N
N

N

HAL

open science

Peer-assisted Information-Centric Network (PICN): A
Backward Compatible Solution

Zeinab Zali, Ehsan Aslanian, Mohammad Hossein Manshaei, Massoud Reza
Hashemi, Thierry Turletti

» To cite this version:

Zeinab Zali, Ehsan Aslanian, Mohammad Hossein Manshaei, Massoud Reza Hashemi, Thierry Turletti.
Peer-assisted Information-Centric Network (PICN): A Backward Compatible Solution. IEEE Access,

2017, 5, pp.25005 - 25020. 10.1109/ACCESS.2017.2762697 . hal-01661617

HAL Id: hal-01661617
https://inria.hal.science/hal-01661617
Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01661617
https://hal.archives-ouvertes.fr

Peer-assisted Information-Centric Network (PICN):
A Backward Compatible Solution

Zeinab Zali*,Ehsan Aslanian*, Mohammad Hossein Manshaei*, Massoud Reza Hashemi*, and Thierry Turletti’
*Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111,
Iran
Email: z.zali@ec.iut.ac.ir, ehsan.aslanian@gmail.com, manshaei@cc.iut.ac.ir, hashemim @cc.iut.ac.ir
TUniversité Cote d’Azur, Inria, France
Email: thierry.turletti @inria.fr

Abstract—Information-Centric Networking (ICN) is a promis-
ing solution for most of Internet applications where the content
represents the core of the application. However, the proposed
solutions for the ICN architecture are associated with many
complexities including pervasive caching in the Internet and
incompatibility with legacy IP networks, so the deployment of
ICN in real networks is still an open problem. In this paper,
we propose a backward compatible ICN architecture to address
the caching issue in particular. The key idea is implementing
edge caching in ICN, using a coalition of end clients and edge
servers. Our solution can be deployed in IP networks with HTTP
requests. We performed a trace-driven simulation for analyzing
PICN benefits using IRCache and Berkeley trace files. The results
show that in average, PICN decreases the latency for 78% and
increases the content retrieval speed for 69% compared to a direct
download from the original web servers. When comparing PICN
with a solution based on central proxy servers, we show that the
hit ratio obtained using a small cache size in each PICN client
is almost 14% higher than the hit ratio obtained with a central
proxy server using an unlimited cache storage.

Index Terms—Information Centric Network, Caching, Peer-to-
Peer.

I. INTRODUCTION

As a result of a significant increase in content oriented
services, currently content delivery constitutes a big portion
of the Internet traffic. While the Internet is initially based
on end-to-end communication among hosts, which does not
necessarily correspond to the best solution for content delivery,
ICN proposes a content-centric paradigm in which the host
location is no more a key parameter. In this model, the original
server publishes the content into the network, and the network
is responsible for delivering it to every user who seeks that
content.

The main objective in ICN is replacing the content location
address with the content’s name. In addition to providing easier
and quicker access to content as a main part of the existing
network traffic, this feature will enable many capabilities in fu-
ture Internet including IoT. Therefore, enabling ICN will make
a big difference for the network services and applications.

Prior to ICN, providing content based services to the
users led to proposing Peer-to-Peer (P2P) [1] and Content
Distribution Networks (CDNs) [2]. P2P was originally used
to share contents among users, by creating an overlay on top
of existing IP networks. A content requested by a user is

provided by the clients that have stored that content. CDN
was initially designed to decrease the load on central servers
by caching the content in replica servers [2]. In addition, with
the help of Content Distribution Network, the content is moved
closer to the end-user, ensuring a lower latency for the end-
users and a lower traffic load in the network. Both of these
solutions are implemented on the existing network augmenting
it with additional capabilities. However, the aim in ICN is that
these capabilities are integrated into the network. Following
this principle, in ICN, contents are cached in network nodes,
and users request them using their names, while the network
provides each content from a close cache that contains it [3].

The main interests of ICN are lower response latency,
simplified traffic engineering, security, mobility and ability
to use in ad-hoc networking. To achieve these goals, ICN
architectures adhere to some principles including location-
independent naming, pervasive caching, nearest replica rout-
ing, and content-oriented security [4], [5]. Several ICN ar-
chitectures have been proposed based on these principles.
Despite the valuable benefits of these new designs, these
benefits are achieved with significant costs [6], [7]. First, most
of the ICN proposals are clean-slate designs, which makes
their deployment in real networks almost impossible in reality.
Indeed, it is important to propose a practical solution with
a migration path from existing networks to the new ICN
technology [8]. Second, developing a general infrastructure
that provides all the requirements of ICN (such as in-network
caching and distribution of content copies by name routing)
at the core of the network leads to significant hardware and
software complexities.

