∈[0,`] xi(r) <
xiλ, so ` ≤ TL. On the other hand, if |E(0)| ≤ TM
where TM = (1 − λ2) min{s∗,min{xi∗ : i ∈ P}}, then
s(0)−s∗ ≥ −|E(0)| ≥ (λ2−1)s∗; and for all i ∈ P , we have
xi(0)− xi∗ ≥ −|E(0)| ≥ (λ2 − 1)xi∗; so s(0) ≥ λ2s∗ ≥ sλ
and xi(0) ≥ λ2xi∗ ≥ xiλ for all i ∈ P , which imply that
s(t) ≥ sλ and xi(t) ≥ xiλ hold for all t ≥ 0 and i ∈ P , by
the previous paragraph. Hence,

T3(r) = T2(r) +

{
(TL + TM ) r

TM
, 0 ≤ r ≤ TM

TL + r, r > TM
(15)

satisfies our requirements.

B. Representing the Error Dynamics

Let us introduce the functions and the constant

Γ(s) = D +
n∑
i=1

aimixi∗
(ai+s∗)(ai+s)

, s̃(t) = s(t)− s∗,

x̃i(t) = xi(t)− xi∗ for i = 1, 2, . . . , n,

and Γ0 = D +
n∑
i=1

aimixi∗
(ai+s∗)(ai+s̄])

.

(16)



Then Γ(s(t)) ≥ Γ0 for all t ≥ 0. By our formulas for sin

and the xi∗’s from (5) and (6), we have Dsin = Ds∗ +
µ1(s∗)x1∗+ . . .+µn(s∗)xn∗ and Dx0

i = Dxi∗−µi(s∗)xi∗
for all i ∈ {1, 2, . . . , n}. Hence, using (3) and the formulas
for xi∗ from (6), and reorganizing terms gives:

˙̃s(t) = −Ds̃(t) +
n∑
i=1

[µi(s∗)− µi(s(t))]xi∗

−
n∑
i=1

µi(s(t))x̃i(t) + δ0(t)

˙̃xi(t) = [µi(s(t))− µi(s∗)]xi(t) + x̃i(t)µi(s∗)
−Dx̃i(t) + δi(t), i = 1, ..., n.

(17)

For all s > 0, we can use our formulas (4) for the µi’s to
check that Γ can be rewritten as

Γ(s) = D +
n∑
i=1

µi(s)−µi(s∗)
s−s∗ xi∗ (18)

for all s 6= s∗. Using the constants pi = D − µi(s∗) (which
are positive, by (5) in Assumption 2), we obtain

˙̃s(t) = −Γ(s(t))s̃(t)−
n∑
i=1

µi(s(t))x̃i(t)+δ0(t)

˙̃xi(t) = −pix̃i(t) + cixi(t)µi(s(t))
s̃(t)
s(t)

+ δi(t), i = 1, ..., n ,

(19)

where ci = ai
ai+s∗

for all i ∈ {1, ..., n}.

C. Construction of a Lyapunov-Like Functional

Let us define the C1 function V by

V (E) = ν(s̃) +
n∑
i=1

1
ci

Ψi(x̃i), where

ν(s̃) = s̃− s∗ ln
(
s̃+s∗
s∗

)
and Ψi(x̃i) = x̃i − xi∗ ln

(
x̃i+xi∗
xi∗

)
for all i ∈ P , and Ψi(x̃i) = xi for all i ∈ {1, . . . , n} \ P .
By the chain rule, it follows that for all t ≥ T3(|E(0)|), the
time derivative of V along the solutions of (19) satisfies

V̇ (t) ≤ −N (E(t)) + N̄ |δ|[0,t], where

N (E(t)) = Γ0
s̃2(t)
s(t) +

n∑
i=1

qi
x̃2
i (t)
xi(t)

(20)

and where qi = pi/ci = (D − µi(s∗))/ci and the formula

N̄ = (n+ 1) max

{
s̄]+s∗
sλ

,max
i 6∈P

1
ci
,max
i∈P

λ1C+xi∗
cixλ

}
follows from Lemmas 2-3. Although (20) only holds for
times t ≥ T3(|E(0)|), we can combine (20) with Gronwall’s
inequality to produce the final ISS estimate; see the appendix.

IV. ILLUSTRATION

Consider the system (3) with n = 2, D = 0.4, s∗ = 0.5,
x0

1 = 1, and x0
2 = 0.55 and the growth functions

µ1(s) = s
5+s and µ2(s) = s

2+s . (21)

Then Assumption 2 is satisfied with sin = 1.34412, and our
formulas (6) for the xi∗’s give

x1∗ = 1.29412 and x2∗ = 1.1. (22)

In this illustration, we will only use the uncertainty vectors
δ(t) to model uncertainties in applying the constant input
concentrations x0

1 and x0
2 (which may occur in applications,

because it may be difficult to maintain the inputs x0
i at

constant levels), so we set δ0(t) = 0 and therefore can choose
d0 = d̄0 = 0, d1 = −0.39, d2 = −0.21, and any constants
d̄1 ≥ 0 and d̄2 ≥ 0 to satisfy all of our assumptions.

