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Abstract

Vast amounts of RDF data are made available on the web by various institutions
providing overlapping information. To be fully exploited, different representations
of the same object across various data sets have to be identified. This is what
is called data interlinking. One novel way to generate such links is to use link
keys. Link keys generalise database keys by applying them across two data sets.
The structure of RDF makes this problem much more complex than for relational
databases for several reasons. An instance can have multiple values for a given
attribute. Moreover, values of properties are not necessarily datatypes but other
instances of the graph. A first method has been designed to extract and select link
keys from two classes of objects which deals with multiple values but not object
values. Moreover, the extraction step has been rephrased in formal concept analysis
(FCA) allowing to generate link keys across relational tables. Our aim is to extend
this work so that it can deal with multiple values. Then, we show how to use it
to deal with object values when the data set is cycle free. This encoding does not
necessarily generate the optimal link keys. Hence, we use relational concept analysis
(RCA), an extension of FCA taking relations between concepts into account. We
show that a new expression of this problem is able to extract the optimal link keys
even in the presence of circularities. Moreover, the elaborated process does not
require information about the alignments of the ontologies to find out for which
pairs of classes to extract link keys. We implemented these methods and evaluated
them by reproducing the experiments made in previous studies. This shows that the
method extracts the expected results as well as (also expected) scalability issues.

Résumé

Une grande quantité de données RDF est disponible sur le web par divers insti-
tutions créant des chevauchements d’informations. Afin d’étre pleinement exploité,
différentes représentations d’'un méme objet provenant de différents ensembles
de données doivent étre identifiées. C’est ce qu’on appelle le liage de données.
Une nouvelle facon de générer de tels liens consiste a utiliser la notion de clés de
liage. Les clés de liage génélarisent les clés en base de données en les appliquant
a deux ensembles de données distincts. La structure de RDF rend ce probleme
beaucoup plus complexe que pour les bases de données relationnelles pour plusieurs
raisons. Tout d’abord, une instance peut avoir plusieurs valeurs pour un attribut
donné. De plus, les valeurs des propriétés ne sont pas forcément de types simples,
ils peuvent tout aussi €tre d’autres instances du graphe. Une premiere méthode a été
congue afin d’extraire et de sélectionner des clés de liage a partir de deux classes
d’objets composés par plusieurs propriétés ayant seulement des valeurs de types
simples. Par ailleurs, 1’étape d’extraction a été reformulée en analyse de concept
formel (FCA) permettant de générer des clés de liaison pour des tables de bases
de données relationnelles. Notre objectif est d’étendre ce travail afin qu’il puisse
gérer de multiples valeurs. D’abord , nous montrons comment I’ utiliser pour traiter
les propriétés objet lorsque le jeu de données est exempt de cycles. Cet encodage
ne génere pas nécessairement les clés de liage optimales. Par conséquent, nous
utilisons 1’analyse de concept relationnel (RCA), une extension de FCA prenant en



compte les relations entre les concepts. Nous montrons qu’une nouvelle expression
de ce probleme est capable d’extraire les clés de liage de maniere optimale méme en
présence de circularités. En outre, le processus élaboré ne requiert pas d’information
a propos des alignements des classes des ontologies. Nous avons mis en ceuvre
ces méthodes et les avons évaluées en reproduisant les expériences réalisées lors
d’études antérieures. Cela nous a permis de montrer que la méthode extrait les
résultats attendus ainsi que de mettre en évidence un probleme de mise a 1’échelle
(également attendus).
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1
Introduction

Context

Vast amounts of data are made available in RDF (Resource description framework) on the web.
RDF representations use annotated graphs to model information as well as the relationships
between each element composing it. The annotations are usually specified in an ontology
defining classes to which resources belong and properties between them. Data sets are made
available by various institutions providing overlapping information.

Problem

To be fully exploited, different representations of the same object in various data sets have to
be identified. This is what is called data interlinking. To illustrate the problem, we can think
about two social networks belonging to a unique company. As one can imagine, a company
has benefits into combining the information of its two networks in order to sell more valuable
advertisements. In other words, the firm has an interest in identifying same users of the two
networks in order to determine their profile in a more accurate manner and by consequence sell
more expensive advertisements justifying that they now fit better to each user profile. Here, data
interlinking amounts at identifying the same users across data sets. For that purpose, it needs to
determine the information that allows us to identify uniquely individual.

Approach

The literature already contains multiple methods performing data interlinking. One novel way to
generate such links is to use link keys [2]. Link keys generalise database keys by applying them
across two data sets. In the example, the problem of link keys extraction can be reformulated
as follows: What are the (minimal) sets of properties allowing to identify resources from two
data sets? Are the name and the birthday enough information to identify individual or should
we use other elements ? The structure of RDF makes this problem much more complex than
for relational databases for several reasons. In RDF, an instance can have multiple values for a
given attribute. Moreover, values of properties are not necessarily datatypes. They can also be
other instances of the graph. Hence, in such a situation, the equality of two properties have to be
defined according to the data. For instance, in order to link books, a possible link key would
be composed by two conditions on the title attribute and the author attribute. Books would be
identified by the fact that they share the same title as well as at least one author. Similarly a
second link key would be used to link authors. For example, by the fact that they have the same



name and the same parents. This notion allows both linking data with precision and obtaining
human interpretable linking function.

A first method has been designed to extract link keys from two classes of objects which
deals with multiple values but not object values [2]. This method works in two steps: extraction
of candidate link key and selection. The extraction step has been rephrased in formal concept
analysis (FCA) allowing to generate link keys across relational tables [3].

Contribution

Our aim is to extend this work by addressing the above mentioned problems (multiple values
and object values). For that purpose, we first extend the proposed FCA encoding so that it can
deal with multiple values. Then, we show how to use it to deal with object values when the data
set is cycle free. This encoding does not necessarily generate the optimal link keys, as selected
by the selection functions of [2].

Hence, we use relational concept analysis (RCA), an extension of FCA taking relations
between concepts into account. We show that a new expression of this problem is able to extract
the optimal link keys even in the presence of circularities. Moreover, the elaborated process
does not require information about the alignments of the ontologies to find out for which pairs of
classes to extract link keys. We implemented these methods and evaluated them by reproducing
the experiments made in [2]. This shows that the method extracts the expected results as well as
(also expected) scalability issues.

Outline of the report

This dissertation is composed of five chapters. Chapter 2 defines the problem. We especially
describe what is an ontology. Then, the domain of ontology matching and data interlinking are
presented. Chapter 3 introduces the fundamental notions used in this document. We especially
define the notion of link key and candidate link key. We describe precisely and also illustrate the
two notions. Formal concept analysis is then presented. An example illustrates the notions and
then relational concept analysis is introduced. Chapter 4 presents the FCA encoding of the link
key extraction problem for two data sets where the classes are aligned. Chapter 5 specifies our
RCA encoding. Chapter 6 describes our implementation and presents experiments evaluating
the proposed approach.
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Problem overview: Data interlinking

The first section of this chapter briefly presents ontologies. Instead of formalising the notion,
we start by suggesting an informal description of this representation. We then expose how to
express them thanks to RDFS and OWL. The second section of this chapter introduces the
problem of data interlinking. The difference between the two domains ontology matching and
data interlinking is presented. It follows a presentation of the different approaches.

2.1 Ontology representation

Data sets are expressed in RDF. The vocabulary offered by such data set may be expressed in an
ontology. One fundamental advantage of this representation is that ontologies can be interpreted
and processed by machines thanks to a logical semantics that enables reasoning.

URI and RDF

Resource description framework is a standardised way to express data [5]. RDF data are made
of elements and relationships connecting them. These elements are called resources. A resource
is anything that can be referred to an element composing the information. It can be a Web page,
an XML document, a Web service, an identifier for an entity or even a concept. Resources are
identified by URISs, short for Uniform Resource Identifiers (noted as %/). An URI may notably
be a URL that any (human or software) agent or application can access.

RDF uses the structure subject—predicate—object to model relationship between two resources.
A RDEF triple formally belongs to {% UBN} x % x {Z ULT UBN} where LT denotes literal
elements such as primitive values and BN denotes the blank nodes. The subject corresponds
to a resource, the predicate denotes some aspects of this resource, and the object refers to the
element in relation with the subject according to the predicate.

Figure 2.1 is an example composed of elements about the film Titanic. The schema is
composed of resources identified by URLs. Thanks to RDF, we can especially model that L.
DiCaprio is an actor of the movie Titanic. In our case, the subject is the concept of ‘DiCaprio’
identified by http://www.movie.web/dicaprio/, the object is the movie ‘Titanic’
identified by http://www.movie.web/titanic/ and the predicate is the concept of
‘acting’ identified by http://www.movie.web/actor/actedin. This triple composes
a edge of the ontology graph and it models the relationship.
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http://www.movie
.web/actor/actedin

http://www.movie.web/dicaprio/

http://www.movie.web/titanic/

http://www.movie
.web/mofie/name

http://www.movie
.web/actor/madeupof

http://www.movie http://www.movie http://www.movie

-web/agtor/age .web/actot/firstname -Web/actoylastname

Titanic 42 Leornado DiCaprio

Figure 2.1 — RDF graph about the film Titanic

RDFS and OWL

The RDF standard does not provide any specification about the semantic of the terms, i.e., URISs,
used. Ontologies do that. For that purpose, they provide a reserved set of URIs (prefixed by
RDEFS or OWL). This vocabulary allows to specify the meaning of the terms according to a
logical semantics.

More precisely, ontologies can be defined as follows:

Definition 1 (Ontology). An ontology (C,P,A) is made of a set of concepts C C %, a set
of properties P C %, CNP =0 and A a set of axioms with concepts C and role have P in a
description logic. [8]

Definition 2 (Entailment). The entailment |= is a relation between an ontology & = (C,P,A)

and a RDF triple (s, p,0) such that p € P. To simplify the notation, we denote by p(0) = {v |
O = (o, p,v)} when O is implicit.

RDFS, short for Resource Description Framework Schema ([13]) provides a standard way
to constain relationship between classes and properties. For that purpose, it provides terms such
as rdfs:subClassOf, rdfs:subPropertiesOf, rdfs:domain and rdfs: range.
Figure 2.2 contains a RDFS graph about the film Titanic illustrating these terms.

The Web Ontology Language (OWL) [9] has been introduced to enforce the notion of
structure of classes. Analogous to RDFS, it provides additional terms to specify resource
structure. It makes more expressive the vocabulary and by the way more complex the reason-
ing. In Figure 2.2, it provides terms such as owl:inverseOf indicating that the property
movie:made_by is the reciprocal property of movie :made.