Several studies have analyzed the performance and benefits
of ICN accounting for the complexities inherent in ICN
architectures [6], [7]. Authors in [6] show that most of
the performance benefits of pervasive caching and nearest-
replica in Content-Centric Networking (CCN) can be achieved
through edge caching. So they have proposed edge caching
instead of pervasive caching to prevent complexity. Moreover,
the transition to a new network with ICN primitives has to be
smooth. So incremental deployment of ICN is recommended
instead of a clean-slate design that leads to invent new hard-
ware and software technologies with ICN primitives. In [6],
the authors suggest using HTTP to incrementally deploy ICN.
They also show that in-network caching can be limited to edge

networks to avoid major changes in network core.

Considering the above-mentioned challenges, in this paper,
we propose a backward compatible ICN architecture that
can be deployed incrementally in existing IP networks using
HTTP. We call this architecture Peer-assisted Information-
Centric Network (PICN), standing for Peer-assisted ICN.

The key idea in PICN is to implement edge caching in ICN
with the help of a coalition of end clients and network servers.
Furthermore, by joining to this coalition, each customer net-
work permits other customer networks to use its cache storage
for their web content requests. Also, PICN provides content-
centric security as one of the main ICN objectives.

The idea of sharing cached content by end clients in PICN is
similar to P2P solutions and uses some of the ideas developed
in P2P applications, but there is a major difference between
PICN and P2P. PICN is deployed within the local network and
is embedded transparently under the application layer while
P2P is deployed totally in the application layer as an overlay
over the Internet.

Our motivations to deploy PICN are based on three observa-
tions. First, as the request popularity obeys a Zipf distribution
[6], [9], so, popular contents should exist in local regions with
a good probability. Second, people in the same region usually
have similar tastes and needs, because they share cultural,
linguistic and social characteristics. Third, edge networks such
as enterprises, campus networks or Internet Service Providers
(ISP) are eager to decrease the external web traffic. Indeed,
they prefer using their local networks, because external traffic
for an ISP increases their operating cost, while intranet com-
munication results in low cost [10]. On the other hand, it is
valuable to leverage for caching the considerable amount of
unused resources (internal network links and storage capacity)
that are likely to exist locally [11]. An intuitive solution for
increasing efficiency and decreasing the cost is to share the
local cache of client machines via the local network. With
this approach and by applying ICN ideas, we introduce a
simple deployable ICN architecture in this paper. Finally, we
have developed a simple prototype of PICN and made several
experiments and simulations to evaluate its performance. The
code for prototype and the scripts of simulation are available
at GitHub'.

The main contributions of this article are: (1) deploying
an ICN at the edge of the legacy network that is compatible
with all the network and application layer protocols including
HTTP. (2) Leveraging clients resources for caching instead
of pervasive caching to ease the network cost to deploy
ICN while benefiting from lower latency and lower uplink
traffic. (3) Proposing a content-based security as one of the
main ICN primitives; the solution uses self-certifying content
instead of self-certifying name in order to be compatible with
HTTP URIs (Uniform Resource Identifier). (4) Suggesting
some privacy and incentive algorithms; since we use the
collaboration of the clients in providing the cache storage, we
need to deal with privacy and incentive issues.

'PICN prototype is available at https://github.com/zzali/PICN-framework,
and the simulation script is available at https://github.com/zzali/PICN-
simulation.

We have implemented a simple framework for PICN as a
proof of concept, and our simulations show that the cached
content by end clients can actually reduce the access time as
well as the uplink load in the network. Our simulation results
show that in average, PICN decreases latency for 78% and
speeds up the content retrieval for 69% compared to a direct
download from the original web servers.

The rest of the paper is organized as follows: Section
IT describes the PICN architecture which is analyzed and
evaluated in Section III. Section IV summarizes related works
and compares PICN with other proposals. Finally, Section V
concludes the paper.

II. PICN ARCHITECTURE

PICN aims to realize the ICN paradigm in the legacy
Internet simply by relying on content caching by the clients
besides some content tracking servers at the network edge to
provide the basic ICN features: location independent infor-
mation access, lower access latency, and inherent information
security. This will also result in a lower network uplink load
by reducing the load on the original publisher’s servers.

An important feature of PICN is that it is possible to deploy
it simply in legacy Internet via HTTP. Publishers can be legacy
HTTP servers who publish their contents as legacy web servers
only by adding a PICN meta-data in the HTTP header. More
precisely, PICN is deployable in each local network, using a
software framework that consists of a client software and a
seeker service.

The client software is a proxy program that is installed
on every client host who desires to benefit from PICN. The
simplest way to deploy a seeker is using a dedicated server
connected to the local network’s gateway more or less similar
to the way a proxy cache server is deployed in similar
networks. The seeker service is installed on this server by
the network administrator. All HTTP requests of the end-user
are received by the client software and redirected to a close
cache (if it exists) in the network through the seeker service.