We simulated (3) using the command NDSolve in Mat-
hematica, with the preceding choices of the parameters,
and the disturbance vector δ(t) = (δ0(t), δ1(t), δ2(t)) =
(0,−0.1 sin(t), 0.1 cos(t)). We report our results in Fig. 1,
with the initial state (s(0), x1(0), x2(0)) = (0.2, 0.1, 1),
and then with the initial state (s(0), x1(0), x2(0)) =
(1.3, 0.2, 0.1). The figure shows rapid convergence towards
an oscillatory steady state, with a deviation from the equi-
librium (s∗, x1∗, x2∗) = (0.5, 1.29412, 1.1) that can be
explained by the presence of the uncertainties δ1 and δ2,
and therefore helps illustrate our theory.
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Fig. 1. Solution Components of (3) on Time Interval [0, 25]. Species x1(t)
and x2(t) are Green and Red Curves, Respectively. Substrate s(t) is Blue
Curve. Top Panel: Using Initial State (s(0), x1(0), x2(0)) = (0.2, 0.1, 1).
Bottom Panel: Using Initial State (s(0), x1(0), x2(0)) = (1.3, 0.2, 0.1).

V. CONCLUSIONS

We solved a key input-to-state stabilization problem for
a chemostat model with one limiting substrate, an arbitrary
number of competing species, a constant dilution rate, and
uncertainties, using constant inputs of the species. In the
special case where the uncertainties are zero, this implies
that all solutions with initial states in (0,∞)n+1 remain in
(0,∞)n+1 at all future times and asymptotically converge to
an equilibrium, which corresponds to persistence of all spe-
cies whose constant inputs are positive. This contrasts with
the competitive exclusion principle, which does not consider



the possibility of introducing positive constant inputs of the
species. The uncertainties can represent unmodeled features
that commonly occur in biotechnological applications, so our
work has the potential to benefit the study of some robustness
issues.

APPENDIX: LAST PART OF PROOF OF THEOREM 1

To convert (20) into an ISS estimate for all t ≥ 0, first
note that we can use our lemmas to find a γ ∈ K∞ such that

Γ0
s̃2(t)
s(t) +

n∑
i=1

qi
x̃2
i (t)
xi(t)

≥ γ (V (E(t))) (A.1)

and therefore also
d
dtV (E(t)) ≤ −γ(V (E(t))) + N̄ |δ|[0,t] (A.2)

along all trajectories of the E dynamics starting in our set S
of initial states from the statement of our theorem, and for all
t ≥ T3(|E(0)|). One method for finding γ is as follows. First,
let O be the set of all points (s̃, x̃1, . . . x̃n) ∈ Rn+1 such that
(i) s̃ ∈ [sλ−s∗, λ1C−s∗], (ii) x̃i ∈ [xiλ−xi∗, λ1C−xi∗] for
all i ∈ P , and (iii) x̃ ∈ (0, λ1C] for all i ∈ {1, . . . , n} \ P .
Next, pick a function γ

0
∈ K∞ such that

(n+ 1)ν(s̃) ≤ γ
0
(|s̃|) and (n+ 1)Ψi(x̃i)

ci
≤ γ

0
(|x̃i|)

for all values E ∈ O. Then

V1(E(t)) ≤ γ
0
(|E(t)|) (A.3)

for all t ≥ T3(|E(0)|). Hence, we can use Lemma 2 to obtain(
γ−1

0
(V1(E(t)))

)2

≤ |E(t)|2 ≤ λ1C

(
s̃2(t)
s(t) +

n∑
i=1

x̃2
i (t)
xi(t)

)
for all t ≥ T3(|E(0)|). Therefore, we can choose

γ(r) =
1

λ1C
(γ−1

0
(r))2 min{Γ0, q1, . . . , qn}. (A.4)

Hence, combining (20) and (A.1) gives (A.2), so standard
ISS arguments [6] provide β0 ∈ KL and γ0 ∈ K∞ such that

V (E(t)) ≤ β0 (V (E(T3(|E(0)|))) , t) + γ0(|δ|[0,t]) (A.5)

holds for all t ≥ T3(|E(0)|). Then the structure of V provides
functions β1 ∈ KL and γ1 ∈ K∞ such that

|E(t)| ≤ β1(|E(T3(|E(0)|))|, t) + γ1(|δ|∞) (A.6)

for all t ≥ T3(|E(0)|).
To extend (A.6) to obtain an ISS estimate on [0,+∞), first

note that the structure of the E dynamics (17), combined with
our bounds on the µi’s and Γ and the Lipschitzness of the
µi’s, provide a constant L̄ (that is independent of the choice
of the solution) such that

|E ′(`)| ≤ L̄ (|E(`)|+ |δ|∞) (A.7)

holds for all ` ∈ [0, T3(|E(0)|)]; this can be done by rewriting
xi(t) in (17) in the form x̃i(t) + xi∗. Integrating (A.7)
over [0, t] for any t ∈ [0, T3(|E(0)|)] and applying the
Fundamental Theorem of Calculus to E gives

|E(t)| ≤ |E(0)|+ L̄
∫ t

0
|E(`)|d`+ L̄T3(|E(0)|)|δ|∞. (A.8)

We now apply Gronwall’s inequality [6] to |E| to get

|E(t)| ≤ |E(0)|eL̄T3(|E(0)|)

+
{
L̄T3(|E(0)|)eL̄T3(|E(0)|)

}
{|δ|∞}

≤ eT3(|E(0)|)−t
[
|E(0)| eL̄T3(|E(0)|)

+ 1
2 L̄

2T 2
3 (|E(0)|)e2L̄T3(|E(0)|)

]
+ 1

2 |δ|
2
∞

(A.9)

for all t ∈ [0, T3(|E(0)|)], by applying the triangle inequality
to the terms in curly braces in (A.9). The ISS estimate now
follows from adding the bounds (A.6) and (A.9), and using
(A.9) with the choice t = T3(|E(0)|) to upper bound the
|E(T3(|E(0)|))| that occurs in the right side of (A.6), because
|E(t)| is independent of values of δ(r) for times r > t.
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