The OWL framework also provides new terms in order to deal with duplicates. In the rest of
this work, we will use two of them owl :equivalentClass and owl : sameAs. They can
be used to respectively express equality statements between two classes and two instances.
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rdf:type

JOOsIaAUL

L. DiCaprio I @
movie:made

movie:acted_in rdf:type

rdfs:ran ge\‘ .i H dfs:range

Figure 2.2 — RDF, RDFS and OWL representation of the film Titanic

2.2 The problem of data interlinking

The initiative instituted by the semantic web community of elaborating the web of data has
encouraged the proliferation of thousands data sets through the web. Due to its decentralised
aspect and its scalability, many ontologies have emerged for every specific domain. Moreover
some of them did appear for same domains creating duplicates.

Ontology matching is the task of identifying correspondences between the schemata struc-
turing the data [6]. This is what is called an alignment. It corresponds into finding classes as
well as properties specifying the same meaning. However, such information is not sufficient and
new algorithms have to be developed especially for the task of identifying similar instances.

Data interlinking

Data interlinking refers to the task of finding same instances present in different RDF data
sets. More formally, from two RDF data sets d and d’, we call data interlinking the process of
generating owl : sameAs triples identifying pairs of same resources coming from d and d’.

Interlinking —(C Resulting links
Dat. !
ata source Resources

Figure 2.3 — Data interlinking process



Data interlinking approaches

Many data interlinking methods and approaches have been elaborated through the years. [17]
and [14] make a review of many data interlinking systems. The literature contains two main
approaches to data interlinking: one based on similarity measures and a second one based on the
extraction of keys.

Similarity-based methods compare resources through a similarity measure. If two instances
are similar enough, then they are considered as the same and the relative sameAs link is
generated. The similarity is either based on the values of the instances or based on the graph
structure. Values-similarity-based techniques use normalisation and translation techniques along
with information retrieval measures such as TF-IDFE. Graph-similarity-based methods reuse
graph matching techniques.

Key-based methods aims at determining sufficient conditions for two resources to be the
same. If two instances satisfy the conditions, then they are considered as the same and the
relative sameAs link is generated. Our approach belongs to one of them by using as conditions
link keys. This approach is further detailed in the next chapter.

2.3 Conclusion

In this chapter, we presented what are RDF data sets and ontologies and how to express them
thanks standard languages. We then presented the data interlinking problem as well as the
different approach to resolve it.

Our goal is to address it using the link key approach. Hence, the next chapter will provide
further details on link keys. We will also explain formal concept analysis as well as relational
concept analysis. that we use.



3 __
State of the art: Link key, FCA and RCA

This chapter presents state of the art techniques used in this work. We start by defining the
notion of candidate link key and how to select the best ones. Then formal concept analysis
is introduced. From this point, we initiate readers to its extension named relational concept
analysis which is widely used by our second encoding proposal.

3.1 Link keys

A link key is a set of pairs of properties generalising the idea of aligned keys. A pair of aligned
keys corresponds to properties from both ontologies allowing to link instances. Link keys
are defined with respect to the equality statement between the pairs of values for each pair of
properties.

Definition 3 (Link key). Given two ontologies & = (C,P,A) and ¢’ = (C',P',A’), two aligned
classes (c¢,c’) € C x C', with p, p’ and ¢, ¢’ respectively properties of the classes ¢ and ¢/, a link
key is

{{p1sa1); - (P @) HP1a1) - (P an HAPT 4 - (Pl ) } link Key (e, )
holds if and only if Yo; & |= c(0),Vo'; 0’ = ' (0'), we have :

ifViel,...k:pi(o)Ngi(o) #0 3.1)
andVi€ 1,....1: pi(o) = q:(0") (3.2)
andVie 1,...m: p/ (o) =q!(0") #0 (3.3)

then (0, owl:sameAs, o) holds

The meaning of the three conditions 3.1, 3.2 and 3.3 corresponds respectively to the in-link
key, the eq-link key and the in-eq-link key that we present below. We illustrate the definition via
two examples about two ontologies myLalb and myCity. These data sets have two equivalent
classes myLab:Researcher and myCity:Inhabitant both representing human being.

in-link key condition

In Figure 3.1, the instances myLab : TomasDupond and myCity: TomDupond represent the
same person but in the two different ontologies. We can notice that they do not share exactly all
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their hasEmail values but at least they share one. Hence, in this kind of situation, expecting
an equality is a to strong assumption and most instances would not be linked. However sharing
at least one value is sufficient. This is what is done by the properties p; and ¢; in the condition
3.1. The link key identifies a correspondence if and only if at least one value is shared by the
instances for pairs of given properties.

myCity:hasEmail

thomas.dupont@myLab.org

rdfs:type

myCity:Inhabitant

thom.dupont@myLab.org

myLab:hasEmail myLab:hasEmail

jules.martin@myLab.org

Figure 3.1 — A RDF graph illustrating the in-condition of a link key

eq-link key condition

The second situation represented by Figure 3.2 is exactly the opposite of the first one. The
instances of the RDF graph are this time linked to research articles. If we try to link instances
sharing at least one property, too many correspondences are found. Moreover some of them are
wrong. Hence, the first condition is too ambiguous. That is why a link key is also composed
of pairs of properties p} and ¢} which establish connections between the two classes if for the
given properties all the values are shared. A complete equality is required to reveal the expected
equivalence.

myLab:isAuthor

myLab:TomasDupond http://papersdb.org/conf/26

http://papersdb.org/conf/145

myLabiisA uthor http://papersdb.org/conf/32 myCity:isAuthor

myLab:JulesMartin

Figure 3.2 — A RDF graph illustrating the eq-condition of a link key

The difference between the condition 3.2 and 3.3 is simply that the condition 3.2 links
instances if each instance has no value for the given pairs of properties whereas the condition 3.3
requires the existence of at least one value for each one. One can notice that the condition 3.3
entails both conditions 3.1 and 3.2. We denote the condition 3.3 by the term in-eq-link key. An
evaluation of the two approaches (eq and in) can found in [1].

As the equality of values from the link key conditions can be too restrictive, a first step is to
use methods such as value clustering or normalization to partially solve the problem.

Selection of link keys

[2] has proposed an algorithm allowing to extract link keys. The method operates in two steps. It
firstly extract a set of candidate link keys. A candidate link key is a set of pairs of properties that

8



can generate at least one link if it is used as a link key. The second step is to select some of the
extracted candidate link keys as link keys. In order to make this selection, measures have been
proposed by the authors. The article suggests two approaches: a supervised and an unsupervised
selection. We present below these two methods.

Supervised selection measures

The supervised approach consists of using the classical precision and recall measures on a part
of the data that has been already linked by a reference. We denote by L* positive examples
annotated by owl : sameAs links. Similarly L~ denotes the negative examples annotated by
owl:differentFrom links.

Definition 4 (Precision and recall). The precision measure is the fraction of retrieved links
that are relevant to the ground truth. The recall measure is the fraction of the reference links that
are successfully retrieved.

We denote by k a candidate link key and by Lp, 1y (k) the generated links between D and D'.

precision(k) = [ L0 Lp p(K) |
| (L*UL) N Lp () |
L*NLpp(k
recall(k) = | o0 (k) |
| L* |

As mentioned by the authors, given a L~ = 0, the precision would not be relevant. A
possible workaround is to artificially generate owl : differentFrom links according to the
known owl : sameAs links. The idea is to close the owl : sameAs links by adding to L™ links
owl:differentFrom for every other instances that does not hold owl : sameAs links. In
this way, L is not empty anymore and the f-measure is simply calculated by

2 xprecision (k) * recall(k)
precision (k) + recall (k)

f-measure(k) =

Unsupervised selection measures

Most of the time, a linked data set of reference is not available. In this kind of situation, we
can only make measures based on local instances by estimating the correctness of potentially
generated links according to a given link key. For that purpose, two measures has been introduced:
the discriminability and the coverage. The proposal is to measure how close the selected link
key is able to generate a one-to-one mapping for each linked instances. This is what is evaluated
by the discriminability measure. Furthermore, a second proposal is that a link key generating a
lot of links is more interesting than one generating few links. This is what is calculated by the
coverage measure. It evaluates the proportion of instances of both classes that are linked by a
given candidate link key.

Definition 5 (Discriminability and coverage). The discriminability estimates the closeness to
a one-to-one mapping. The coverage evaluates the proportion of linked instances compared to

9



the full set:
min(| {a: (a,b) € Lp p(k)} |,| b (a,b) € Lp pr (k) |})
| Lp,pr (k) |

[{a:{a,b) € Lpp(k)}U{b: {a,b) € Lp p(k)} |
coverage(k) = [{a:c(a) eDYU{b:d(b) €D}

discriminability (k) =

The coverage measure tends to select less specific link key in order engender more links. On
the opposite, the discriminability tends to select very specific ones in order to engender a perfect
one-to-one mapping. Similarly to the use of a f-measure, the harmonic mean of these two values
allows to obtain both characteristics.

3.2 Formal concept analysis

Formal concept analysis provides techniques to extract concepts between two interdependent
sets. [7] is the reference of the domain, the definitions used in the rest of this section comes
from it. FCA is particularly attractive because of its closeness to the notion of classes also used
in the ontology model. Moreover, this domain was studied for years and provides advanced
mathematical tools because of its foundation based on Galois connections.

Concepts and contexts

FCA introduces the notion of formal context. It is an incidence relation between objects and
attributes. It is from where concepts are extracted. The next definition describes formally the
idea.

Definition 6 (Formal context). A formal context K := (G, M, ) consists of two sets G and M
and a relation I between G and M. The elements of G are called the objects and the elements of
M are called the attributes of the context. In order to express that an object g is in relation I with
an attribute m, we write gIm or (g,m) € I and read it as ‘the object g has the attribute m’.

Figure 3.3 is an example of binary tables representing a formal context. This context is
defined by its attributes (activities) and its objects (living being). The presence of relation is
denoted by a 1 in the table otherwise the absence is denoted by a 0. In the rest of this document,
on the opposite of the usual representation of the domain, the incidence table has its extent
horizontally and its intent vertically. This choice makes the table smaller and the document
easier to read.

g1 = Kids | g = Adults | g3 = Dogs
1

my = Go to work 0

my = Go to school 1 0

m3 = Go to the vet 0 0
1 1
0 1
1 1

my4 = Eat food
ms = Drive cars
me = Do sport

OO == OO

Figure 3.3 — Table representing a FCA context

10



From such a context, FCA aims at extracting concepts. In order to be able to define concepts,
we now define two concept-forming operators which characterise them.

Definition 7 (Concept-forming operators). For a formal context (G, M,I), operators 1: 26 —
2M and |: 2M — 2C are defined for every A C G and B C M by
Al={meM | VgecA:(gm)cl},
B'={gcG | VmeB:(gm)el}.
In simple words, the 1 operator collects the objects in relation with all the given attributes.