Note that the function of handling HTTP requests at the
client could be later embedded into the network protocol stack
of the operating system as a built-in ICN support in case this
solution becomes widely deployed in the network.

A. PICN Framework

The PICN framework consists of two planes: a
cache storage plane and a management plane. Contents
are cached on the client machines, while the management
plane is implemented in seekers in the network. In this way,
cache storage is indeed close to clients that results in a lower
response time. Also, this is achieved with no extra hardware
costs for caching. Figure 1 shows a high-level view of the
proposed system.

Each client can retrieve the contents from her own cache
or other clients’ cache in her local network. Similarly, each
user can satisfy the requests of other users using her cache.
The caches and the requests are all handled by the seekers in
the management plane. Every customer network (LAN/ISP) in
this architecture is expected to host at least one seeker which

Local Ne

Local Network n

1'] End user + cache

Seeker

Local Network 2

Figure 1: High-level view of PICN architecture

is known by the client. The seeker’s address can be setup in
the client software.

B. PICN Network Construction

ICN functionalities are deployed on traditional networks
by constructing an overlay of PICN servers at the network
edge comprising the customer networks (LANSs/ISPs) who are
interested to join.

In this way, seekers from different local networks in PICN
establish an ICN overlay, constructed on the legacy IP network
layer. Note that the overlay can also be constructed in transport
or application layers [12]. However it is worth mentioning that
this overlay is quite different from the application layer overlay
built by the users of P2P networks. In PICN, when the HTTP
request for a content is not matched with the cached contents
in a local network, the request is forwarded by the seeker to
some of other seekers on the overlay of seekers. The request
is eventually forwarded to the original server if it is not found
by the seekers in the neighborhood. Generally, the overlay of
seekers provides the ICN service including the resolution of
the HTTP requests.

In the PICN overlay, seekers with low latency from each
other are assumed neighbors and virtual connections are es-
tablished in between. Here we employ the binning method pro-
posed in [13], where a set of nodes independently cluster them-
selves such that the nodes within a class are relatively close
to one another regarding network latency. This mechanism is
simple, scalable and distributed. For applying this scheme, we
require a set of well-known web servers as landmark machines
spread across the Internet. Each seeker measures its round-trip
time to these machines and independently selects a particular
class based on these measurement results. In this way, all the
seekers that are finally in the same class are nearby seekers
and therefore are considered as neighbors in the PICN overlay.

C. PICN Operation

To demonstrate the operation of the proposed architecture,
we present herein a practical scenario of PICN for a single
local network. Let us assume that Bob and Alice are studying
in the same university and are in the same subnet of the

Bob Alice
Browser 1.Seek sébker Browser
y : c A
2.Npt Found
" 5 Register
PICN Client PICN Client
(local proxy) | 3.Get(ccnintro.pd (local proxy)

>
\ 4.Content

Original web Server

(@
Bob Alice
3
Browser 0)93') 4 s Browser
A o o Sy A
. O, .
Do
S N
PICN Client +| PICN Client
(local proxy) 4. Content (local proxy)

(b)

Figure 2: A simple scenario with PICN, (a) Bob requests
a content for the first time, so the 5 steps in the figure is
performed, (b) Then Alice requests the same content as Bob
already received. So she fetches the content from Bob’s cache
storage in 4 steps.

campus network. They both have installed the PICN client
software on their machines.

Bob is looking for a presentation about content-centric
networking. He finds a good one and clicks on the following
link: http://netlab.iut.ac.itr/ccnintro.pdf. As Bob is running the
PICN client, the HTTP request is firstly received by the client
software (Figure 2-(a)). The client sends a “Seek” request for
the desired URI to the seeker server. The seeker returns “Not
Found” because the requested file does not exist in Bob’s
local network. So Bob’s client software retrieves the URI
using an ordinary HTTP request from the original server. After
completing the download, Bob’s client software registers this
content on the seeker using the “Register” command.

After a while, Alice requests the same content (ccnln-
tro.pdf). As in the previous scenario, her PICN client software
sends a seek request to the seeker. This time the seeker relays
the request to Bob’s client software which delivers the content
to Alice (Figure 2-(b)). The seeker maintains a lookup table
of mapping contents to clients. Details of this table will be
described later. Alice’s PICN client can check the integrity
and provenance of the data by the meta-data embedded in the
content (using the method described in the next section).

D. Cache Registration and Lookup

In this section, we describe registration and lookup pro-
tocols in PICN. First it should be mentioned that the
client software periodically sends Hello messages to the
seeker. Therefore, the seeker is aware of the users’ presence
in PICN.

