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Synonyms	
Resource scheduling	
	
	

Definition	

The goal of parallel query execution is minimizing query response time using inter- and intraoperator 
parallelism. Interoperator parallelism assigns different operators of a query execution plan to distinct 
(sets of) processors, while intraoperator parallelism uses several processors for the execution of a 
single operator, thanks to data partitioning. Conceptually, parallelizing a query amounts to divide the 
query work in small pieces or tasks assigned to different processors. The response time of a set of 
parallel tasks being that of the longest one, the main difficulty is to produce and execute these tasks 
such that the query load is evenly balanced within the processors. This is made more complex by the 
existence of dependencies between tasks (e.g., pipeline parallelism) and synchronizations points. 
Query load balancing relates to static and/or dynamic techniques and algorithms to balance the query 
load within the processors so that the response time is minimized.	
	
	

Historical Background	

Parallel database processing appeared very early in the context of database machines in the 1970s. 
Parallel algorithms (e.g., hash joins) were later proposed in the early 1980s, where tuples are 
uniformly distributed at every stage of the query execution. However several works (e.g., [8]) gave 
considerable evidence that data skew, i.e., nonuniform distribution of tuples, exists, and its negative 
impact on query execution was shown in, e.g., [7]. This motivated numerous studies [10] on intra- and 
interoperator load balancing in the 1990s.	
	
	

Foundations	
Load-balancing problems can appear with intraoperator parallelism (variation in partition size, 
namely, data skew) and interoperator parallelism (variation in the complexity of operators, 
synchronization problems). Intra- and interoperator load-balancing problems are first detailed on a 
simplified query execution plan example considering a static allocation of processors to the query 
operators. The main load-balancing techniques proposed to address these problems are described next.	



Load-Balancing Problems	
Figure 1a shows a simplified query execution plan for the following query: “Select T.b from R, S, T 
where R.Rid = S.Rid and S.Sid = T.Sid and R.a = value” (the scan and project operators were omitted 
to simplify the drawing). The following assumptions are made: (i) the degree of parallelism (i.e., 
number of processors allocated) for the selection on R (called σR), the join with S (called �� S��S) 
and the join with T (called ����T), has been statically fixed, using a cost model, to, respectively, 2, 
3, and 2, and (ii) these operators are processed in pipeline, thus leading to a total degree of parallelism 
of 7.	
	

 
 
Fig. 1 Intra- and interoperator load-balancing problems on a simple example	
 
Intraoperator load-balancing issues are first illustrated using the classification proposed in [13]. As 
shown in Fig. 1c, R and S are poorly partitioned because of attribute value skew (AVS) inherent in the 
data set and/or tuple placement skew (TPS). The processing time of the two instances σR1 and σR2 
are thus not equal. The case of ����S is likely to be worse (see Fig. 1b). First, the number of tuples 
received can be different from one instance to another because of poor redistribution of the partitions 
of R ( redistribution skew, RS) or variable selectivity according to the partition of R processed ( 
selectivity skew, SS). Finally, the uneven size of S partitions ( AVS/TPS) yields different processing 
times for tuples sent by the σR operator, and the result size is different from one partition to the other 
due to join selectivity ( join product skew, JPS). The skew effects are therefore propagated toward the 
query tree, and even with a perfect partitioning of T, the processing time of ����T1 and ����T2 
can be highly different (uneven size of their left input resulting from ����S). Intraoperator load 
balancing is thus difficult to achieve statically, given the combined effects of different types of data 
skew.	
In order to obtain good load balancing at the interoperator level, it is necessary to choose how many 
and which processors to assign to the execution of each operator. This should be done while taking 
into account pipeline parallelism, which requires interoperator communication and introduces 
precedence constraints between operators (i.e., an operator must be terminated before the next one 
begins). In [15], three main problems are described:	



(i) The degree of parallelism and the allocation of processors to operators, when decided in the 
parallel optimization phase, are based on a possibly inaccurate cost model. Indeed, it is difficult, 
if not impossible, to take into account highly dynamic parameters like interference between 
processors, memory contentions, and, obviously, the impacts of data skew.	

