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Abstract
We present criteria for establishing a triangulation of a manifold. Given a manifoldM , a simplicial
complex A, and a map H from the underlying space of A toM , our criteria are presented in local
coordinate charts forM , and ensure that H is a homeomorphism. These criteria do not require a
differentiable structure, or even an explicit metric on M . No Delaunay property of A is assumed.
The result provides a triangulation guarantee for algorithms that construct a simplicial complex
by working in local coordinate patches. Because the criteria are easily checked algorithmically,
they are expected to be of general use.
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1 Introduction

A triangulation of a manifold M is a homeomorphism H : |A| →M , where A is a simplicial
complex, and |A| is its underlying topological space. If such a homeomorphism exists, we
say that A triangulates M .

The purpose of this paper is to present criteria which ensure that a candidate map
H is indeed a homeomorphism. This work is motivated by earlier investigations into the
problem of algorithmically constructing a complex that triangulates a given manifold [6, 4].
It complements and is closely related to recent work that investigates a particular natural
example of such a map [11].

In the motivating algorithmic setting, we are given a compact manifoldM , and a manifold
simplicial complex A is constructed by working locally in Euclidean coordinate charts. Here
we lay out criteria, based on local properties that arise naturally in the construction of
A, that guarantee that H is a homeomorphism. These criteria, which are summarized in
Theorem 16, are based on metric properties of H within “compatible” coordinate charts
(Definition 4). The Euclidean metric in the local coordinate chart is central to the analysis,
but no explicit metric on |A| or M is involved, and no explicit assumption of differentiability
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© Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, and Mathijs Wintraecken;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://ramsaydyer.com/tmp/loccrit.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Local criteria for triangulation of manifolds

is required of H or M . However, our only examples that meet the required local criteria are
in the differentiable setting. We do not know whether or not our criteria for homeomorphism
implicitly imply that M admits a differentiable structure. They do imply that A is piecewise
linear (admits an atlas with piecewise linear transition functions).

Relation to other work
The first demonstrations that differentiable manifolds can always be triangulated were
constructive. Cairns [9] used coordinate charts to cover the manifold with embeddings
of patches of Euclidean triangulations. He showed that if the complexes were sufficiently
refined the embedding maps could be perturbed such that they remain embeddings and
the images of simplices coincide where patches overlap. A global homeomorphic complex
is obtained by identifying simplices with the same image. The technique was later refined
and extended [15, 14], but it is not easily adapted to provide triangulation guarantees for
complexes constructed by other algorithms.

An alternative approach was developed by Whitney [16] using his result that a manifold
can be embedded into Euclidean space. A complex is constructed via a process involving
the intersection of the manifold with a fine Cartesian grid in the ambient space, and it is
shown that the closest-point projection map, which takes a point in the complex to its unique
closest point in the manifold, is a homeomorphism.

More recently, Edelsbrunner and Shah [13] defined the restricted Delaunay complex of a
subset M of Euclidean space as the nerve of the Voronoi diagram on M when the ambient
Euclidean metric is used. They showed that if M is a compact manifold, then the restricted
Delaunay complex is homeomorphic to M when the Voronoi diagram satisfies the closed ball
property (cbp): Voronoi faces are closed topological balls of the appropriate dimension.

Using the cbp, Amenta and Bern [1] demonstrated a specific sampling density that is
sufficient to guarantee that the restricted Delaunay complex triangulates the surface. However,
since the complex constructed by their reconstruction algorithm cannot be guaranteed to be
exactly the restricted Delaunay complex, a new argument establishing homeomorphism was
developed, together with a simplified version of the algorithm [2].

Although it was established in the context of restricted Delaunay triangulations, the cbp
is an elegant topological result that applies in more general contexts. For example, it has
been used to establish conditions for intrinsic Delaunay triangulations of surfaces [12], and
Cheng et al. [10] have indicated how it can be applied for establishing weighted restricted
Delaunay triangulations of smooth submanifolds of arbitrary dimension in Euclidean space.

However, the cbp is only applicable to Delaunay-like complexes that can be realized as
the nerve of some kind of Voronoi diagram on the manifold. Thus, for example, it does
not necessarily apply to the tangential Delaunay complex constructed by Boissonnat and
Ghosh [6]. Secondly, even when a Delaunay-like complex is being constructed, it can be
algorithmically difficult to directly verify the properties of the associated Voronoi structure;
sampling criteria and conditions on the complex under construction are desired, but may not
be easy to obtain from the cbp. A third deficiency of the cbp is that, although it can establish
that a complex A triangulates the manifold M , it does not provide a specific triangulation
H : |A| →M . Such a correspondence allows us to compare geometric properties of |A| andM .