Registration: Each seeker manages a table of registered
contents. This table is called Registered Information Table
(RIT) that includes an entry for each cached content including
the IP address of the client or storage that caches the content.
The table size might be a matter of concern like any other ICN
solution as it would be expected that the number of contents
would be large. However considering that this solution is
implemented in edge networks, the content pool size would be
limited. Obviously the size of pointers to contents cached in a
local network would be much less than the size of the contents
themselves that are stored in proxy cache servers serving edge
networks. Nevertheless the seeker can limit the caching based
on the limits it put on its RIT table size.

When a client receives a content, it registers the required
information about its cache in the seeker. Then the seeker
decides whether or not to register the content in that client
based on the PICN caching strategy. Various strategies can
be employed for the decision about redundant copies of
the same content on the local network. For example with
full redundancy, each client always caches the retrieved
content in its local storage and shares it with others; and
with no redundancy, at most one copy of each content is
cached in the local network. But we suggest popularity-
based redundancy; this approach chooses the admissible
number of redundant copies of a single content in the seeker’s
local network based on its popularity rank using the following
sigmoid function

M-1

o p—0.5\ + 17 1
1+6Xp(p02'0) ()

where M is the maximum number of redundant copies, and
p € (0,1] is the ratio of the content popularity to the number
of existent popularity classes (e.g. having P popularity classes,
for the gth popular content, p is computed by ¢/P). This
function is defined such that each content is cached at least
once and at most M times in a local network. Also, it permits
almost 50% of the most popular contents to be cached up to
M times.

For content retrieval in the case of redundant caching, the
seeker can select a copy among the redundant copies using
a cache selection policy such as choosing the least recently
used cache. With this simple method, the requests for the same
content can be distributed uniformly among the caches holding
that content. Another policy is to select the cache on a client
that has the lowest number of uploads to other clients at the
time of the request. Since PICN permits existence of more
than one providers for each content in a network, the requests
for popular contents are distributed among different providers.
So the upload traffic for each client is limited.

If the cache storage of the selected client machine for
caching is full, the client chooses one or more registered

objects to be replaced and then sends an unregister command
to the seeker for those objects. Items selection for replacement
is performed according to a cache replacement policy such as
Least Recently Used (LRU).

Cache registration, redundancy strategy, cache selection for
retrieval, cache replacement policy, and dynamic content cache
policy are not fundamental parts of our proposal and any
conventional method can be used. The frequency of cache
registration may seem to impose an overhead in the network.

Yet given the size of the messages exchanged for the
registration and given that this is all done within the boundary
of the local network, the overhead is not significant compared
to other local control messaging in the networks. However, as
a precautionary measure, the content registration process can
be done after aggregation to decrease the overhead. It means
that a set of contents can be registered on the seeker in one
registration request, instead of registering each single content
immediately after caching it locally. The waiting time and the
number of contents in one registration request can be custom
setup for every network.

Lookup: Assume A} is the jth host machine in the ith
customer network, and s; is its relevant seeker. When client
h requests content C' from seeker s;, the lookup process for
finding that content is as follows:

1. If some clients exist that have registered C' in RIT, the
seeker selects one of them, called hf, with its cache selection
policy.

2. If there is not an entry in RIT for C, s; sends a request
to a limited number of nearby seekers, sequentially or even
in parallel, and asks about the availability of C'. Each nearby
seeker, s, that has C' registered in its RIT, will reply to s;.
3. If cache lookup fails in all the previous steps, h] retrieves
C from the original server.

When a seeker does not receive a Hello message for a
while, it recognizes that the user machine is disconnected
from the correspondent seeker or has been turned off; so it
removes all of its registered items from the RIT. Whenever
this client connects again, the seeker registers all the items in
its cache storage. It is also possible to apply a partial download
mechanism when uplink and downlink bandwidth difference
is considerably high. So, one request can be served partially
by several responses from other clients and the original server.

If the clients of a customer network are behind a Network
Address Translation (NAT) and have private IP addresses,
NAT traversal methods such as ICE (Interactive Connectivity
Establishment) [14] can be used.

E. Naming and Security Model

PICN uses standard HTTP URIs for content naming to
achieve backward compatibility. But like other ICN proposals,
it needs a self-certifying naming system. We use the term
“self-certifying content” instead of “self-certifying name” and,
in our terminology, the content is a composite of the data
plus meta-data. Meta-data lets the content consumer check the
integrity and provenance of the data, without communicating
with the original content publisher.