In the same way, the | operator collects the attributes in relation with all the given objects. For
instance, in the example of the Figure 3.3, we can extract the following results:

{m1}* = {g2},
{’/”4'7’”6}i = {g17g2}7
{gl}T = {m2,m4,m6},

{gl,g2}T = {m4,m6}.

We now define the notion of formal concept. A formal concept can be seen as the maximal
set of objects sharing a maximal set of same attributes. Some concepts satisfying a lot attributes
will be very specific to few objects and some others with few attributes very common to all the
objects of the context.

Definition 8 (Formal concept). A formal concept of the context (G, M, 1) is a pair (A, B) with
ACG,BCM,A" =B, and B* = A. We call A the extent and B the intent of the concept (A,B).
B(G,M,I) denotes the set of all concepts of the context (G, M,I).

From a mathematical point of views, the formal concept (A, B) is a fixed point of the pair
of operators (T, /). In the Galois theory, we say that (1|, /1) is a closure operation. The list of
all the formal concepts of the Figure 3.3 are listed below. To each extent, an abstraction can be
inferred. For instance, the concept C3 gathers the objects g; = Kids and g, = Adults. We can
identify by its extent the notion of human being.

Ci = ({81,82,83}, {ma}),
Cr = ({83}, {m3,m4}),
Cs = ({g1,82}, {ma,me}),
Cy = ({82}, {m1,m4,ms, me}),
Cs = ({g1}, {m2,m4,me}),
Ce = ({},{m1,mo,m3,mq,ms,mg}).
Multiple optimized algorithms have been elaborated to extract concepts and lattices. We did

not present a particular FCA algorithm here. [12] makes a review of some of them. The choice
of the method depends on the applications.

Concept lattices

The concepts extracted in the previous section can be partially ordered by inclusion. A formal
concept is composed of two sets: an extent and an intent. In this way, it is possible to order
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the concepts by using the inclusion order of one these sets. In the case of an ordering on the
attributes, we denote by C; < C; where the concept C; = (G;,M;) and the concept C; = (G, M)
when we have M; O M;. The partially order on the objects is defined similarly whenever we have
G; C G;. The partially order of concepts is dual. It means that if we have M; C M; as ordering
function, it implies that G; 2 G; and reciprocally. From this partial ordering, a complete lattice
can be build as follows :

Concept 1:

{g1,82.83}
{ma}

Concept 3:

{gl,gz}
{ma,me}

Concept 5:
{g1}

{ma,my,me}

Concept 2:
{83}

{m3,mq}

Concept 4:
{82}

{m1,l’l’l4,l715,m6}

Concept 6:

{}

{my,my,m3,mg,ms,me}

Figure 3.4 — Complete lattice from a context

One can notice that the higher the node, the less specific the concept. For instance, concept 1
is at the top of the lattice and covers the three objects. This concept is very general. It refers
to the ‘living being’ concept. If we go down in the lattice, we obtain more specific concepts.
Concept 2 generalizes the notion of ‘pet’ and concept 3 the notion of ‘human’.

3.3 Relational concept analysis

Relational concept analysis which has been introduced in [10] is a way to go beyond the
limitation of boolean predicates and concept descriptions by defining how to deal with intra-
concepts as well as relational ones. Indeed RCA which is built on the top of FCA is able to
handle circular descriptions and can be used to determine concepts embedded in relations. In
the rest of this section, we mainly use definitions from [11]. We start by defining how to encode
a relation in RCA. Then, we present how to scale FCA contexts in order to extract relational
concepts.

Encoding relations

Similarly to the notion of formal context, RCA provides the notion of relational context and
relational context family. The representations of the relations is composed as before by binary
relations between some objects and some attributes. These objects and attributes are those from
the formal contexts in relations.
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Definition 9 (Relational context family). A Relational context family (RCF) is a pair (K, R)
where K is a set of formal contexts K; = (G;,M;, I;) and R is a set of relational contexts (Gy, G;,1;).
(G, Gy) are the object sets of formal contexts (K, K;) and I; C Gy x Gj. Kj is called the source
context and Kj is called the target context.

We illustrate this definition by exhibiting an example of relational context family. This
example refers to students belonging to courses. Students are characterised by their skill in
different subjects. On the other hand, courses are only identifiable by the number of students.
As we know which students belong to which courses, an idea is to characterises and identify the
courses according to the students skills. This kind of propagation of attributes is not possible
in FCA. It is the use of the relational information that determines the taught subject of each
course and by the way characterise them. In the context of RCA it can be simply modelled.
Each element has its own formal context and the membership information can be encoded via a
relational context.

We provide below the relational context family of this example. We denote by Ko =
(Go, My, Iy) the formal context of the students, by K; = (G1,M,1;) the formal context of the
courses and by Ry = (G, Gy, ) the relational context between classes and students.

Ih € Ky g1 = Student 1 | go = Student 2 | g3 = Student 3 | g4 = Student 4
my = Mathematics 1 1 0 1
my = Computer 1 0 0 0
m3 = Language 0 0 1 0
my = Physics 0 1 0 1
ms = Writing 0 1 1 0
I €Ky gs = Course 1 | gg = Course 2 | g7 = Course 3 b |85 | 8| &
meg — 20 students 1 0 0 g 11010
m7 = 26 students 0 1 0 £2 8 (1) (1)
mg = 18 students 0 0 1 Z R

Table 3.1 — Relational context family of students and courses

Scaling relations

The aim of RCA is to extract intra-concepts as well as relational concepts. For that purpose,
RCA provides a tool named scaling operator. This operator has the aim of introducing new
concepts in formal contexts from the relational contexts linking them.

Definition 10 (Scaling operator). A scaling operator is a function taking as input a relational
context R; = (G, Gy, 1), the concept set A of a lattice <" built on objects of G; and a pair
object-concept (g,a) € (G x A). This function returns true if and only if there is a relation
between g and a.

Table 3.2 proposes the most used scaling operators. They corresponds to the most common
descriptors from description logics [4]. The choice of the scaling operator has a direct meaning.
In our example, we aim at identifying courses according to all the students belonging to them.
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That is why in this situation we choose the universal operator. All the students are important to
understand the course subject. We can imagine another situation such that the relation is not
related to all the students but only to some of them, for instance only with the delegate students.
This time, the existential operator is more suitable. Indeed, in this context, only one student is
enough information to characterise uniquely a course.

Operator Attribute form Condition
Universal (wide) Vr:c r(g) C Ext(c)
Includes Dr:c r(g) 2 Ext(c)
Existential dr:c r(o) NExt(c) # 0
Universal strict V3r:c r(g) CExt(c) and r(g) # 0
Qualified cardinality restriction >n,r:c r(g) CExt(c) and |r(g)| > n
Cardinality restriction >nr: Ty lr(g)| >n

Table 3.2 — Most used scaling operators

Definition 11 (Scaled context). For each relational context R; = (Gy,Gy,1;) and a scaling
operator S, a scaled context R} = (G,A,I;) where Gy the object sets of formal contexts (Kj),
A is the concept set of the lattice Z}" built on objects of G; and I]‘.k contains the relations
(g,a) € (Gx x A) if and only if S(Rj(g),Ext(a)) is true.

A scaled context is simply a formal context having as intent the concepts of the lattices built
from the contexts holding a relation. We build Table 3.3, the scaled context of Rj; = (G1,A,I}).
Ry is the scaled context of the relational context Ry. A is the concept set of the lattice built on
objects of Gy, in our case the lattice built from Kj. Its concepts are listed below.

G ={}hLM) G = ({g1},{m1,m})
G = ({g2},{m1,ms,ms}) Cs = ({g3},{m3,ms})
Cs = ({g2,83},{ms}) Cs = ({g2,84},{m1,ma})
G =({g1,82,84},{m}) Cs =(G,{})

Irarara

As we can see, the concept C, represents students study- C,10]0]0
ing computer science, Cy4 those studying language and Cg G100
those studying physics. In consequence, we deduce from Glololo
the scaled context that the class g5 only have computer sci- c. o0 o1
ence students. Similarly, classes gg and g7 have respectively C4 0 To0 1
only language and physics students. As expected, the con- CS 0T 1o
cepts from the student contexts allows to identify the courses. 6
The next subsection proposes an algorithm performing this G 1170
identification process for us. Gl1]1]1

] Table 3.3 — Scaled context R},
RCA concepts and algorithm

As demonstrated in the example, the use of a scaled context allows, to include to the initial
formal context, concepts coming from other contexts having relations. The purpose of RCA
is to handle relational concepts automatically in the same way as intra-concepts. Similarly to
formal concepts, we define RCA concepts. The propagated concepts have only been added to
the formal concept definition.
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Definition 12 (Relational concept). For a relational context family ({K;}i_, {R;}T), a rela-
tional concept of the formal context (G, M, 1) is a pair (A, B) where A C G and B = B;UBg with
B; € M and By is a set of concepts such that AT = By, B} =Aandc e Br & 3(K,,R,) Vg A
we have S(R,(g),Ext(c)) is true.

In order to extract them from a relational context family, an algorithm is provided. The
method is to create at each step the scaled context of each relational context by using the lattice
obtained in the previous iteration. In this way, at each iteration the process concatenates these
scaled contexts to the initial ones. By repeating it multiple times, the procedure creates new
concepts and propagates them. Finally the algorithm converges to a fixed point [10].