In [6] Whitney’s argument was adapted to demonstrate that the closest-point projection
maps the tangential Delaunay complex homeomorphically onto the original manifold. The
argument is intricate, and like Whitney’s, is tailored to the specific complex under considera-
tion. In contrast, the result of [2], especially in the formulation presented by Boissonnat and
Oudot [8], guarantees a triangulation of a surface by any complex which satisfies a few easily
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verifiable properties. However, the argument relies heavily on the the codimension being 1.
If a set of vertices is contained within a sufficiently small neighbourhood on a Riemannian

manifold, barycentric coordinates can be defined. So there is a natural map from a Euclidean
simplex of the appropriate dimension to the manifold, assuming a correspondence between the
vertices of the simplex and those on the manifold. Thus when a complex A is appropriately
defined with vertices on a Riemannian manifold M , there is a natural barycentric coordinate
map |A| →M . In [11], conditions are presented which guarantee that this map is a triangu-
lation. Although this map is widely applicable, the intrinsic criteria can be inconvenient,
for example, in the setting of Euclidean submanifold reconstruction, and furthermore the
closest-point projection map may be preferred for triangulation in that setting.

The argument in [11] is based on a general result [11, Proposition 16] for establishing that a
given map is a triangulation of a differentiable manifold. However, the criteria include a bound
on the differential of the map, which is not easy to obtain. The analysis required to show
that the closest-point projection map meets this bound is formidable, and this motivated the
current alternate approach. We have relaxed this constraint to a much more easily verifiable
bound on the metric distortion of the map when viewed within a coordinate chart.

The sampling criteria for submanifolds imposed by our main result applied to the closest-
point projection map (Theorem 17) are the most relaxed that we are aware of. The result
could be applied to improve the sampling guarantees of previous works, e.g., [10, 6].

In outline, the argument we develop here is the same as that of [2], but extends the result to
apply to abstract manifolds of arbitrary dimension and submanifolds of RN of arbitrary codi-
mension. We first show that the map H is a local homeomorphism, and thus a covering map,
provided certain criteria are met. Then injectivity is ensured when we can demonstrate that
each component of M contains a point y such that H−1(y) is a single point. A core technical
lemma from Whitney [16, Appendix II Lemma 15a] still lies at the heart of our argument.

Overview

The demonstration is developed abstractly without explicitly defining the map H. We assume
that it has already been established that the restriction of H to any Euclidean simplex in
|A| is an embedding. This is a nontrivial step that needs to be resolved from the specific
properties of a particular choice of H. The criteria for local homeomorphism apply in a
common coordinate chart (for |A| and M), and relate the size and quality of the simplices
with the metric distortion of H, viewed in the coordinate domain. The requirement that
leads to injectivity is also expressed in a local coordinate chart; it essentially demands that
the images of vertices behave in a natural and expected way.

After demonstrating the main result (Theorem 16), we mention some applications. In
particular, we briefly describe how this leads to Theorem 17, which presents criteria that
ensure that the closest-point projection map from a complex provides a triangulation of a
submanifold. The details can be found in the full version of this work [5].

2 The setting and notation

We assume that A and M are both compact manifolds of dimension m, without boundary,
and we have a map H : |A| →M that we wish to demonstrate is a homeomorphism. We first
show that H is a covering map, i.e., every y ∈M admits an open neighbourhood Uy such
that H−1(y) is a disjoint union of open sets each of which is mapped homeomorphically onto
Uy by H. In our setting it is sufficient to establish that H is a local homeomorphism whose
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image touches all components of M : Brouwer’s invariance of domain then ensures that H is
surjective, and, since |A| is compact, has the covering map property.
I Notation 1 (simplices and stars). In this section, a simplex σ will always be a full simplex ;
a closed Euclidean simplex, specified by a set of vertices together with all the points with
nonnegative barycentric coordinates. The relative interior of σ is denoted by relint(σ). If σ

is a simplex of A, the subcomplex consisting of all simplices that have σ as a face, together
with the faces of these simplices, is called the star of σ, denoted by St(σ); the star of a
vertex p is St(p).

We also sometimes use the open star of a simplex σ ∈ C. This is the union of the relative
interiors of the simplices in C that have σ as a face: st(σ) =

⋃
τ⊇σ relint(τ ). It is an open

set in |C|.
I Notation 2 (topology). If A ⊆ Rn, then the topological closure, interior, and boundary of
A are denoted respectively by A, int(A), and ∂A = A \ int(A).
I Notation 3 (linear algebra). The Euclidean norm of v ∈ Rm is denoted by |v|, and
‖A‖ = sup|x|=1 |Ax| denotes the operator norm of the linear operator A.

We will work in local coordinate charts. To any given map G : |C| → Rm, where C is a
simplicial complex, we associate a piecewise linear map Ĝ that agrees with G on the vertices
of C, and maps x ∈ σ ∈ C to the point with the same barycentric coordinates with respect
to the images of the vertices. The map Ĝ is called the secant map of G with respect to C.