Our proposed security model is similar to the data-centric
security method in NDN [15] since in both cases the security

Publisher

Certification Center

End user

[D.kp] ik

D: publisher domain

[D.kp .CR]

(k p’ kv): publisher keys

k

cp’ C

v): Certification Center

keyﬁ

CR=En([D, k1)
K p

cv

[D, kp , CR], Enc_h, ACF, C

D12 Dec, (CR)

Enc_h = Enck(Hash (C+URI))

v
ACF: Access_Control_Flag

kpis valid

‘Hash(C+URI) = Decy (Enc_h)‘
p

Figure 3: Sequence diagram of providing authenticity of original publisher and the data integrity

hy h, Seeker
Register (H)
H = Hash (URI(C)) ﬁ Seek (H) D
Found
Relay (H)
Enc_data = Enc C ﬁ
— Has}‘S(<(:+U)R)| j Enc_data L] C=Dec (Enc_data)

Figure 4: Sequence diagram of providing security during data request and transmission

is built into the data itself. The difference is that in NDN,
cryptographic keys are verified against consumers’ policies,
and each piece of data is signed together with its name,
securely binding them. But with PICN, verification is based
on Public Key Infrastructure (PKI) [16], and security binds
to the content instead of the content name. Consequently,
PICN achieves backward compatibility of the names with
the legacy HTTP URIs. Let’s see how meta-data can provide
this capability. The meta-data contains three fields: Publisher-
Domain-Certification, Encrypted-Hash, and Access-Control-
Flag. Here we describe the functionality of the two first fields.

Let us assume that we have a content C' and its URI is
U. in the domain D. Figure 3 presents the process of data
provenance and integrity. The Publisher-Domain-Certification
field binds the content domain to the publisher’s public key
K, and is verified using trusted third party’s public key K.
The Encrypted-Hash binds data to its hash and is verified
using K,. These two fields in the meta-data allow checking
the provenance and integrity of a received content in off-line
mode without additional delay. This leads to the following
benefits of ICN: (1) short response time, (2) ad-hoc operation,
(3) satisfaction of security issues for popular contents (i.e.,
provenance and integrity).

Through a simple change in the web server, it is possible
to include the meta-data in the HTTP header field. The
HTTP header contains valuable information about the content.
According to RFC 2068 [17], an extension-header mechanism
allows additional entity-header fields to be defined without
changing the protocol.

Finally, we propose an access control method in case content
access control and confidentiality are required. When the web
server desires to limit the access to some special contents,
it enables the Access-Control-Flag in meta-data. In this case,

the scenario of requesting a content starts with two parallel
requests: (1) The client requests an HTTP header from the
original web server using the content URI, (2) the client sends
a seek message for the content to the seeker using the hash
value of the content URI. The HTTP header can be transfered
using HTTPS in order to avoid man-in-the-middle attacks.

As shown in Figure 4, when a client h; downloads the
content C, h; advertises C' by registering it in the seeker
with name Hash(URI(C)). Note that it is encrypted with
Hash(C+URI). Now suppose that client hy requests content
C from the seeker. This request is sent with the same name,
sending Hash(URI(C)) to the seeker. The seeker matches
the request with registered contents and finds client h; which
has content C. Then the seeker sends a find message to ho
and also a command to h; to relay the content to hs.

When client h; receives the relay command, it delivers the
encrypted content C' to client ho. ho decrypts the encrypted
content with Hash(C'+U RI) (which is taken from the HTTP
header request in initial steps) and checks the integrity of
content C' also using Hash(C+URI). Since in PICN security
is embedded in the content itself, therefore publishers do not
require HTTPS anymore to provide channel-based security.

F. Privacy Preserving Model

Without caution, some unwanted information leak happens
during PICN’s registration and fetching processes. In particu-
lar, the requester can identify who has the content, the provider
can identify who wants the content, and the seeker can detect
both. This issue can violate PICN client users’ privacy. We
propose a mechanism based on the Tor anonymous network
[18] to account for this problem. The basic principle of Tor is
to redirect traffic over virtual tunnels through independent Tor
nodes, to anonymize the communication between two users.

— -

AR,
Content Publisher (CP)

AR
Random Neighbor (RN)

Seeker

Content Table

Forward Table

Registration Table

Registration ID | Content ID |Shared Secret| |Registration ID|

CP IP Registration ID| RN IP__ [Content ID| Shared Secret

Figure 5: Private content registration

Consumer

Provider

Figure 6: Private

Here we describe how PICN constructs a virtual secure tunnel
in communications with the help of the seeker.

Let the seeker own a pair of (private, public) keys and every
client have the seeker’s public key. This assumption enables
clients to asymmetrically encrypt data (using seeker’s public
key) and then send it to the seeker. Also, every client has a
neighborhood list, containing the IP addresses of some other
active clients (i.e. neighbors) in the network.

The client that wants to register some items on the seeker
(i.e. the content provider) chooses one of its neighbors ran-
domly, encrypts the registration message by the seeker’s public
key, and sends it to this random neighbor. This message
contains:

1. A registration ID: a unique identifier for keeping the record
of this registration. This field is not encrypted and the random
neighbor records it.