 (ii) The choice of the degree of parallelism is subject to errors because both processors and operators 
are discrete entities. For instance, considering Fig. 1b, the number of processors for σR, ����S, 
and ����T may have been computed by the cost model as, respectively, 1.5, 3.8, and 2.4 and 
have been rounded to 2, 3, and 2 processors. But the good distribution, taking into account data 
skew on S partitions, should have been 1, 4, and 2.	

(iii) The processors associated with the latest operators in a pipeline chain may remain idle a 
significant time. This is called the pipeline delay problem. For instance, while tuples do not 
match the selection on R or the join with S, processors assigned to ����T remain idle.	

In a shared-nothing architecture, the interoperator load-balancing problem is even more complex, 
since the degree of parallelism and the set of processors assigned for some operators are constrained 
by the physical placement of the manipulated data. For instance, if R is partitioned on two nodes, σR 
must be executed on these nodes.	
This simple example thus shows that static allocation of processors to operators is usually far from 
optimal, thus advocating for more dynamic strategies. In the following section, existing proposals at 
the intra- and interoperator level are detailed.	
	
	
	
Intraoperator Load Balancing	
Good intraoperator load balancing depends on the degree of parallelism and on the allocation of 
processors for the operator. For some algorithms, e.g., the parallel hash join algorithm, these 
parameters are not constrained by the placement of the data. Thus, the home of the operator (the set of 
processor where it is executed) must be carefully decided. The skew problem makes it hard for a 
parallel query optimizer to make this decision statically (at compile-time) as it would require a very 
accurate and detailed cost model. Therefore, the main solutions rely on adaptive techniques or 
specialized algorithms which can be incorporated in the query optimizer/processor. These techniques 
are described below in the context of parallel joins, which has received much attention. For simplicity, 
each operator is given a home either statically or just before execution, as decided by the query 
optimizer/processor.	
Adaptive techniques: The main idea is to statically decide on an initial allocation of the processors to 
the operator (using a cost model) and, at execution time, adapt this decision to skew using load 
reallocation. A simple approach to load reallocation is detecting the oversized partitions and partition 
them again onto several processors (among those already allocated to the operator) to increase 
parallelism [6]. This approach is generalized in [2] to allow for more dynamic adjustment of the 
degree of parallelism. It uses specific control operators in the execution plan to detect whether the 
static estimates for intermediate result sizes differ from the runtime values. During execution, if the 
difference between estimate and real value is high enough, the control operator performs data 
redistribution in order to prevent join product skew and redistribution skew. Adaptive techniques are 
useful to improve intraoperator load balancing in all kinds of parallel architectures. However, most of 
the work has been done in the context of shared-nothing where the effects of load unbalance are more 
severe on performance.	
Specialized algorithms: Parallel join algorithms can be specialized to deal with skew. The approach 
proposed in [3] is to use multiple join algorithms, each specialized for a different degree of skew, and 



to determine the best at execution time. It relies on two main techniques: range partitioning and 
sampling. Range partitioning is used instead of hash partitioning (in the parallel hash join algorithm) 
to minimize redistribution skew of the building relation. Thus, processors can get partitions of equal 
number of tuples, corresponding to different ranges of join attribute values. To determine the values 
that delineate the range values, sampling of the building relation is used to produce a histogram of the 
join attribute values, i.e., the numbers of tuples for each attribute value. Sampling is also useful in 
determining which algorithm to use and which relation to use for building or probing. The parallel 
hash join algorithm can then be adapted to deal with skew as follows: (i) Sample the building relation 
to determine the partitioning ranges. (ii) Redistribute the building relation to the processors using the 
ranges. Each processor builds a hash table containing the incoming tuples. (iii) Redistribute the 
probing relation using the same ranges to the processors. For each tuple received, each processor 
probes the hash table to perform the join. This algorithm can be further improved to deal with high 
skew using additional techniques and different processor allocation strategies [3]. A similar approach 
is to modify the join algorithms by inserting a scheduling step which is in charge of redistributing the 
load at runtime [14].	
	