The following definition provides the framework within which we will work.
I Definition 4 (compatible atlases). We say that |A| and M have compatible atlases for
H : |A| →M if:
(1) There is a coordinate atlas {(Up, φp)}p∈P for M , where the index set P is the set of

vertices of A and the sets Up are connected.
(2) For each p ∈ P, H(|St(p)|) ⊂ Up. Also, the secant map of Φp := φp ◦H||St(p)| defines a

piecewise linear embedding of |St(p)| into Rm. We denote this secant map by Φ̂p. By
definition, Φ̂p preserves the barycentric coordinates within each simplex, and thus the
collection {(St(p), Φ̂p)}p∈P provides a piecewise linear atlas for A.

I Observation 5. The requirement in Definition 4 that the local patches Up be connected
implies that on each connected component M ′ of M , there is a p ∈ P such that H(p) ∈M ′.

For convenience, we define p̂ = Φ̂p(p), so that Φ̂p(St(p)) = St(p̂). We will work within
the compatible local coordinate charts. Thus we are studying a map of the form

Fp : |St(p̂)| ⊂ Rm → Rm,

where

Fp = φp ◦H ◦ Φ̂−1
p , (1)

as shown in the following diagram:

|A| M

|St(p)| Up

|St(p̂)| φp(Up)

Rm Rm

H

Φ̂p

H||St(p)|

φp

Fp︷ ︸︸ ︷
φp◦H◦Φ̂−1

p
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We will focus on the map Fp, which can be considered as a local realisation of H||St(p)|.
By construction, Fp leaves the vertices of St(p̂) fixed: if q ∈ Rm is a vertex of St(p̂), then
Fp(q) = q, since Φ̂p conincides with φp ◦H on vertices.

3 Local homeomorphism

Our goal is to ensure that there is some open Vp ⊂ |St(p̂)| such that Fp|Vp
is an embedding

and that the sets Ṽp = Φ̂−1
p (Vp) are sufficiently large to cover |A|. This will imply that

H is a local homeomorphism. Indeed, if Vp is embedded by Fp, then Ṽp is embedded by
H|

Ṽp
= φ−1

p ◦ Fp ◦ Φ̂p|Ṽp
, since φp and Φ̂p are both embeddings. Since |A| is compact,

Brouwer’s invariance of domain, together with Observation 5, implies that H is surjective,
and a covering map. It will only remain to ensure that H is also injective.

We assume that we are given (i.e., we can establish by context-dependent means) a
couple of properties of Fp. We require that it be simplexwise positive, which means that it
is continuous and its restriction to any m-simplex is an orientation preserving topological
embedding. As discussed in [5, Appendix A], we can use degree theory to talk about
orientation-preserving maps even if the maps are not differentiable. The other requirement
we have for Fp is that when it is restricted to an m-simplex it does not distort distances very
much, as discussed below.

The local homeomorphism demonstration is based on Lemma 6 below, which is a particular
case of an observation made by Whitney [16, Appendix II Lemma 15a]. Whitney demonstrated
a more general result from elementary first principles. The proof we give here is roughly
the same as Whitney’s, except that we exploit elementary degree theory, as discussed in [5,
Appendix A], in order to avoid the differentiability assumptions Whitney made.

In the statement of the lemma, Cm−1 refers to the (m−1)-skeleton of the complex C: the
subcomplex consisting of simplices of dimension less than or equal to m− 1. When |C| is a
manifold with boundary, as in the lemma, then ∂C is the subcomplex containing all (m−1)-
simplices that are the face of a single m-simplex, together with the faces of these simplices.

I Lemma 6 (simplexwise positive embedding). Assume C is an oriented m-manifold finite
simplicial complex with boundary embedded in Rm. Let F : |C| → Rm be simplexwise
positive in C. Suppose V ⊂ |C| is a connected open set such that F (V ) ∩ F (|∂C|) = ∅. If
there is a y ∈ F (V ) \ F (|Cm−1|) such that F−1(y) is a single point, then the restriction of F
to V is a topological embedding.

Proof. Notice that the topological boundary of |C| ⊂ Rm is equal to the underlying space
of the boundary complex (see, e.g., [3, Lemmas 3.6, 3.7]): ∂|C| = |∂C|. Let Ω = |C| \ |∂C|.
Since F is simplexwise positive, and F (V ) lies within a connected component of Rm \F (∂Ω),
the fact that F−1(y) is a single point implies that F−1(w) is a single point for any w ∈
F (V )\F (|Cm−1|) (see [5, Lemma 49]). We need to show that F is also injective on V ∩|Cm−1|.