2. A random shared secret: a symmetric encryption key
for confidential communication in reverse direction from the
seeker to the content provider.

3. A set of content IDs (i.e. content hashes) that the client
wishes to register on the seeker.

The client also keeps the records that map these content IDs
to (registration ID, random shared secret) tuples in its content
table (Figure 5). Then, this randomly chosen neighbor (RN))
relays the message to the seeker. For keeping track of this
registration, the random neighbor records this transmission by
a pair of (registration ID, content provider’s IP address) in a
forward table (Figure 5). The seeker receives and decrypts the
message. To store the back-trace route, the seeker records the
random neighbor’s IP address as well as the registration ID,
random shared secret and content IDs (Figure 5). This way, the
seeker will be unaware of the original provider of the content.

When the seeker needs to communicate with the provider,
it encrypts the message using the shared secret embedded in
its registration table and sends it back to the random neighbor.

8

content fetching

The random neighbor forwards it to the client using its forward
table.

On the other hand, the client that requires a content (i.e.
consumer), sends her query message to the seeker through
one of its random neighbors(RN,.), as shown in Figure 6. This
message is also encrypted using the seeker’s public key and
contains two fields:

1. A transfer shared secret: a symmetric encryption key for
confidential data transfer from provider to consumer.

2. A set of content IDs (i.e. content hashes) that the client
wishes to acquire.

The seeker receives the query message, decrypts it using
its private key, looks up the content IDs in its registration
table and then sends deliver message(s) to the provider(s).
A deliver message contains the transfer shared secret and
content ID(s) fields and random neighbor’s (RN.) IP address.
This message is passed to the provider in encrypted form using
the mechanism mentioned before in Figure 6. On the other
side, the content provider after receiving the request message
encrypts the requested content using the transfer shared secret,
then it sends the content through backward route (to RV, then
RN,) for the consumer. Finally, RN, delivers the content to
the consumer. During this process, none of the agents acquire
additional information, and privacy cannot be violated unless
by a cooperation of a large number of agents.

Note that some users would prefer not to waste their band-
width and performance to prevent possible privacy concerns.
For this purpose, each client registers its content either directly
or through a random neighbor, with an adjustable probability
Belient- One important outcome of this mechanism is that the
overall privacy increases significantly. For instance, assume
that in the case a client has chosen to register its content
directly, this would not mean that there is no privacy for
this client. Indeed, the server does not know that the client
has registered the content directly or via a random neighbor.
Therefore the seeker cannot conclude that all contents and

queries are related to that client.

G. Incentive Design

As mentioned in Section II-F, each client in PICN has a set
of neighbors that cooperates with them. PICN is a reputation-
based system. It means that every client desires to cooperate
with clients that previously cooperated with them and has
a history of good cooperation. So for each client, a trust
score must be assigned that presents the amount of his recent
cooperation record in PICN. The value of local trust score that
each client assigns to every acquaintance can be calculated by
the number of satisfactory request or registration queries
carried between them.

One of the most well-known mechanisms for measuring the
trust in distributed networks is proposed in [19]. This method
assigns a global trust value to each client based on his history
of cooperation in the network. This global value is computed
for each client using the vector of local scores that is received
from the neighbor clients. In PICN, it is possible to compute
global trust values centrally in the seeker using the trust scores
of all the clients on the local network.

Trust value is an appropriate parameter in selecting the
neighbors for creating virtual tunnels in preserving privacy.
In data transfer, especially uploading a large data file, we
propose to use a token-based method [20] to incite the clients
to collaborate. As described in Section II-F, when a consumer
requests a content through its neighbor, data is transferred
back from the provider through this neighbor and the neighbor
of the provider. The consumer can give some tokens to her
neighbor. The consumer’s neighbor passes these tokens to the
neighbor of the provider and the provider itself. The number
of tokens owned by the clients can be taken into account
when computing the trust value of the clients. Besides, each
consumer must have sufficient tokens to request a content in
PICN. The details of trust computation and token distribution
are out of the scope of this paper and is part of future works.

III. PICN ANALYSIS AND EVALUATION

This section provides a comprehensive evaluation of per-
formance of PICN. We first analyze the signaling overhead
in PICN. Then, we present experimental results obtained with
PICN, and finally, in Section III-C, we present our simulation
and numerical results.

A. Signaling Overhead

Implementing PICN and its security mechanism involves
some signaling messages exchanged between the nodes and
some processing in the nodes that result in an overhead in
time and an extra latency in retrieving the content. The most
significant process in the seeker is a lookup in the dictionary
data structure of the cache. The lookup time is never more than
few milliseconds using indexing and hash table; therefore, we
can neglect the process time of the seeker. Here we determine
constraints on the delay values between two neighbor local
networks and the size of the requested content for the retrieval
latency of a content from the cache to be significantly less than

its retrieval latency from the original web server, in spite of
the signaling overhead.