	
	
Interoperator Load Balancing	
The interoperator load-balancing problem was extensively addressed during the 1990s. Since then 
many processor allocation algorithms have been proposed for different target parallel architectures 
and considering CPU, I/Os, or other resources, such as available memory.	
The main approach in shared-nothing is to determine dynamically (just before the execution) the 
degree of parallelism and the localization of the processors for each operator. For instance, the rate 
match algorithm [9] uses a cost model in order to define the degree of parallelism of operators having 
a producer-consumer dependency such that the producing rate matches the consuming rate. It is the 
basis for choosing the set of processors which will be used for query execution (based on available 
memory, CPU, and disk utilization). Many other algorithms are possible for the choice of the number 
and localization of processors, for instance, by a dynamic monitoring and adjustment of the use of 
several resources (e.g., CPU, memory, and disks) [11].	
Shared-disk and shared-memory architectures provide more flexibility since all processors have equal 
access to the disks. Hence there is no need for physical relation partitioning and any processor can be 
allocated to any operator [12].	
Considering the shared-disk architecture, Hsiao et al. [5] propose to assign processors recursively 
from the root up to the leaves of a so-called allocation tree. This tree is derived from the query tree, 
each pipeline chain (i.e., set of operators having pipeline dependencies) being represented as a node. 
The edges of the allocation tree represent precedence constraints. All available processors are 
assigned to the root node of the allocation tree (the last pipeline chain to be executed). Then, a cost 
model is used to divide the CPU power between each child of the root in order to ensure that all the 
data necessary for the execution of the root pipeline chain will be produced synchronously.	
The approach proposed in [4] for shared memory allows the parallel execution of independent 
pipeline chains called tasks. The main idea is combining IO-bound and CPU-bound tasks to increase 
system resource utilization. Before execution, a task is classified as IO-bound or CPU-bound using 
cost model information. CPU-bound and IO-bound tasks can then be run in parallel at their optimal 
IO-CPU balance, by dynamically adjusting the degree of intraoperator parallelism of the tasks.	
	
	



Intra-query Load Balancing	
Intra-query load balancing combines intra- and interoperator parallelism. To some extent, given a 
parallel architecture, the load-balancing techniques presented above can be extended or combined. For 
instance, the control operators used a priori for intraoperator load balancing can modify the degree of 
parallelism of an operator, thus impacting interoperator load balancing [2].	
A general load-balancing solution in the context of hierarchical parallel architectures (a shared-
nothing system whose nodes are shared-memory multiprocessors) is the execution model called 
dynamic processing (DP) [1]. In such systems, the load-balancing problem is exacerbated because it 
must be addressed both locally (among the processors of each shared-memory node) and globally 
(among all nodes). The basic idea of DP is decomposing the query into self-contained units of 
sequential processing, each of which can be carried out by any processor. Intuitively, a processor can 
migrate horizontally (intraoperator parallelism) and vertically (interoperator parallelism) along the 
query operators. This minimizes the communication overhead of internode load balancing by 
maximizing intra and interoperator load balancing within shared-memory nodes.	
	
	

Key Applications	
Load-balancing techniques are essential in applications dealing with very large databases and 
complex queries, e.g., data warehousing, data mining, business intelligence, and more generally all 
OLAP (online analytical processing) applications.	
	
	

Data Sets	
DBGen, a synthetic data generator, can be used to generate biased data distribution, for studying 
intraoperator load-balancing issues. It allows generating data with nonuniform distribution (Zipfian, 
Poisson, Gaussian, etc.). See http://research.microsoft.com/∼Gray/DBGen/	
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