Let σ ∈ Cm−1 \ ∂C, and observe that the open star st(σ) (Notation 1) is open in Rm.
We now show that F (st(σ)) is open. Suppose x ∈ relint(τ ) for some τ ∈ C \ ∂C. Since F
is injective when restricted to any simplex, we can find a sufficiently small open (in Rm)
neighbourhood U of F (x) such that U ∩ F (∂st(τ )) = ∅. Since the closure of the open star is
equal to the underlying space of our usual star: st(τ ) = |St(τ )|, By [5, Lemma 49], every
point in U \F (|St(τ )m−1|) has the same number of points in its preimage. By the injectivity
of F restricted to m-simplices, this number must be greater than zero for points near F (x).
It follows that U ⊆ F (st(τ )).

CVIT 2016



23:6 Local criteria for triangulation of manifolds

If x ∈ st(σ), then x ∈ relint(τ ) for some τ ∈ C \ ∂C that has σ as a face. Since
st(τ ) ⊆ st(σ), we have U ⊆ F (st(σ)), and we conclude that F (st(σ)) is open.

Now, to see that F is injective on |Cm−1|∩V , suppose to the contrary that w, z ∈ |Cm−1|∩V
are two distinct points such that F (w) = F (z). Since F is injective on each simplex, there
are distinct simplices σ, τ such that w ∈ relint(σ) and z ∈ relint(τ ). So there is an open
neighbourhood U of F (w) = F (z) that is contained in F (st(σ)) ∩ F (st(τ )).

We must have st(σ) ∩ st(τ ) = ∅, because if x ∈ st(σ) ∩ st(τ ), then x ∈ relint(µ) for
some µ that has both σ and τ as faces. But this means that both w and z belong to µ,
contradicting the injectivity of F |µ. It follows that points in the nonempty set U \ |Cm−1|
have at least two points in their preimage, a contradiction. Thus F |V is injective, and it
follows from Brouwer’s invariance of domain that F |V is an embedding. J

Our strategy for employing Lemma 6 is to demand that the restriction of Fp to any
m-simplex has low metric distortion, and use this fact to ensure that the image of Vp ⊂
|Cp| is not intersected by the image of the boundary of |Cp|, i.e., we will establish that
Fp(Vp)∩Fp(|∂Cp|) = ∅. We need to also establish that there is a point y in Fp(Vp)\Fp(|Cm−1

p |)
such that F−1(y) is a single point. The metric distortion bound will help us here as well.
I Definition 7 (ξ-distortion map). A map F : U ⊂ Rm → Rm is a ξ-distortion map if for all
x, y ∈ U we have∣∣|F (x)− F (y)| − |x− y|

∣∣ ≤ ξ |x− y| . (2)

We are interested in ξ-distortion maps with small ξ. Equation (2) can be equivalently
written

(1− ξ) |x− y| ≤ |F (x)− F (y)| ≤ (1 + ξ) |x− y| ,

and it is clear that when ξ < 1, a ξ-distortion map is a bi-Lipschitz map. For our purposes
the metric distortion constant ξ is more convenient than a bi-Lipschitz constant. It is easy
to show that if F is a ξ-distortion map, with ξ < 1, then F is a homeomorphism onto its
image, and F−1 is a ξ

1−ξ -distortion map (see [5, Lemma 19(1)]).
Assuming that Fp|σ is a ξ-distortion map for each m-simplex σ ∈ Cp, we can bound how

much it displaces points. Specifically, for any point x ∈ |Cp|, we will bound |x− F (x)|. We
exploit the fact that the m+ 1 vertices of σ remain fixed, and use trilateration, i.e., we use
the estimates of the distances to the fixed vertices to estimate the location of F (x). Here,
the quality of the simplex comes into play.
I Notation 8 (simplex quality). The thickness of σ, denoted t(σ) (or just t if there is no risk
of confusion) is given by a

mL , where a = a(σ) is the smallest altitude of σ, and L = L(σ) is
the length of the longest edge. We set t(σ) = 1 if σ has dimension 0.
I Lemma 9 (trilateration). Suppose σ ⊂ Rm is anm-simplex, and F : σ → Rm is a ξ-distortion
map that leaves the vertices of σ fixed. If ξ ≤ 1, then for any x ∈ σ,

|x− F (x)| ≤ 3ξL
t
,

where L is the length of the longest edge of σ, and t is its thickness.

Proof. Let {p0, . . . , pm} be the vertices of σ. For x ∈ σ, let x̃ = F (x).
We choose p0 as the origin, and observe that

pi
Tx = 1

2

(
|x|2 + |pi|2 − |x− pi|2

)
, (3)
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which we write in matrix form as PTx = b, where P is the m×m matrix whose i-th column is
pi, and b is the vector whose i-th component is given by the right-hand side of (3). Similarly,
we have PTx̃ = b̃ with the obvious definition of b̃. Then

x̃− x = (PT)−1(b̃− b).

Since F (p0) = p0 = 0, we have ||x̃| − |x|| ≤ ξ |x|, and so

||x̃|2 − |x|2| ≤ ξ(2 + ξ) |x|2 ≤ 3ξL2.