First, let us assume that the average bandwidth and the delay
between the clients and the original web server are respectively
equal to r Mb/s and d ms. The authors in [21] compute
an average delay of 2 ms for internal links of domains and
34 ms for external links. Accordingly, we can assume that the
communication delay within a local network is less than the
communication delay of external links. Also, the bandwidth is
usually more abundant between machines on a local network
than between two neighbor local networks. Based on these
observations, we determine the bandwidth and delay values
on links in terms of r and d with the help of coefficients R,
Ryn, Di, D 5, Ds 5, and Dy, as follows:

bWiocal_net = TRy, Ry >1,
bWneighbor_net = T'Rnn, Rnn < Ry,
delayiocal_net = d/ Dy, Dy >1, 2
delayciient_seeker = d/Dec_s, D s < Dy,
delaysceker_secker = d/Ds_s, Ds_s < Dc_s,
delayneighbor_net = A/ Dppny, Dpn < Ds_s.

where bwiocal_net and bWpeighbor net are respectively the
bandwidth between two clients in a local network and
the bandwidth between two clients belong to two neigh-
bor networks. Furthermore, delayiocai net, d€layciient_seekers
delayseeker_seeker> and delayneighbor_net are respectively the
delay in local network, between a client and the seeker in its
local network, between two neighbor seekers, and between two
clients belonging to two neighbor networks. Now the transfer
time of a content is computed by

ﬂocal_client = S/(TRZ) + Qd/Dl + Ol7
Tremote_client = S/(""Rnn) + Zd/Dnn =+ Or7 (3)
Tweb_se’rver = S/r +2d + Ow,

where S is the content size; the transfer time of retrieving
a content from a client in the local network is Tjocqr_clients
from a client in the neighbor network is Tiemote_client and
from the original web server is Tiyep_server- O, Oy, and
O,, are overheads added to compensate for representing the
total overhead in transferring the content including server
load, network congestion and in particular the TCP protocol
overhead. Obviously, this overhead is smaller for transferring
the content in the local network. Note that, it is negligible for
contents with small size compared to large size. Therefore we
can ignore the overheads in the following comparisons and
constraints calculation in this section.

In the lookup function, two UDP packets are required for
two signaling messages including the seek request to the
seeker and its reply. Maximum size of each one is 85 B cor-
responding to the minimum size of UDP packet(52 B) +
ContentID(32 B) + Message Type(l B) (content ID is
the hash value of content URI generated by SHA-256). Since
the size of seek messages is negligible, we can estimate the
overhead of sending a seek message or receiving its reply
by the delay between a client and the seeker. According to

Equation (2), when a client requests a content from the seeker,
the signaling overhead is estimated by

ﬂocal_seek - 2d/-Dc_s + Ol7
Tremote_seek = 2d/Dc_s + 2d/Ds_s + 07’7

where Tjocai_seek 1S the signaling overhead if the content
exists in its local network; otherwise if the seeker asks its
neighbor networks, the signaling overhead is Tremote_seek-
Again because of the small size of the seek requests, the
value of O; and O, are negligible here. As we described in
Section II-E, to provide security for each content an HTTP
header request is used which is requested concurrently with
the content retrieval from the original server or a cache. Hence,
the signaling overhead of HTT P head request and its reply
can be computed by

“4)

THTTP_head = (h + md)/r +2d + Oh7 (5)

where h is the HTTP header size without meta-data, md is
the size of PICN meta-data, and Oy, is the extra overhead in
transferring HTTP response. Now if the inequalities

ﬂocal_client + Eocal_seek < THTTP_hcada (6)
Tremote_client + Trenwte_seek < THTTP_heada

are true, the HTTP header reply is received after retrieving the
whole content, so the content retrieval latency is equal to the
time of requesting and receiving an HTTP header; otherwise,
it is equal to T'local_client + ﬂocal_seek or Tremote_client +
Tremote_seek- In the first case, to make sure that the time for
requesting and receiving an HTTP header from the original
web server is smaller than the time of retrieving the whole
content from it, we must solve the inequality

THTTP_head < Tweb_ser'uer- (7)

Here if we assume that the whole content size is the
aggregate of its header size, h, and the content itself, s, then
by substituting Equation (5) into Equation (7), we obtain

h d h
REME L o< P54 o4, ®)
T
This inequality is true when
s > md,)]

so in this case, when the content size is greater than the meta-
data size, the PICN latency is lower than the original web
server latency. In the second case, corresponding to a worst
case scenario, the content is retrieved from the remote client,
so the retrieval time is equal to Tremote_client + Lremote_seck-
Therefore in order to retrieve the content from PICN faster
than the original web server, the inequality

