N. Amenta and M. W. Bern, Surface reconstruction by Voronoi filtering, SoCG, pp.39-48, 1998.
DOI : 10.1145/276884.276889

URL : http://www.cs.ucdavis.edu/~amenta/pubs/3dcrust.ps.gz

D. Attali, H. Edelsbrunner, and Y. Mileyko, Weak witnesses for Delaunay triangulations of submanifolds, Proceedings of the 2007 ACM symposium on Solid and physical modeling , SPM '07, pp.143-150, 2007.
DOI : 10.1145/1236246.1236267

D. Attali and A. Lieutier, Geometry-driven Collapses for Converting a ??ech Complex into a Triangulation of a Nicely Triangulable Shape, Discrete & Computational Geometry, vol.55, issue.8, pp.798-825, 2015.
DOI : 10.1109/TAC.2010.2047541

J. Boissonnat, R. Dyer, and A. Ghosh, Constructing intrinsic Delaunay triangulations of submanifolds
URL : https://hal.archives-ouvertes.fr/hal-00804878

J. Boissonnat, R. Dyer, A. Ghosh, and M. H. Wintraecken, Local criteria for triangulation of manifolds
URL : https://hal.archives-ouvertes.fr/hal-01661230

J. Boissonnat and A. Ghosh, Triangulating Smooth Submanifolds with Light Scaffolding, Mathematics in Computer Science, vol.41, issue.3, pp.431-461, 2010.
DOI : 10.1515/9781400877577

URL : https://hal.archives-ouvertes.fr/inria-00604004

J. Boissonnat and S. Oudot, Provably good surface sampling and approximation, Symp. Geometry Processing, pp.9-18, 2003.
DOI : 10.1016/j.gmod.2005.01.004

URL : http://geometrica.saclay.inria.fr/team/Steve.Oudot/papers/bo-pgsms-05/bo-pgsms-05.pdf

J. Boissonnat and F. Cazals, Natural neighbor coordinates of points on a surface, Computational Geometry, vol.19, issue.2-3, pp.155-173, 2001.
DOI : 10.1016/S0925-7721(01)00018-9

S. Cheng, T. K. Dey, and E. A. Ramos, Manifold reconstruction from point samples, SODA, pp.1018-1027, 2005.

K. Tamal and . Dey, Curve and Surface Reconstruction: Algorithms with Mathematical Analysis (Cambridge Monographs on Applied and Computational Mathematics), 2006.

T. K. Dey, J. Giesen, E. A. Ramos, and B. Sadri, CRITICAL POINTS OF DISTANCE TO AN ??-SAMPLING OF A SURFACE AND FLOW-COMPLEX-BASED SURFACE RECONSTRUCTION, International Journal of Computational Geometry & Applications, vol.32, issue.01n02, pp.1829-61, 2008.
DOI : 10.1007/s00453-003-1049-y

H. Federer, Curvature measures, Transactions of the American Mathematical Society, vol.93, issue.3, pp.418-491, 1959.
DOI : 10.1090/S0002-9947-1959-0110078-1

M. Gromov, M. Katz, P. Pansu, and S. Semmes, Metric structures for Riemannian and non-Riemannian spaces, 2007.

K. Menger, Untersuchungen ??ber allgemeine Metrik. Vierte Untersuchung. Zur Metrik der Kurven., Mathematische Annalen, vol.103, pp.466-501, 1930.
DOI : 10.1007/978-3-7091-6110-4_22

P. Niyogi, S. Smale, and S. Weinberger, Finding the Homology of Submanifolds with High Confidence from??Random??Samples, Discrete & Computational Geometry, vol.33, issue.11, pp.419-441, 2008.
DOI : 10.1007/b97315

R. S. Palais, Morse theory on Hilbert manifolds, Topology, vol.2, issue.4, pp.299-340, 1963.
DOI : 10.1016/0040-9383(63)90013-2

URL : https://doi.org/10.1016/0040-9383(63)90013-2

S. Scholtes, On hypersurfaces of positive reach, alternating Steiner formulae and Hadwiger's Problem. ArXiv e-prints, 2013.

J. H. Whitehead, On C 1 -Complexes, The Annals of Mathematics, vol.41, issue.4, pp.809-824, 1940.
DOI : 10.2307/1968861

E. C. Zeeman, Seminar on combinatorial topology, Institut des HautesÉtudesHautes´HautesÉtudes Scientifiques, 1963.

A. Corollary, We have: 1. For any ball B(p, r) of radius r < rch(M) centred at p ? M, B(p, r) ? M is a topological ball