Similarly, ||x− pi|2 − |x̃− pi|2| < 3ξL2. Thus |b̃i − bi| ≤ 3ξL2, and |b̃− b| ≤ 3
√
mξL2.

By [3, Lemma 2.4] we have
∥∥(PT)−1

∥∥ ≤ (
√
mtL)−1, and the stated bound follows. J

We assume that Fp is a ξ-distortion map on each simplex. The idea is to show that Fp
is an embedding on a set Vp that includes all the points x ∈ |St(p̂)| such that the barycentric
coordinate of x associated with p̂ in anm-simplex that contains x is at least 1

m+1 . (That is the
homothetic copy of |St(p̂)|, “shrunk” by a factor of 1− 1

m+1 , using p̂ as the origin.) To be more
specific we define Vp to be the open set consisting of the points in |St(p̂)| whose barycentric
coordinate with respect to p̂ is strictly larger than 1

m+1 − δ, where δ > 0 is arbitrarily small.
Since the barycentric coordinates in each m-simplex sum to 1, and the piecewise linear maps
Φ̂p preserve barycentric coordinates, this ensures that the sets Φ̂−1

p (Vp) cover |A|.
In order to employ the simplexwise positive embedding lemma (Lemma 6), we need

to establish that there is a point in Vp \ |Cm−1
p | that is not mapped to the image of any

other point in |Cp|. We choose the barycentre of a simplex for this purpose. We say that a
simplicial complex is a pure m-dimensional simplicial complex if every simplex is the face of
an m-simplex.
I Lemma 10 (a point covered once). Suppose C is a pure m-dimensional finite simplicial
complex embedded in Rm, and that for each σ ∈ C we have t(σ) ≥ t0. If F : |C| → Rm leaves
the vertices of C fixed, and its restriction to any m-simplex in C is a ξ-distortion map with

ξ ≤ 1
6

m

m+ 1 t
2
0, (4)

then F−1(F (b)) = {b}, where b is the barycentre of an m-simplex in C with the largest
diameter.

Proof. Let σ ∈ C be an m-simplex with the largest diameter, i.e., L(σ) ≥ L(τ ) for all τ ∈ Cp.
Let b be the barycentre of σ. The distance from b to the boundary of σ is

a(σ)
m+ 1 = mt(σ)L(σ)

m+ 1 .

Using Lemma 9, we will be sure that F−1(F (b)) = {b} provided that for any τ ∈ Cp we
have

3ξL(σ)
t(σ) + 3ξL(τ )

t(τ ) <
mt(σ)L(σ)
m+ 1 ,

which is satisfied when the constraint (4) is met. J

Now we also need to ensure that Fp(Vp) ∩ Fp(|∂Cp|) = ∅. Here we will explicitly use the
assumption that Cp is St(p̂). We say that St(p̂) is a full star if its underlying space is an
m-manifold with boundary and p̂ does not belong to ∂St(p̂).

CVIT 2016



23:8 Local criteria for triangulation of manifolds

I Lemma 11 (barycentric boundary separation). Suppose St(p̂) is a full m-dimensional star
embedded in Rm. Let a0 = minσ∈St(p̂) ap̂(σ) be the smallest altitude of p̂ in the m-simplices
in St(p̂). Suppose x ∈ σ ∈ St(p̂), where σ is an m-simplex, and λσ,p̂(x), the barycentric
coordinate of x with respect to p̂ in σ, satisfies λσ,p̂(x) ≥ α. Then dRm(x, |∂St(p̂)|) ≥ αa0.

If t0 is a lower bound on the thicknesses of the simplices in St(p̂), and s0 is a lower bound
on their diameters, then dRm(x, |∂St(p̂)|) ≥ αmt0s0.

Proof. Since we are interested in the distance to the boundary, consider a point y ∈ |∂St(p̂)|
such that the segment [x, y] lies in |St(p̂)|. The segment passes through a sequence of
m-simplices, σ0 = σ,σ1, . . . ,σn, that partition it into subsegments [xi, yi] ⊂ σi with x0 = x,
yn = y and xi = yi−1 for all i ∈ {1, . . . , n}.

Observe that λσi,p̂(xi) = λσi−1,p̂(yi−1), and that

|xi − yi| ≥ ap̂(σi)|λσi,p̂(xi)− λσi,p̂(yi)|.

Thus

|x− y| =
n∑
i=0
|xi − yi| ≥

n∑
i=0

ap̂(σi)|λσi,p̂(xi)− λσi,p̂(yi)| ≥ a0

n∑
i=0

(λσi,p̂(xi)− λσi,p̂(yi))

= a0(λσ,p̂(x)− λσn,p̂(y)) = a0λσ,p̂(x) ≥ a0α.