The complete method is summed up in Algorithm 1. One benefit of this algorithm is that it
terminates even if the relational context family holds circular dependencies. For the moment,
the convergence of the algorithm has not been proven. However, multiples arguments lets the
authors think that it is the case. One argument is that the number of objects in extended contexts
is n(‘)t clzhanging during the process. Hence, the number of concepts for every lattice L; is limited
to 21Gil,

Algorithm 1 RCA algorithm
INPUT:
- A relational context family ({K;}7_,{R;},) and a scaling operator S.
OUTPUT:
- A formal lattice for all the contexts composed of the extracted formal and relational concepts.
INIT:
- The concept lattices .2y = {fca(K;)}",
STEP p:
for each formal context K; do
- elaboration of the scaled context R} = scale(K;, .Z),—1, {Rj}’]?lzl).
- concatenation of the formal context K} = concatenate(K;,R;).
end for
- update of concept lattices .%), = {fca(K])}"_,.
- if .Z), and .Z),_; are isomorphic halt else increment p and repeat

We performed the algorithm on the presented RCF example. The algorithm converged
to a fixed point after two iterations and produced the two resulting lattices displayed below.
As expected, the concepts characterising the students have been propagated to the courses
lattice. Courses are now identifiable by other elements than the number of students. We can
use the concepts coming from Kj that are not shared by the other courses. The course g5 is
identifiable by the concept C; = computer science student, gg by Cg = physics student and g7
by C4 = language student.
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Cg:
{81,82,83,84}

{g5,86,87}
{Gs}

C7Z
{81,82,84}

{g7}
{C4,Cs,Cg,mg}

{gs}
{Cs,C7,Cs,m7}

{&s}
{C2,C1,Cs,me}

‘ {C2,C4,C5,C6,C7,Cs,mg,m7, mg}t

{my,ma,m3,my,ms}

Figure 3.5 — Lattice of Kj on the left and lattice of K| on the right

3.4 Conclusion

In this chapter, we provided the foundation of our work. On the first hand, we saw the notion of
link key. We saw how the notion of in-link key and eq-link key allow to deal with the multiplicity
of the values. On the other hand, FCA and RCA have been explained. We looked at what is a
formal context and what are formal concepts. We also saw how to build lattices. Then, RCA
has been introduced and the notion of relational context family defined along with the RCA

algorithm.
The next chapter presents our first contribution. Our aim is to extend the FCA encoding

elaborated for relational tables to link two ontologies. For that purpose we consider that we
know pairs of aligned classes and proposes an encoding that encodes the link key extraction
problem.
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4
Data interlinking with FCA

In this chapter, we propose a method using FCA to extract link keys. In [3] the link key problem
has been encoded for databases thanks to the elaboration of contexts composed of pairs of
attributes and pairs of tuples. Hence, the concepts resulting from this encoding have as intent a
candidate link key and as extent the relative pairs of linked tuples.

Here, we adapt this method to ontologies by understanding how to deal with the EQ and IN
conditions presented in the candidate link key definition. These conditions allow us to deal with
the multiplicity of values. For that purpose, we assume that the alignment between the classes
of the two ontologies is known. We start by explaining how to find link keys for aligned pairs of
classes.

Then the final procedure is presented. In order to take charge of object properties, it consists
in linking pairs of classes in a cascading way: starting from classes with no dependency as a first
step to then handle classes having as dependency the classes interlinked in the previous iteration.

4.1 Class linking encoding

Our aim is to extract link keys for pairs of classes. Hence, we need to encode the link key
extraction problem for a pair of aligned classes in a formal context. The idea is to build a context
putting in relation every pair of instances of each class to every pair of properties quantified.
Concepts resulting from the process have an extent composed of set of pairs of quantified
properties constituting a candidate link key. The quantification corresponds to both EQ and IN
link key. The intent are composed of the pairs of instances linked by the relative candidate link
key.

Definition 13 (Formal context expressing candidate link keys of two aligned classes). Given
two aligned classes ¢ and ¢/, we denote respectivelyby D=7 x 2 x ¥ and D' = (T, ', V)
the triple (instances, properties, values) of each class. From these notations, we build the formal
context (G, M,I) with:

G = 7 x 7' the set of pairs of instances,

M = {3,V,V3} x & x &' the set of quantified pairs of properties.

I is such that,
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(o,

0,013, p,p') iff Iv; (0, p,v) € D and (', p’,v) € D/,
(0,0

LNV, p,p')iff Vv; (0, p,v) €D = (o',p',v) € D
and Yv; (o', p',v) € D' = (o,p,v) €D

(0,0 \I(V3, p, p') iff Fv; (0, p,v) € D

and Vv; (0, p,v) € D = (o',p',v) € D’

and Vv; (o', p',v) € D' = (0,p,v) €D

The 3 symbol expresses the IN-condition and similarly the V and V3 symbols express EQ-
condition and the EQ-IN-condition.1 For two classes, thanks to this encoding, we are able to
build the binary table representation of the link key problem and to use FCA algorithm to obtain
a lattice and by the way the formal concepts which are candidate link keys.

In order to expose this encoding, we reuse the two ontologies myLab and myCity pre-
sented in Section 3.1. The first ontology contains the myLab: researcher class with the
properties p; = myLab:HasEmail and p, = myLab:isAuthor. Its two instances are
t1 = myLab:TomasDupond and 2 = myLab:JulesMartin. This class is aligned to
the myCity:Inhabitant class of the second ontology which has two properties: a prop-
erty pj =myCity:HasEmail and a property p), =myCity:isAuthor. Its instances are
1 =myCity:TomDupond and #j; =myCity:JulesMartin. We omit the V3 quantifica-
tion which in this example obtains the same results than the V quantification.

(t,17) | (12,1) | (t1,19) | (12,15)
(3,p1,P)) 1 0 0 1
(¥, p1,P}) 0 0 0 1
(3,p1,P5) 0 0 0 1
(Y, p1,P5) 0 0 0 0
(3, p2,P)) 0 0 0 1
(Y, p2,P}) 0 0 0 0
(3, p2,P5) 1 0 0 1
(¥, p2,P5) 1 0 0 1

Table 4.1 — FCA encoding for the classes myLab: researcher and myCity:isAuthor

Table 4.1 encodes the problem for the two given aligned classes. From this formal context,
we can extract the formal concepts listed below. In spite of the smallness of the example, the
extracted concept C2 has exactly the expected pairs of keys providing a perfect interlinking. The
candidate link key is its intent: (3, p1,p!), (3, p2, P5), (¥, p2, P5). The linked pairs of instances
are its extent: {(1,]),(f2,25)}

Cl= (G>{})7
C2= ({(l‘l,ti),(l‘z,té)},{(ﬂ,pl,pll),(H,pz,plz),(V,pz,plz)}),

C3 = ({(2,)},{3, p1,P1), (Y, p1,p1), (3, p1,P3), 3, P2, PY), (3, P2, 2), (¥, P2, P5) }),
C4=({}M).

IThe 3, ¥ and V3 symbols of the encoding do not correspond to those present in the RCA scaling operators.
The definitions of the previously presented scaling operators come from descriptors of description logic.
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4.2 Ontology linking process

For the moment we are only able to perform data interlinking between instances that belongs
to pairs of aligned classes. However, classes may rely on other classes and thus their link keys
depend on other link keys. We propose to take a look at Figure 4.1. The represented graph
contains a simple case study of two partially aligned ontologies. Each class of the first ontology
is mapped to the second one.

@ owl:equivalentClass ity WorkG
myLa :_w \ﬂor roup

rdfs:domain rdfs:domain
myLab:has_member myLab:made_of
rdfs:range rdfs:range
\ owl:equivalentClass /— )
myLab:Riaﬁ}D @nhabltant
rdfs:domain rdfs:domain
myLab:home myLab:live_at
rdfs:range rdfs:range

J

owl:equivalentClass
myLab:Location d /myCEy:Place

Figure 4.1 — RDFS graph of two aligned ontologies

Our proposal is to achieve data interlinking in a cascading way. We cannot directly build
a formal context for the pair of classes myLab:Researcher and myCity:Inhabitant.
These two classes depend respectively of the classesmyLab: LocationandmyCity:Place.
Hence, building a formal context for myLab:Researcher and myCity:Inhabitant
requires to evaluate the quantified pairs involving the property myLab : Home and the property
myCity:1live_at. We propose to start by extracting candidate link keys for the classes
having no dependency. From these extraction results, we are now able to deal with new classes,
those only depending on the aligned pairs handled in the previous steps. Our procedure adopts
a greedy approach. Iteratively, at each step, we extract candidate link keys for a specific
alignment and select the best one. At the end of the process the two ontologies are completely
interlinked. In this example, the process starts by determining the correspondences between the
classes myLab: Location and myCity:Place, then between myLab:Researcher and
myCity:Inhabitant and to finish between myLab: Team and myCity:WorkGroup.

A limitation of this method is that the dependencies induced by the pairs of classes should
not form cycle. Such a situation cannot be handled because the process cannot determine a
starting point. A possible solution would be to ignore the dependency of a first pair of classes
chosen randomly. However such a choice implies the loss of part of the information. We discuss
in more detail about the dependency problem in the next chapter.
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4.3 FCA process example

We present below an example of unsupervised selection of link key. We reuse the previous
example which is composed of two ontologies: the ontology myLab on the left and the ontology
myCity on the right sharing values on the middle (see Figure 4.2). As mentioned, we know
that the classes myLab:Researcher and myCity:Inhabitant are aligned, as well as
myLab:LocationandmyCity:Place. None of the instances of this example hold multiple
values for a given property. We made this choice to simplify the explanation. As the V3
quantification is a specialization of both the V and the 3 quantifications, we omit these two when
the V4 quantification holds.

myLab:Researcher myCity:Inhabitant

i . S
Thomas Dupont YLab:name C\W.'“am Thomas Dupont
s
myLab:n ity:
Thomas Dubois am\e)@ myCity:name Thomas Dubois

myl.ab:name ILi myCity:name

myLab:Location myCity:Place

Grenoble myf-ab: ::1tz' Grenoble
Henry street W o e Henry street
myL B . 'Cjty
Paris myllyp, Paris
Paul street . Paul street
(‘d\/ "Cj{}
Paris myL treet Paris
Jack street Jack street

Figure 4.2 — RDF Graph of two ontologies

owoH:" qe'lﬁw

mijty-'HOme

The first step is to take a look at the dependencies. As we can see, the pair of aligned classes
with no dependency is myLab: Location and myCity:Place. Hence, we are able to build
the formal context of these two classes. We extract the formal concepts from it and to finish,
we evaluate the candidate link key of each extent to select the best link key according to the
f-measures or the h-mean depending on whether we perform supervised or unsupervised evalua-
tions. In this example, the extracted link key is {(V3,myLab:street,myCity:street),
(V3,myLab:city,myCity:city)}. The interlinking is perfect with a coverage and a dis-
criminability of 1. From this result, we can repeat the process in order to interlink the two
classes myLab:Researcher and myCity: Inhabitant. They have two properties, their
name and their home. Thanks to the first step, we are able to compare the home property
despite of the fact that it is not a primitive type. The process gives to us two equivalent link
keys with a h-mean of 0.74: the link key (V3,myLab:home,myCity :home) and the link key
(V3 ,myLab:name,myCity:name).
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Global selection of link keys

The previous example raises a problem. Indeed, the proposed process aims at selecting the best
link keys at the current iteration in order to use them at the next step. This greedy approach
is not always optimal and particularly in this small example. The term ‘best’ refers to the
candidate link key getting the higher h-mean (equivalently the higher f-measure) for the given
pair of classes. However, at the next iteration, this link key is not necessary the best anymore
for the new pairs of classes. This is what we can exhibit from the example. Using the link
keys {(V3,myLab:street,myCity:street),(V3,myLab:city,myLab:city)} and
the link key {(V3,myLab:home,myCity:home)} give to us a h-mean of 0.74 on the second
pair of classes. On the other hand, using the link key {(V3,myLab:city,myCity:city)}
which is not the best at the first iteration lets us get a score of 0.80 at the second iteration with
the link key {(V3,myLab:home,myCity:home)}.