From the definition of thickness we find that a0 ≥ t0ms0, yielding the second statement
of the lemma. J

Lemma 11 allows us to quantify the distortion bound that we need to ensure that the
boundary of St(p̂) does not get mapped by Fp into the image of the open set Vp. The
argument is the same as for Lemma 10, but there we were only concerned with the barycentre
of the largest simplex, so the relative sizes of the simplices were not relevant as they are here
(compare the bounds (4) and (5)).
I Lemma 12 (boundary separation for Vp). Suppose St(p̂) is a full star embedded in Rm, and
every m-simplex σ in St(p̂) satisfies s0 ≤ L(σ) ≤ L0, and t(σ) ≥ t0. If the restriction of Fp
to any m-simplex in St(p̂) is a ξ-distortion map, with

ξ <
1
6

m

m+ 1
s0

L0
t20, (5)

then Fp(Vp) ∩ Fp(|∂St(p̂)|) = ∅, where Vp is the set of points with barycentric coordinate
with respect to p̂ in a containing m-simplex strictly greater than 1

m+1 − δ, with δ > 0 an
arbitrary, suffiently small parameter.

Proof. If x ∈ σ ∈ St(p̂) has barycentric coordinate with respect to p̂ larger than 1
m+1 − δ,

and y ∈ τ ∈ ∂St(p̂), then Lemmas 9 and 11 ensure that Fp(x) 6= Fp(y) provided

3ξL(σ)
t(σ) + 3ξL(τ )

t(τ ) ≤
(

1
m+ 1 − δ

)
ms0t0,

which is satisfied by (5) when δ > 0 satisfies

δ ≤ 1
m+ 1 −

6L0ξ

ms0t20
. J

When inequality (5) (and therefore also inequality (4)) is satisfied, we can employ the
embedding lemma (Lemma 6) to guarantee that Vp is embedded:
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I Lemma 13 (local homeomorphism). Suppose M is an m-manifold and A is a simplicial
complex with vertex set P. A map H : |A| →M is a covering map if the following criteria
are satisfied:
(1) manifold complex A is a compact m-manifold complex (without boundary).
(2) compatible atlases There are compatible atlases for H (Definition 4).
(3) simplex quality For each p ∈ P, every simplex σ ∈ St(p̂) = Φ̂p(St(p)) satisfies

s0 ≤ L(σ) ≤ L0 and t(σ) ≥ t0 (Notation 8).
(4) distortion control For each p ∈ P, the map

Fp = φp ◦H ◦ Φ̂−1
p : |St(p̂)| → Rm,

when restricted to any m-simplex in St(p̂), is an orientation-preserving ξ-distortion map
(Definition 7) with

ξ <
ms0t

2
0

6(m+ 1)L0
. J

4 Injectivity

Having established that H is a covering map, to ensure that H is injective it suffices to
demonstrate that on each component of M there is a point with only a single point in its
preimage. Injectivity follows since the number of points in the preimage is locally constant
for covering maps.

Since each simplex is embedded by H, it is sufficient to show that for each vertex q ∈ P,
if H(q) ∈ H(σ), then q is a vertex of σ. This ensures that H−1(H(q)) = {q}, and by
Observation 5 each component of M must contain the image of a vertex.

In practice, we typically don’t obtain this condition directly. The complex A is constructed
by means of the local patches Cp, and it is with respect to these patches that the vertices
behave well.
I Definition 14 (vertex sanity). If H : |A| →M has compatible atlases (Definition 4), then H
exibits vertex sanity if: for all vertices p, q ∈ P, if φp ◦H(q) ∈ |St(p̂)| = Φ̂p(|St(p)|), then q
is a vertex of St(p).

Together with the distortion bounds that imposed on Fp, Definition 14 ensures that the
image of a vertex cannot lie in the image of a simplex to which it does not belong:
I Lemma 15 (injectivity). If H : |A| → M satisfies the hypotheses of Lemma 13 as well as
Definition 14, then H is injective, and therefore a homeomorphism.

Proof. Towards a contradiction, suppose that H(q) ∈ H(σ) and that q is not a vertex of the
m-simplex σ. This means there is some x ∈ σ such that H(x) = H(q). Let p be a vertex
of σ. The vertex sanity hypothesis (Definition 14) implies that φp ◦H(q) must be either
outside of |St(p̂)|, or belong to its boundary. Thus Lemmas 11 and 9, and the bound on ξ
from Lemma 13(3) imply that the barycentric coordinate of x with respect to p must be
smaller than 1

m+1 : Let x̂ = Φ̂p(x), and σ̂ = Φ̂p(σ). Lemma 9 says that

|Fp(x̂)− x̂| ≤ 3ξL0

t0
<

ms0t0
2(m+ 1) ≤

a0

2(m+ 1) ,

where a0 is a lower bound on the altitudes of p̂, as in Lemma 11. Since Fp(x̂) = φp◦H(x) is at
least as far away from x̂ as ∂St(p̂), Lemma 11 implies that the barycentric coordinate of x̂ ∈ σ̂

with respect to p̂ must be no larger than 1
2(m+1) . Since Φ̂p preserves barycentric coordinates,

CVIT 2016
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and the argument works for any vertex p of σ, we conclude that all the barycentric coordinates
of x in σ are strictly less than 1

m+1 . We have reached a contradiction with the fact that the
barycentric coordinates of x must sum to 1. J

5 Main result

To recap, Lemmas 13 and 15 yield the following triangulation result. In the bound on ξ from
Lemma 13(3), we replace the factor m

m+1 with 1
2 , the lower bound attained when m = 1.