In order to fix it, a possibility is to modify our proposed algorithm. Instead of selecting
only one link key and not considering the others, one solution is to increase the search space.
At each step, a solution is to extract all the link keys and produce the next iterations for all of
them. Hence, at the end, by performing a global evaluation, we are able to select the set of link
keys maximising our objective. This approach has some drawbacks: a significant increase of the
computational cost and of the memory use.

4.4 Conclusion

In this chapter, we saw the FCA encoding of the link key extraction problem for ontologies
where aligned classes are known. We particularly saw how to deal with the EQ and IN conditions
in the encoding of pair of aligned classes. We also established a way of iterating the process
in order to link the two ontologies via a greedy approach. Object properties are supported as
well as datatype properties. To conclude, we remarked that this approach have some drawbacks
such as it does not support circular dependency and that the extracted link keys are not always
optimal.

The next chapter aims at dealing with these limitations of the presented FCA encoding. We
firstly discuss about circular dependencies and how they hold. Then, we propose a new encoding
using RCA that is able to go beyond the limits of FCA by dealing with circular dependencies.
Moreover this encoding does not require any alignment information and any greedy approach.
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5
Data interlinking with RCA

The previous section has presented a way of interlinking ontologies under two assumptions. The
first assumption is that classes of the two ontologies are aligned. One way of dealing with the
lack of alignment is to perform a preprocessing step using state of the art techniques. However,
these techniques are costly and not error free. The second assumption is that dependencies of
the classes do not hold cycle. This is a strong issue considering daily life data set. The first
section of this chapter analyses the issue. The next section aims at proposing a way of dealing
with it by introducing a new encoding. For that purpose, we use relational context analysis to
express the properties holding dependencies via relational contexts. Indeed, the RCA algorithm
converges even if relations are circular. Hence, as we will see, our proposed RCA encoding does
not require any alignment and any dependency consideration anymore.

5.1 Dependency problem

Two classes are often dependent on each other. A property expressing a statement is often
accompanied by a second link expressing the reciprocal one. Figure 5.1 is an example of
graph containing circular dependencies. It reuses the two ontologies myLab and myCity
studied in the previous chapter. As example we look at the properties myLab :work_in and
myLab:has_member. The properties are dual considering the dependencies held as well
as the expressed meaning. A possible workaround is to perform the process with only one of
the two links and to use the extracted link key for both links. However, choosing to classify
employees in function of their job or jobs in function of the employee would orient the result.
Moreover, more complex behaviours can be identified where such bypass cannot be used.

The first problematic situation is about two links holding a dependency cycle that do not
express a reciprocal meaning. This is the case of the properties myCity:1live_at and
myCity:is_owned_by. Removing one of the two links is like removing some parts of the
information. Hence, the workaround does not work in this situation.

Another problematic case is due to classes depending on themselves. myLab :Researcher
is one of them. It depends to itself because of the property myLab:is_friend_of. This
kind of relations cannot be ignored. As one can imagine, in this example, one way of identifying
people is to identify their relationship.
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owl:equivalentClass
a; = myLab:Team

a4 = myCity:WorkGroup

rdfs:range rdfs:domain rdfs:domain rdfs:range

myLab:work_in myLab:has_member myCity:made_of myCity:work_in

rdfs:domain tdfs:range rdfs:range /dfs:domain

owl:equivalentClass

ap = myLab:Researcher

rdfs:range

rdfs:domain dfs:domain rdfs:domain rdfs:range

myLab:is_friend_of myLab:home myCity:live_at myCity:is_owned_by

/dfs:range rdfs:rang& /dfs:domain

) owl:equivalentClass .
a3z = myLab:Location ae = myCity:Place

Figure 5.1 — RDFS graph of aligned ontologies with circular dependencies

5.2 RCA encoding

The RCA algorithm assures convergence even if the relational context creates circular depen-
dency. Hence, we propose a second encoding where relations are expressed thanks to relational
contexts. In this way, we are able to ignore the alignments of the classes and to not take care
about possible dependency cycles. For that purpose, the method is to build a context for all the
possible pairs of classes. Even if we do not know the equivalent classes, we can deduce from
the final results pairs of classes that only obtain bad candidate link keys (i.e. link keys with low
f-measure or low h-mean) correspond to wrong alignments.

In our FCA encoding, objects of formal contexts are pairs of instances characterised by
quantified pairs of properties. In order to elaborate our RCA encoding, we reuse the idea of
simply restricting the properties. Our proposal is to build formal contexts with pairs of instances
as objects and quantified pairs of datatype properties as attributes. On the other hand, object
properties are expressed thanks to relational contexts. Considering this model, the formal
contexts aim to extract intra-concepts. We are able to extract candidate link keys composed
of datatype properties from them. At the same time, each pair of object properties has its own
relational contexts to propagate the extracted intra-concepts, i.e., the candidate link keys initially
composed of quantified pairs of datatype properties. After some iterations of the RCA algorithm,
via the propagation process, datatype properties and object properties are mixed to compose as
expected candidate link keys made of all the properties. We define below in more detail the two
encodings.

Formal contexts encoding

Definition 14 (Formal context expressing candidate link keys for two classes). For all pairs
of classes (¢,c’) € 0 x 0", we respectively denote by D(c) C 7 (¢) x Z(c) x ¥ (c) the triple
(instances, properties, values) for the class c. We also denote by &7,(c) the subset of datatype
properties of &?(c). The formal context K. » = (G,M,I) is defined by:

G = 7 (c) x T'(c') the set of pairs of instances,
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M ={3,V,V3} x Z,(c) x Z)(c) the set of quantified pairs of datatype properties.
I'is such that,
{0,013, p, p') iff Iv; {0, p,v) € Dand (o', p',v) €D/,
{0,0"\I(V, p,p') iff Vv; (0,p,v) €D = (o', p',v) e D
and Yv; (o', p',v) € D' = (o,p,v) €D
(0,0 \I(V3, p, p') iff Fv; (0, p,v) € D
and Vv; (0, p,v) € D = (o', p',v) e D’
and Vv; (0o, p',v) € D' = (0,p,v) €D
This encoding is similar to the one defined during the FCA encoding section. It is simply
restricted to properties linked to primitive values and not to instances. One can notice that
the example of the Figure 5.1 requires building nine contexts: a context for each couple of
{ar,a2,a3} x{as,as,a6}.

Relational contexts encoding

We choose to build one relational context for each pair of object properties given a pair of classes
and to use one scaling operator for each quantification. We respectively choose the existential
operator, the universal operator and the universal strict operator to model the IN, EQ and EQ-IN
conditions. We denote by (p1, p2) a pair of object properties and by (c,c’) the two relative
classes being subjects of the triples and by (d,d’) the two relative classes being objects.

Relational contexts are composed by three elements: source-objects, target-objects and by an
incidence relation between them. We choose as target-objects the objects of the formal context
representing (c,c’), i.e., pairs of instances of (c,c¢’). Similarly, we choose as source-objects the
objects of the formal context representing (d,d’), i.e., pairs of instances of (d,d’). The incidence
relation between the two sets is simply filled thanks to the data, 1 if a relation is held by (py, p2)
given the pair of instances of (c¢,c¢’) and the pairs of instances of (d,d") otherwise 0.

Definition 15 (Relational context for a pair of object properties). The relational context
R, p, = (G,M,I) which puts in relation the objects of K » and the objects of K; ; is defined
by:

G, = 7 (c) x 7 (c’) the set of pairs of instances of ¢ and ¢/
Gs = 7 (d) x T'(d") the set of pairs of instances of d and d’,
I is such that
(01,02)I{03,04) iff {01, p1,03) € D(c) and (03, p2,04) € D(c')

The scaling operator propagates concepts and introduces the quantified pairs of object
properties. Iteratively, the quantified pairs of object properties accompanied by the relative
concepts are added to the attributes of the initial formal contexts,, i.e.,, the quantified pairs of
datatype properties. Hence, the final candidate link keys are as expected composed by pairs of
both datatype properties and propagated quantified pairs of object properties.

5.3 RCA process example

In order to illustrate our new encoding, the last example of Figure 5.1 is reused by making
it more complex. Figure 5.2 illustrates this new case study. We firstly remove all the in-
formation about the alignments, i.e., owl:equivalentClass links. Hence, we do not
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have any information about the alignment of the classes. We secondly make more complex
the ontology by adding the last name information and by creating dependency cycles . Our
first addition is to add a circular dependency to the class myLab:Researcher via the addi-
tion of the property myLab:sibling. Moreover, we also add two properties: the property
myLab : owned_by between the classes myLab : Researcher andmyLab: Location and
the property mycity:owned_by between mycity:Inhabitant and myCity:Place.
In the above graphs, we respectively denote by fn, 1n, ct and st, the datatype properties
firstName, lastName, city and street. We also respectively denote by hm, sb and
ow the object properties home, sibling and owned_by.

c1 = myLab:Researcher

= myCity:Inhabitant

fn: Thom
T In: Dupont

fn Thomas
ln Dubois

. fn: Thomas
T 1n; Dupont

j fn: Thomas
? In: Dubois -

myLa:
s1b11n
fn Lisa B j’i fn: Lisa
g * In: Dubois 2 " In: Dubois
S = g
z 5
= myLab:Location S T ¢4 = myCity:Place
o B
. = Q
g L 3 ct: Grenoble l = . ct: Grenoble
st: Henry street g

4 st Henry street

L, % ct: Paris . ct: Paris

st: Paul street J5 st: Paul street
9 5 ct: Paris . ct: Paris

st: Jack street J6 st: Jack street

Figure 5.2 — Case study 1: RDF graph of myLab on the left and myCity on the right

Our method is to build an initial formal context for each pair of classes that only uses datatype
properties. Hence, we have to build the contexts K¢, 5, K¢, cy» Ke) ¢; and K¢, ¢,. Additionally,
we have to build one relational context for each pair of object properties: Ry hm, Rsb,hms Row,hms
Rimows Rsp,ow and Rey, 0. The cross tables of these contexts are available below. We omit the

contexts K, ¢, Ke, ¢35 5 Rsp nms Row,hms Rhm,ow and Ry, o, because their tables are completely
filled by 0. They correspond to obvious bad classes and properties alignments.
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(i2,.2) | (2,/3) | (i2,1) | (insg2) | (i1sg3) | Guogn) | (3,02) | (3,43) | (i351)
0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
(i, Js) | (i6sJa) | (i6sJ6) | (iasjs) | (iasja) | (ia,js) | (is,Jjs) | (is,ja) | (is,J6)
0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
Va,st,st) | O 0 1 0 1 0 1 0 0
) 0 0 0 0 0 0 0 0 0
V3, ct,st) 0 0 0 0 0 0 0 0 0
,ct) 1 0 1 0 1 0 1 0 1
Figure 5.3 — Formal contexts K, ., and K, ¢,
(i2,42) | (i2,43) | (i, 1) | (i1, 2) | (nsg3) | Gnsdn) | (33542) | (i3,43) | (i3,41)
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
(is,Js) | (issja) | UesJs) | (ia,Js) | (iasja) | (iasJs) | (is,Js) | (is,ja) | (s, J6)
1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Figure 5.4 — Relational contexts Ry nm and Roy o
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From these contexts, we apply the RCA algorithm. The first step builds the lattices of the
contexts K., ., and K., ., which are displayed below. They are composed of concepts having as
intent candidate link key made of datatype properties. The extents are the linked instances.