I Theorem 16 (triangulation). Suppose M is an m-manifold, and A is a simplicial complex
with vertex set P. A map H : |A| → M is a homeomorphism if the following criteria are
satisfied:
(1) manifold complex A is a compact m-manifold complex (without boundary).
(2) compatible atlases There are compatible atlases for H (Definition 4):

{(St(p), Φ̂p)}p∈P , St(p) ⊂ A, and {(Up, φp)}p∈P , Up ⊂M.

(3) simplex quality For each p ∈ P, every simplex σ ∈ St(p̂) = Φ̂p(St(p)) satisfies
s0 ≤ L(σ) ≤ L0 and t(σ) ≥ t0 (Notation 8).

(4) distortion control For each p ∈ P, the map

Fp = φp ◦H ◦ Φ̂−1
p : |St(p̂)| → Rm,

when restricted to any m-simplex in St(p̂), is an orientation-preserving ξ-distortion map
(Definition 7) with

ξ <
s0t

2
0

12L0
.

(5) vertex sanity For all vertices p, q ∈ P , if φp ◦H(q) ∈ |St(p̂)|, then q is a vertex of St(p).
J

I Remark. The constants L0, s0, and t0 that constrain the simplices in the local complex
St(p̂), and the metric distortion of Fp in Theorem 16 can be considered to be local, i.e., they
may depend on p ∈ P . This result applies for any dimension m, but for m ≤ 2, triangulation
criteria already exist which demand neither a lower bound on the size (s0), nor on the quality
(t0) of the simplices [2, 8].

Application: submanifolds of Euclidean space
As a specific application of Theorem 16, we consider a smooth (or at least C2) compact
m-dimensional submanifold of Euclidean space: M ⊂ RN . A simplicial complex A is built
whose vertices are a finite set P sampled from the manifold: P ⊂M . The motivating model
for this setting is the tangential Delaunay complex [6]. In that case A is constructed as a
subcomplex of a weighted Delaunay triangulation of the ambient space RN , so it is necessarily
embedded. However, in general we do not need to assume a priori that A is embedded in RN .
Instead, we assume only that the embedding of the vertex set P ↪→ RN defines an immersion
ι : |A| → RN . By this we mean that for any vertex p ∈ P we have that the restriction of ι to
|St(p)| is an embedding.

At each point x ∈M , the tangent space TxM ⊂ TxRN is naturally viewed as an affine
flat in RN , with the vector-space structure defined by taking the distinguished point x as the
origin. The maps involved in Theorem 16 will be defined by projection maps. The coordinate
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charts are defined using the orthogonal projection prTpM : RN → TpM. As discussed in [5,
Section 4.3], for a sufficiently small neighbourhood Up ⊂M , we obtain an embedding

φp = prTpM |Up : Up ⊂M → TpM ∼= Rm,

which will define our coordinate maps for M .
For the map H : |A| →M , we employ the closest point projection map. The medial axis,

ax(M) is the set of points x ∈ RN that have more than one closest point on M , and ax(M)
is its closure. The open set UM = RN \ ax(M) contains M and each point in it has a unique
closest point on M , so the closest-point projection map prM : UM →M is well-defined (see,
e.g., [5, Section 4.1]). We define H = prM ◦ ι.

The local feature size, is the function lfs : M → R≥0 defined by lfs(x) := dRN (x, ax(M)).
It is easily verified that this function is continuous. It plays an important role as a sizing
function that governs the density of sample points (vertices of A) that are required to
construct a triangulation.

As demanded by Definition 4, for each p ∈ P the coordinate map Φ̂p for A is the secant
map of φp ◦H restricted to |St(p)|, and since prTpM is already a linear map, and prM is the
identity on the vertices, this means Φ̂p = prTpM ◦ ι||St(p)|.

In order to employ Theorem 16, we need to analyze the projection maps to obtain metric
distortion bounds on the restriction to m-simplices. For the projection onto the tangent
spaces, this analysis ([5, Section 4.3]) yields bounds on the size of the simplices and coordinate
neighbourhoods such that the compatible atlas criterion will be automatically satisfied. Thus
the compatible atlas criterion does not appear explicitly in the statement of Theorem 17; it
has been subsumed by the proof.