Concept 3:
{(i37j2)7 (i17j2)7(i17j1)7
(i2>j1)a (i37j3)a (ilaj3)7
(i2,J3); (i3, 1), (12, j2) }

{(i2, j2), (13, j3), (i1, j1),
(i2,3), (i3, j2) }
{(V3,1n,1n)}

{(i27j2)7 (i27j1)7 (i37j3)}

Concept 2:
{(V3,£n,£n)}

Concept 1:

{2, 12), (i3, 73) }

Concept 0:
{(V3,£n,£n),(V3,1n,1n)}

{(V3, £n, £n),(V3,1n, £n),
(V3,£n,1n),(V3,1n,1n)}

Concept 5:
{(i57j5)7 (i57j6)7 (i47j4)7
(iss ja), (ia, o), (i6, J5)
(igs Jo), (isy ja)s (ia; js) }

Concept 4:
(s, js), (i, Jo), (ia, ja)s
(i6 Js), (i6, jo) }
{(V3,ct,ct)}

{(s, Js), (s, Jo), (ia, ja) }

Concept 6:
{(V3,ct,ct),(V3,st,st)}

{}
{(v3,st,st),(V3,ct,st),
(V3,st,ct),(V3,ct,ct)}

Figure 5.5 — Iteration 0: On the left the lattice of K, ., and on the right the lattice of K., .,

The second step of the algorithm builds the scaled contexts. For that purpose we use the

built lattices to create new attributes from the contexts having relations. These new attributes
correspond to candidate link keys made of pairs of object properties given some relative candidate
link keys of other pair of classes. We have to propagate the concepts by concatenating the scaled
contexts. Table 5.1 shows the scaled contexts resulting from the first iteration.

R s (i2,2) | (i2,j3) | (2, 1) | (v, j2) | (insj3) | (o) | (s, )2) | (i3,73) | (3,1)
(V3,hm,hm) : C4 | 1 1 0 0 0 1 1 1 0
(V3,hm,hm) : C5 | 1 I I I I I 1 l I
(V3,hm,hm) 1 C6 | 1 1 0 0 0 1 0 0 0
R, ., (i6,Js) | (i6,ja) | (is,Je) | (iasjs) | (iasja) | (iasjoe) | (is,js) | (is,ja) | (is,Jje)
(V3,0w,0m):CO | 1 0 1 0 0 0 1 0 1
(V3, 0w, ow) : C1 1 0 1 0 1 0 1 0 1
(V3,ow,ow):C2 | 1 1 1 0 0 0 1 1 1
(V3, 0w, ow) : C3 1 1 1 1 1 1 1 1 1
Table 5.1 — Iteration 1: R, ., and Ry, ..,
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Concept 3:
{(33,.12), (i1, j2), (i1, ),
(i2, 1) (i3 s (i1, J3),
(iz-jl)’(_iz

i2,/2)}
{(v3,hm,hm) : C5}

Concept 5:

1 Ja), ). (i Js)s
(i, Jo), (is. ja). (i, J5) }
(V3. 0w,0m) : C3)

Concept 1:

{(i2,72), (i1, 1), (13, /3),
(i3,2), (i2..j3)}
{(¥3,1n,1n),(V3,hm, hm) : C4,

,(V3,hm,hm) : C5}

Concept 2:
{3, 73), (2, j2), (i2, 1)}
{(v3,1n,1n),
(V3,£n, £n), (V3,hm, hm) : C5}

{(is, js), (is, Js), (is, jo )
(i, j): (i, o ), (i, Jo) }
{(v3,0w,

Concept 4:
{(is, js); (6, Js), (is, jo)
(i Jo): (i.ja) }
{(v3,ct,ct),
@, 0w, 0w) : C1, (¥, 0w, 0w) : C3}

Concept 10:

ow) : C2,(V3, 0w, ow) : C3}

Concept 8:
{(i2, 2), (i2, ja), (in, 1) }
{(V3,1n,1n),
(v3,hm, hm) : C4, (v3,hm, ) : €5,
(V3,hm, hm) : C6}

Concept 0:
{(i2,12), (i3, j3) }
{(V3,£n, £n),(V3,1n,1n),
(V3,hm, hm) : C4}, (V3,hm, hm) : C5}

(Y3, 0w,
(v3, 0w,

{lis, js), (i6. Js), (is, Jo ),

Concept 9:

Concept 6:
{(is, js), (ia, ja), (is, js) }
{(v3,st,st),(V3,ct,ct),
(V3,0w,0w) : C1,(V3,0ow,0ow) : C3}

(is, o) }
{(v3,ct,ct),
ow) : C0,(V3, 0w, 0w) : C1,
ow) : C2,(V3,0w,0w) : C3}

Concept 7:

{(i2,72)}
{(v3,£n,£n),(¥3,1n,1n),
(V3,hm, hm) : C4, (V3,hm, hm) : C5,
(V3,hm, hm) : C6}

(V3, £n, £n), (V3,1n, £n),

(V3, £n,1n),(V3,1n,1n),

(V3,hm, hm) : C4, (V3,hm,hm) : C5,
(V3,hm, hm) : C6}

Conceptl1:
{(s, js), (i, Jo) }
{(v3,st,st),(V3,ct,ct),
(V3, 0w, ow) : €0, (V3, 0w, 0w) : C1,
(V3, 0w, 0w) : C2,(V3,ow,ow) : C3}

{3
(V3,st,st),(V3,ct, st),
(V3,st,ct),(V3,ct,ct),
(V3, ow, ow) : €O, (V3, ow, ow)
(V3, 0w, ow) : C2,(V3, ow, ow)

£ €L,
:C3}

Figure 5.6 — Iteration 1: On the left the lattice of K, ., and on the right the lattice of K, ,

From these two tables, we repeat the process by building the corresponding lattices. This
example converges after 4 iterations to the lattices of Figure 5.7. This is from these two lattices
that we evaluate candidate link keys and select the final link keys. The details of the process are

explained in the next section.

Concept 3:
(i3, 2), (i1, 2), (i1, 1), (B2, 1)
(3,j3), (i1, J3), (i2, j3) (2, j3),
(i3,/1), (2, 12)}
{(V3,hm,hm) : C5}

Concept 5:
{(is, js), (s, Jo), (ia, ja)
(i, ja), (ia, jo): (i6, J5)
(i, Jo): (is ja), (ia; j5)}
{(V3,0w,ow) : C3}

Concept 1:
{(i2.2). (i, 1) (i3, 73),
(i3,2), (12, j3)}
{(v3,1n,1n),(¥3,hm, hm) : C4,
(v3,hm,hm) : C5}

Concept 13:

{(@3,.12), (i2, 1), (33, 3),
(i3,73), (2, j3)}
{(v3,1n,1n),(V3,hm,hm) : C5,
(V3,hm, hm) : C10}

Concept 14:
Concept 8: {(i2, ), (i3, j3), (i3, J2),
{(i2,2), (i2, j3), (i1, 1) } (i2,3)}

{(V3,1n,1n),(V3,hm,hm) : C4,
(V3,hm, hm) : C5,(¥3,hm, hm) : C6}

(V3,hm, hm) : C10}

{(¥3,1n,1n),(V3,hm,hm) : C4,
(V3,hm, hm) : C5, (¥3,hm, hm) : C9,

Concept 2:
{(3, 73), (i2, j2) (i2, /1) }
{(V3,ct,ct),

(V3,hm, hm) : C10}

Concept 12:
{(i2, j2), (i2,.j3) }
{(v3,1n,1n),

(V3,hm, hm) : C4, (Y3, hm, hm) : C5,
(V3,hm, hm) : C6, (¥3, hm, hm) : C9,

(V3, £n, £n), (V3,hm, hm) : C5,

Concept 0:
{(i2,42) (i3, j3)}
{(V3, £n, £n),(V3,1n,1n),
(V3,hm, hm) : C4, (V3, hm,hm) : C5
(V3,hm, hm) : €9, (V3, hm, hm) : C10}

(V3,hm, hm) : C10, (V3,hm,hm) : C11}

Concept 7:
{(2,72)}

{(V3, £n, £n),(V3,1n,1n),
(V3,hm, hm) : C4, (V3 hm, hm) : C5,
(V3,hm, hm) : C6, (¥3, hm, hm) : C9,

(V3,hm, hm) : C10, (V3, hm, hm) : C11}

\

{3
(V3,£n,£n),(V3,1n, £n),
(V3,£n,1n),(V3,1n,1n),

(V3,hm, hm) : C4, (¥3, hm, hm) : C5,
(V3,hm, hm) : C6, (¥3, hm, hm) : C9.
(V3,hm, hm) : C10, (V3, hm,hm) : C11}

Figure 5.7 — Iteration 4: On the left the lattice of K,
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Concept 4:
{(is. js). (i6, js)- (is. je )

(i6, J6), (i, ja) }
{(V3,ct,ct),
(3,0w,0w) : C1,(¥,0ow,ow) : C3,
(V,ow,ow) : C8}

Concept 10:
{(is, js), (i6, js), (is, Jo )
(i6, ja), (ia, J6 ), (i6, j6) }
{(v3, 0w, 0w) : C2, (3, ow, ow) : C3,
(V3. 0w, 0w) : C13}

Concept 9:
{(is. js). (i6, js). (is, jo):
(i, jo) }

Concept 6:
is, js), (ia, ja), (is,

{(v3,ct, ct), (v3, ow,ow) : €O, {(gi sji?s(t‘)_](‘{,)iét’fc)i%
(V3,0w,0w) : C1,(V3,0w,0ow) : C2, (3, 0m,0w) : C1, (3, 0m,0w) : C3,
(V3, 0w, 0w) : C3,(V3, ow,ow) : C7, (¥3, 0m,0w) : C8}

(V3, 0w, 0w) : C8,(V3, 0w, 0w) : C12,

(V3, 0w, 0w) : C13,(V3, 0w, 0w) : C14}

Conceptl11:
{(is, js): (i6; jo) }
{(V3,st,st),(V3,ct,ct),

(V3, 0w, 0w) : CO,
(V3,0w,0w) : C1,(V3,0w,0w) : C2,
(V3, 0w, 0ow) : C3,(V3, 0w, ow) : C7,
(V3, 0w, 0w) : C8,(V3,0ow,ow) : C12,
(V3, 0w, 0w) : C13,(V3, ow,ow) : C14}

{
(v3,st,st),(V3,ct, st),
(V3,st,ct),(V3,ct,ct),

(v3, 0w,0w) : €O,
(V3, 0w, 0w) : CL, (V3, 0w, 0w) : C2,
(V3,0w,0w) : C3,(V3, 0w, 0w) : C7,
(v3, 0w, ow) : €8, (V3, 0w, 0w) : C12,
(V3, 0w, 0w) : C13, (73, 0w, ow) : C14}

and on the right the lattice of K,

1,€3 2,C4



5.4 Concepts and link keys

The results of the RCA process are lattices composed of concepts containing as extent pairs of
properties representing candidate link keys. However, as we can see in Figure 5.7, the extent are
composed by duplicated object properties, each one associated to a different concept. Indeed,
the RCA process propagates all the concepts of the lattice in relation. For instance, if we look at
the concept 8, we can see both (V3,hm,hm) : C4 and (V3, hm, hm) : C5. As concept 4 is more
specific than concept 5, we can remove (V3,hm, hm) : C5 without modifying the intent. More
generally, to simplify candidate link key, we can simply remove the less specific pairs of object
properties. Lattices of Figure 5.7 has been simplified and drawn in Figure 5.8.