The metric distortion of prM restricted to an m-simplex is analyzed in [5, Section 4.4],
using recent bounds on the angle between nearby tangent spaces [7]. The distortion bounds on
the different projection maps yields a distortion bound on their composition, Fp. In order to
obtain a bound in this fashion, it is necessary choose a metric on M . We employed the metric
of the ambient space RN restricted toM , rather than the intrinsic metric of geodesic distances.

The simplex quality and sampling criteria of Theorem 17(b) are tailored to ensure that
the metric distortion criterion of Theorem 16(4) is met. Thus an explicit metric distortion
condition does not appear in the statement of Theorem 17. Some adjustment was also made
so that the simplex quality conditions in Theorem 17(b) refer to the ambient simplices of A,
rather than the projected simplices in the tangent spaces, as required by Theorem 16.

We then arrive at the following specific incarnation of Theorem 16:

I Theorem 17 (triangulation for submanifolds). Let M ⊂ RN be a compact C2 manifold, and
P ⊂M a finite set of points such that for each connected component Mc of M , Mc ∩ P 6= ∅.
Suppose that A is a simplicial complex whose vertices, A0, are identified with P, by a
bijection A0 → P such that the resulting piecewise linear map ι : |A| → RN is an immersion,
i.e., ι||St(p)| is an embedding for each vertex p.

If:
(a) manifold complex For each vertex p ∈ P , the projection prTpM |ι(|St(p)|) is an embedding

and p lies in the interior of prTpM (ι(|St(p)|)).
(b) simplex quality There are constants 0 < t0 ≤ 1, 0 < µ0 ≤ 1, and ε0 > 0 such that for

each simplex σ ∈ ι(A), and each vertex p ∈ σ,

t(σ) ≥ t0, µ0ε0 lfs(p) ≤ L(σ) ≤ ε0 lfs(p), ε0 ≤
µ

1
2
0 t

2
0

18 .
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(c) vertex sanity For any vertices p, q ∈ P , if q ∈ Up = BRN (p, r)∩M , where r = lfs(p)/15,
then prTpM (q) ∈ prTpM (ι(St(p))) if and only if q is a vertex of St(p).

Then:
(1) ι is an embedding, so the complex A may be identified with ι(A).
(2) The closest-point projection map prM ||A| is a homeomorphism |A| →M .
(3) For any x ∈ σ ∈ A,

δM (x) = |x̌− x| ≤ 7
3ε

2
0 lfs(x̌), and sin∠(σ, Tx̌) ≤ 13ε0

4t0
,

where x̌ = prM (x).

Using the reach, which is a global bound on the local feature size, rch(M) := infx∈M lfs(x),
we obtain the following variation of Theorem 17, which is a corollary in the sense that it
follows from essentially the same proof, even though it does not follow from the statement of
Theorem 17.

I Corollary 18. If the conditions (b) and (c) in Theorem 17 are replaced by
(b′) There are constants 0 < t0 ≤ 1, 0 < µ0 ≤ 1, and ε0 > 0 such that for each simplex

σ ∈ ι(A), and each vertex p ∈ σ,

t(σ) ≥ t0, µ0ε0 rch(M) ≤ L(σ) ≤ ε0 rch(M), ε0 ≤
µ

1
2
0 t

2
0

16 .

(c′) For any vertices p, q ∈ P, if q ∈ Up = BRN (p, r) ∩ M , where r = rch(M)/14, then
prTpM (q) ∈ prTpM (ι(St(p))) if and only if q is a vertex of St(p).

then the conclusions of Theorem 17 hold, and consequence (3) can be tightened to:
(3′) For any x ∈ σ ∈ A,

δM (x) = |x̌− x| ≤ 2ε20 rch(M), and sin∠(σ, Tx̌) ≤ 3ε0
t0
,

where x̌ = prM (x).

Discussion

Theorem 16 can be applied to any map that could serve as a triangulation. However, we only
know of two specific examples: the closest-point projection map featured in Theorem 17, and
the barycentric coordinate map [11] mentioned in the introduction.

Conditions guaranteeing that the barycentric coordinate map is a triangulation were
already established in [11], however the generic triangulation theorem [11, Proposition 16] on
which the result is based had a flaw, so that injectivity of the map is not guaranteed. This
flaw has been repaired, using the vertex sanity criterion (Definition 14); this is described in
[5, Appendix C], where the corrected statement of the theorem for the barycentric coordinate
map can be found [5, Theorem 60].

Theorem 16 also leads to triangulation criteria for the barycentric coordinate map.
However, the bound on the diameter of the simplices (the sampling radius) is proportional
to the square of the thickness bound t0 when Theorem 16 is employed, but it is only linear
in t0 when [11, Proposition 16] is used. This indicates that there is also room to improve the
bound on ε0 in Theorem 17(b) from quadratic to linear in t0.
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