Concept 3 - 0.50:
{(3,.12), (i1, 2), (i1 ),
(i2, /1), (13,73), (i1, 73)s
(2, J3), (i2, j3) (i3, 1)
(i2, j2)}
{(v3,hm, hm) : C5}

Concept 5 - 0.50:
{(s. Jjs), (is. Jo), (ia. ja),
(i j), (ia, Jo ), (i6: J5),
(i, jo), (s, ja), (ias j5) }
{(V3, 0w, 0ow) : C3}

Concept 1 - 0.75:
(2. 2), (i1, 1), (i3, 73),
(i3,2). (2, j3)}
{(v3,1n,1n),(V3,hm, hm) : C4}

Concept 13 - 0.48:
{(i3,72), (i2, 1), (i3, j3),
(3,3), (i2,.73), 0}
{(v3,1n,1n),(¥3,hm, hm) : C10}

Concept 10 - 0.48:
{(is, Js), (6. js)- (is. Jo),
(i6, ja), (ia, Jo), (i6, jo) }
{(V3,0w,ow) : C2}

Concept 4 - 0.75:
{(is. js), (i, Js), (is. Jo)
(i, je): (ia, ja)}
{(V3,ct,ct),(V,ow,ow) : C8}

Concept 8 - 0.74:
{2, 12), (12, j3) (i1, 1)}
{(v3,1n,1n),
(V3,hm,hm) : C6}

Concept 14 - 0.57:
{2, 12), (i3, J3)s (i3, 12),
(i2,/3)}
{(v3,1n,1n),(V3,hm, hm) : C9}

Concept 2 - 0.74:
{3, 73), (i2, j2), (i2, 1)}
{(v3,ct,ct),
(V3,£n, £n), (V3,hm, hm) : C10}

Concept 9 - 0.57:
{(s, Js), (6, js)- (is. Jo),
(76, o) }
{(V3,ct,ct),(V3,ow,ow) : CT}

Concept 6 - 1.00:
{(is, Js), (ias ja), (is, js) }
{(v3,st,st),(V3,ct,ct),
(V3, 0w, 0ow) : C8}

Concept 12 - 0.50:
{(i2,j2). (i2, 73)}
{(V3,1n,1n),
(V3,hm, hm) : C11}

Concept 0 - 0.80:
{(i2, j2). (i3, ja) }
{(v3, £n, £n),(v3,1n,1n),
(V3,hm, hm) : C9}

Conceptl1 - 0.80:
{(is, js), (i jo) }
{(v3,st,st),(V3,ct,ct),
(V3,0w,0w) : CT}

Concept 7 - 0.50:
{(i2,12)}
{(¥3, £n, £n),(V3,1n,1n),
(V3,hm, hm) : C11}

0.00
&

(V3,st,st),(V3,ct,st),
(V3,st,ct),(V3,ct,ct),
(V3,0w,0w) : CT}

0.00

(V3, £n,£n),(V3,1n, £n),
(V3,£n,1n),(V3,1n,1n),
(V3,hm, hm) : C11}

Figure 5.8 — Vector of link keys from the lattices of K, , and K., ,

As one can notice, the selection of a link key among a set of candidate link keys cannot
be performed individually for each lattice. We have to take into account the pairs of object
properties and overall their associated concepts. For instance, it does not make sense to extract
the link keys of the concepts 1 and 4 at the same time. On the first hand, the concept 1 is
associated to the concept 4. Hence, the concept 4 seems to be compatible with the concept 1. On
the other hand, the reciprocal statement is not true. The concept 4 is associated to the concept
8 which is more specific than the concept 1. Hence, if we choose as link key the extent of the
concept 1, the links composing the intent of the concept 4 are not compatible.

The pair of compatible concepts have been colourised. Moreover, the f-measure of each
link key is displayed beside the name of each concept. The process of selection of the best
vector of link keys is simply to extract compatible concepts by applying the reasoning we made
in the previous paragraph and by evaluating the sum of the f-measures of each vector. From
this example, the compatible vectors are (C3, C5), (C8, C6), (C2, C10) and (C7, C11) with
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respectively a f-measure of 1.0, 1.74, 1.22 and 1.30. Hence, (C8, C6) is the vector of link keys
that obtains the best f-measure and in consequence the link keys that allows the best linking. The
two link keys are {(V3,1n,1n),(V¥3,hm,hm)}) and {(V3, st,st),(V3,ct,ct), (V3, ow,ow)}.
In other word, identical researchers are identified by the fact that they have the same (and at
least one) last names and the same (and at least one) homes. Identical homes are identified by
the fact that they share the same (and at least one) cities and streets and the same (and at least
one) owner.

Our proposed process explores all the candidate link keys in order to then build a vector made
of the best compatible link keys. Contrary to what we remarked in the hierarchical approach of
our FCA encoding process, the extracted link keys are optimal.

5.5 Noisy example

We propose here to make the data a little bit more complex by adding noise. As we saw, the
previous example exhibits circular dependencies. However, none of the instances hold multiple
values for a given properties. In order to expose this kind of situation, one instance has been
added to each ontology. Moreover we also added multiple first name values as well as multiple
home values to some of the existing instances. Hence, contrary to the previous examples, all the
quantification will not apply for every pair of properties.

c; = myLab:Researcher

c3 = myCity:Inhabitant

. fn: Tylor
7% 1n; Durdon

fn: Paul
ip fn: Durdon
In: Tylor

. fn: Thom
1 n; Dupont

fn: Thomas
Jj1 fn: Thom
In: Dupont

5 fn: Thomas -
In: Dubois |

. fn: Lisa

= In: Dubois

¢4 = myCity:Place

. ct: Grenoble
T st Henry street
& ct: Paris
st: Paul street
. ct-: farll(s 5 ct: Paris
st: Jack street st: Jack street

Figure 5.9 — Case study 2: RDF graph of myLab on the left and myCity on the right

. fn: Thomas
% In: Dubois

Lab:
Siolng L)

. fn: Lisa
~ In: Dubois

me
o:qe 1AW

¢, = myLab:Location

P

=) . ct: Grenoble
4 st: Henry street

. ct: Paris
~ st: Paul street

V4 <
.N .N .“‘
(=) (9

We run the RCA process on this example and obtain the two lattices of Figure 5.8. As
before, the process terminates after 4 iterations. Adding noises to the data increases the
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size of the lattices and exposes more refined concepts. The vector of link keys resulting is
(C12, C2). They correspond to the link keys {(3,fn, fn),(V3,1n,1n),(v3, hm, hm)} and
{(V3,ct,ct),(V3,st,st),(V3,ow,ow)}. Hence, with respect to the previous example, the
addition of the first name has been necessary to discriminate the bad examples.

ow_ow: 05 0.40

e 1

(io, :O) (i2, :1)

(i2, J3), (i3, j0)

(i3, 12) (i0, j2)
Extent:

(v, hm_hm:C1)

\

ow_ow:C14 - 0.39 ow_ow:C20 - 0.50

Intent: Intent:
i1, j1), (i3, 3 (i1, j1), (i2, j0)
|3 j1), (i0, j3 (i3, J3), (i3, j1)
i0, 1), (i2, 2. (i0, 1), (i2, j2)
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Figure 5.10 — Lattices resulting from the noisy example

32



5.6 Conclusion

In this chapter, we addressed the problem of circular dependencies. Moreover, we saw how
to encode the link key extraction problem thanks to a relational context family. Then, we
highlighted its behaviour on two examples and show the different steps. The proposed encoding
is able to deal with both the multiplicity of values and the presence of object properties. From
the built lattices we have been able to extract multiple valid combinations of candidate link keys
and in consequence a set of link keys which is optimal according to the measures of selection.
The process does not require any alignment information and supports circular dependencies.

In the next chapter, we confront our approach to more concrete real life example and evaluate
it its performance. For that purpose, we compare it to other state of the art techniques. We start
by presenting the implementation of the FCA and RCA encoding. Then we present the results
obtained by the developed systems thanks to several experiments.
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6
Implementation and experiments

This chapter presents both how we implemented the FCA and RCA encodings and the experiment
we made. The first section details the implementation. It especially describes the different
modules. The second section of this chapter is composed of experiments. We particularly
present how to deal with the linking of instances about cities and arrondissement of data coming
from INSEE and GeoNames.

6.1 Implementation

Our goal was to experiment the proposed encodings. However, we have not been able to find
any open-source implementation of RCA. As the RCA algorithm uses FCA as foundation, we
resolved to extend an available implementation of FCA in order to build our own RCA system.

For that purpose, we choose a FCA library [16] developed in Python and that internally uses
the Norris algorithm [15]. We made this choice because this library proposes a very simple
interface and advanced tools such as scaling operations and exploration algorithms. Our first
attemps were to perform the FCA linking of two classes. For that purpose, we defined a textual
input format and implemented a parsing module to run some tests. As a result, we have been
able to reproduce the record linkage results of [3].

Our second try was to encode the FCA linking of two classes from INSEE-GeoNames.
The original implementation of FCA used a non-sparse representation of the incidence tables.
This characteristic caused memory issues due to the size of data set (see Section 6.2). In
order to overcome the issues, we forked the original FCA module in order to opt for a sparse
representation and consequently reduce the memory cost. The INSEE-GeoNames files are stored
in the RDF format. So, we also had to integrate the RDFLib library to our implementation to be
able to read them.

From this sparse implementation of FCA, we built the entire RCA process. We modified
the lattice representations and defined all the RCA elements such as relational contexts and
even scaled contexts. Due to efficiency issues, we implemented an ontology representation
which provides access to the elements in constant time. We also added two modules in order
to easily fetch the resulting link keys. Firstly, we added a module to export the lattices in a
image format thanks to GraphViz. Secondly, in order to build the example of this document,
the implementation has been fitted with a module exporting the tables in I&TEX. Finally, we
implemented a module of selection of link keys in order to extract vectors of link keys from the
produced lattices. Figure 6.1 illustrates the modules composing the RCA implementation.
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Figure 6.1 — Pipeline of the RCA implementation

6.2 Experiments

In this section, we present the experiments we made in order to evaluate the developed system.
First, we present the compliance tests that allows us to test its correctness. Second, we aim at
comparing link keys obtained thanks to our FCA encoding to another state of the art technique.
Finally, we use the RCA encoding to link two ontologies that cannot be handled by other actual
methods. As the V quantification obtains very close measures to the V3 one, we only use in the
rest of this section the 4 and Vd quantifications.

Compliance test

In order to test our implementation, we run the examples provided in this document. All results
presented in these examples have been computed by the developed system. Moreover, all these
examples have been verified by hand and our implementation is able to provide the expected
results.

The characteristics of the presented examples are specified in Table 6.1. The column #d-prop
and #o-prop respectively correspond to the number of datatype properties and object properties.
As one can notice, these examples contains only few instances. They do not constitute a real
evaluation. That is why the next section evaluates the system by using a larger data set.

Data sets | #instances | #d-prop | #o-prop | #iteration | #concepts | Time
Figure 4.2 12 18 6 1 11 0.0s
Figure 5.2 12 24 12 4 17 0.0s
Figure 5.9 14 30 16 4 29 0.1s

Table 6.1 — Characteristics of the compliant experiments
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INSEE-GeoNames with FCA

We aim at comparing the results of our FCA encoding to the method presented in [2]. Indeed,
this study proposes an optimised algorithm allowing to extract link keys from two aligned classes.
Hence, by using the same data, we are able to compare the resulting link keys. Moreover, as our
actual implementation does not perform any optimisation and perfectly reflects the theoretical
algorithm presented in this document, we aim at observing the limits of the latter.

The data set used is composed of two ontologies INSEE and GeoNames. They comprehend
data about French cities and arrondissments. INSEE is organised in two classes ‘city’ and
‘arrondissement’ which respectively have 36697 and 343 instances. GeoNames is organised by a
unique ‘feature’ class which has 36552 instances. INSEE cities and arrondissements have an
object property subdivisionDe representing the region of the location. Similarly GeoNames
features have two object properties parentFeature and parentMD3 for the same purpose’.

Figure 6.2 presents the RDFS graph of the two ontologies.

rdfs :rang% \Qfs :domain

geonames:Feature

insee:subdivisionDe insee:subdivisionDirecte rdfs: /g o\ rdfs:
rang . . \range
rdfs:domah dfs:range domain domain

insee:parentFeature | | insee:parentADM3

insee:Arrondissement

Figure 6.2 — RDFS graph of INSEE-GeoNames

For this experiment, we only use the city instances of the INSEE city class and of the
GeoNames feature class. We used the exact same protocol as [2]. Both classes hold object
properties. The related sameAs links has been provided in order to correctly evaluate the
corresponding properties.

Because we encountered performance problems, we overcome them by starting with a
reduced set of aligned instances and we then progressively increase the number of instances to
look at the performance. The reduced sets are only composed aligned instances from the two
classes.

#instances | #d-prop | #o-prop | #concepts Time | LK1 h-mean | LK2 h-mean
160 640 237 5 Ts 1.00 0.99
400 1609 582 5 Imin 1.00 0.99
1200 4796 1751 5 8min 1.00 0.99
2000 8065 2934 5 24min 1.00 0.99
2800 11270 4106 5 53min 0.99 0.99
4000 16167 5833 6 1h45min 0.99 0.99

Table 6.2 — Results of the FCA linking of INSEE-Geonames

I'The presentation of such data sets with one feature class for everything and apparently identical properties
parentADM3 and parentFeature may seem strange. However, such thing happen in real world data sets and
we did not modify them.
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Table 6.2 contains the results of the experiments. We denote by LK) the link key {(V3
,nom, name) }, by LK?2 the link key {(V3d nom,name), (V3, subdivisionDe,
parentFeature),(V3,subdivisionDe,parentADM3)} and by LK3 the link key { (V3
,subdivisionDe,parentFeature),(V3subdivisionDe,parentADM3)}.The lattice
obtained by the experiment on 600 instances of each class is displayed below. We can see inside
each node the obtained h-mean along with the number of pairs of linked instances and the
candidate link key.

0.02, G, {}

T T
—e— Processing Time
100 || g

n N
QO
=
=]
0.43 1.00 =
2129 pairs of instances 593 pairs of instances E 50 |- B
LK3 LK1 =
)
0.99 g
582 pairs of instances = 0 N

LK2

0 2,000 4,000
#instances

A first result is that we obtained the same link keys than the ones extracted in [2]. As one
can notice, the size of the data does not influence the size of the lattice as well as the resulting
link keys. It only influences the processing time what increases exponentially.

The extracted link keys are the same whatever the size of the sample. Hence it seems
possible to bypass the issue by extracting randomly multiple samples and by performing the
process on each one. The samples containing only few aligned instances would result in only
bad candidate link keys. In contrast, the samples containing enough aligned instances would
result on candidate link keys with good score. Hence, from these samples we would be able to
extract the link keys and to then interlink the entire data set. A further work would be to evaluate
the required proportion of the data sets in order to provide good results.

INSEE-GeoNames with RCA

The previous test was performed with FCA as in [2]. We now turn to test our RCA implementa-
tion. This time, we do not limit the process to only two aligned classes. On the opposite, we
chose to extract a link key for both city and arrondissement. The city and arrondissement classes
of INSEE as well the GeoNames feature class hold circular dependency. For each experiment,
we selected the same number of aligned instances of each class. Moreover, we ensured that the
extracted cities and arrondissements are in relations.

In spite of the ambiguity of the situation, we are able to understand from the results the
alignment as well as the linking function. Contrary to [2] and to all the other existing methods,
our RCA proposal does not require any information about the alignment. It extracts one link key
for the pair of classes (insee:City,geonames:Feature) denoted by Pl and a second
link key for the pair (insee:Arrondissement,geonames:Feature) denoted by P2.

We obtains the same vectors of link keys for each experiment: (LK1, LK1) and (LK2, LK)
where the first link key is used on P1 and the second on P2. Table 6.3 contains the results of the
RCA process.
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#instances | #d-prop | #o-prop | #concepts | #iteration | Time | & (LK1, LK1) | 47 (LK2, LK)
80 320 78 10 2 3min 0.80 0.78
152 612 160 12 4 23min 0.79 0.77
312 1228 321 16 3 12h 0.79 0.76

Table 6.3 — Results of the RCA linking of INSEE-Geonames

Similarly to what has been observed in the FCA experiments, the size of the lattice does not
increase with the size of the data set. It only increases the processing time. Figure 6.3 contains
the lattices resulting from the RCA encoding with 152 instances.
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Figure 6.3 — Lattices from the RCA Insee-GeoNames with 152 instances: above the
lattice of (insee:arrondissement,geonames:feature) and below the lattice of
(insee:city,geonames: feature)

6.3 Conclusion

In this chapter, we presented our implementation through the different modules composing it and
their interactions. We then proceeded to a first evaluation of both our implementation and the
two proposed encodings. The first experiment compared our FCA encoding to another state of
the art technique. We obtained similar link keys than this previous work. The second experiment
presented the linking of two ontologies by using the RCA encoding. Our method was able to go
beyond the limits of the state of the art by interlinking them and overall by successfully dealing
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with the ambiguity raised by the lack of information about alignment of the classes. Actually,
no other method is able to handle this kind of situation.

We also saw the limit of our implementation which could take advantage of further opti-
misations. [18] proposes a map-reduce version of Ganter’s Algorithm that allows to extract
formal concepts from a given formal context. Hence, similarly to our current implementation,
a future work is to reuse this FCA algorithm and built at the top of it a map-reduce version of
RCA algorithm.

The next chapter sums up the work done in this study.
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7
Conclusion

The amount of RDF data sets through the web is growing as well as the number of systems
requiring to interlink them. In this document, we presented a new approach to extract link keys.
We especially extended the FCA encoding made in [3] for relational tables in order to interlink
RDF data. This extension is not a trivial task due to two main problems: values for a given
property can be multiple and values of properties are not necessarily datatypes but can be other
objects of the graph.

We proposed an FCA encoding for pair of aligned classes. We have considered the EQ and
IN quantifications in order to deal the multiplicity of values of the properties. Concerning object
properties, we presented an hierarchical approach that allows to interlinking two ontologies
when the pairs of aligned classes are known. This proposal is subject to two limitations. The
first one is that the extracted link keys are not always the best. The second one is that the method
cannot deal with data holding dependency cycles.

In order to go beyond the two limitations, we proposed to use RCA to extract link keys. We
elaborated an encoding of the link key extraction problem that takes advantages of the relational
aspect of RCA. This new encoding is able to deal with the multiplicity of values and with object
properties. Moreover, the extracted link keys are always the best and circular dependencies are
now supported. Another important point is that this encoding does not require any information
about the alignment of the classes.

We provide an implementation of the methods in order to evaluate them. We have especially
been able to reproduce results obtained in previous studies. By doing experiments on the
INSEE-GeoNames data sets, we have been able to extract a link key for each pair of classes
despite a total ambiguity raised by the feature class of GeoNames. Despite that we also observed
the poor scalability of our implementation, none of the actual method is able to handle correctly
such a situation.

Several developments can be undertaken in order to complete this study. On the one hand,
our work provides an RCA encoding but reuses the classical RCA algorithm which forces us
to construct all the concepts of all the lattices. Thanks to an evaluation of the concepts at each
iteration, the trimming of certain concepts is conceivable. Similarly to a branch-and-bounds
algorithm, a drastic reduction of the search is possible at each iteration. Moreover, a map-reduce
version of the FCA has been proposed.

On the other hand, we saw that our method is able to link instances without any alignment
information. Hence, from the extracted link keys, descriptions of classes can be induced in order
to maximise the selection measures and to infer a description of the alignment. The initial aim
of RCA is to induce class descriptions. Hence, it seems to be an adapted tool for the task.
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