(10)

Tremote_client + Tremote_seek < T'web_servem

must be true. By substituting Equation (3) and (4) into
Equation (10) and integrating, we get

Table I: Experiment information

Total duration 6 hours
Number of users 4

Total requests 11790
Total PICN supported requests | 8065
Total content size 3.24 GB
Hit ratio in clients 22.30%
Reduced external traffic ratio 27.36%

Now since Dy, < D, s < D, s, by substituting D. ; and
Dy s into D,,,, we obtain

S Ry 6
— —) (= — 2). 12
rd ” (Rnn*]-)(Dnn) ()
The equality in Equation (12) is true if
Dy = 3. 13)

So despite the signaling overhead, the total time for retrieving
a content with PICN is less than its retrieval time from the
original web server. Therefore, the two constraints for a lower
latency of PICN compared to the retrieval from the original
web server are: (1) the content size must be greater than the
PICN meta-data size (Equation 9), and (2) the delay between
the client and the original web server must be at least 3 times
greater than the delay between the two clients in the two
neighbor local networks (Equation 13).

If the requested content misses the available cache storage in
PICN, there is an overhead equal to T;-¢pmote_scer that is added
to the latency of receiving the content from the original web
server. We analyze this overhead by simulations, in Section
I-C.

B. Experimental Results

In this section, a local implementation of PICN is examined.
For this purpose, we developed the seeker and client softwares
in the QT cross-platform development framework.

The seeker framework is executed on an arbitrary machine
in a LAN. Any other machine on the LAN runs the client
framework (given the seeker machine IP address) to share its
own cache and use other clients’ cache storage. The client
framework plays the role of a proxy server for the browser,
S0 a proxy setting configuration is required for the browser
to use it. Accordingly, every HTTP request is forwarded to
the client framework and is replied through it. We determine
a set of content types for PICN that supports all the images,
videos and flash files. The contents of this set are cached and
retrieved by PICN. For all of the content types not covered
by this set, the client framework requests the content directly
from the original web server.

We performed a simple experiment (Table I). Four students
of the department were asked to install the client framework
on their machines. The seeker framework was installed on
a separate machine. The experiment was done in about 6
hours, monitoring the clients’ web surfing. We asked clients
to browse their desired pages contained images and video
downloads. In this period, a total number of 11790 HTTP
requests with a total traffic size of 3.244 G'B were issued
by the users. 68% of the requests are in the supported set

1.0

0.8

0.6

CDF of transfer rate

. + Clients
.- — Original Web servers

107 107 107 102
Transfer rate (Mb/s)

Figure 7: Average transfer rate in the experiment from different
providers. (The contents in the supported set which hit the
clients are retrieved from the clients; Content types that are
not supported and those which miss the clients are retrieved
from the original servers.)

102 —————
BB Clients
EEE Original Web servers
— 10}
G
>
13
c
[9]
©
4100
10!
HNSTOONTOONTOONT 0O
HMNMOANNEHANTOOODOOM
A ANINOOO MM~
I N< 00 WOWN LN
— Mmoo

Average size (kB)

Figure 8: Average latency for different average sizes in the
experiment

in this experiment. For 22.3% of this supported requests,
PICN succeeded to supply them from the clients and 16.3%
from the local cache of the clients, while 61.4% missed the
clients’ cache storage; therefore they were requested from the
original web servers. In this experiment, 27.4% of the external
bandwidth is saved by PICN (in addition to 6.9% which is
saved because of browser’s local cache).

Figure 7 presents the Cumulative Distribution Function
(CDF) of the transfer rate of HTTP contents when they are
retrieved from the original web servers or the clients. In the
diagram, the downloads from original web servers include both
missed contents in the clients and unsupported contents which
are directly retrieved from the web servers. As shown in this
figure, PICN downloads have significantly higher transfer rate
compared to downloads from the original web servers. As a
result, the latency of content retrieval is decreased when using
cache storage of clients on the local network, which is shown
in Figure 8.

Table II: Bandwidth and delay values for various client to
client links of simulation topology

layerl layer2 remote
Bandwidth | 80 Mb/s | 70 Mb/s | 60 Mb/s
Delay 0.25 ms 1 ms 10 ms

C. Simulation Results

We made a trace-driven simulation to investigate PICN with
more than one seeker, using real HTTP requests patterns. In
this evaluation, UC Berkeley Home IP Web Traces [22] and
Web cache access logs from the IRCache proxies® [23] were
used to generate the HTTP request patterns. The details are as
follows.

Each simulation is performed for some local networks.
Every local network is a two-tier topology of access switches,
as shown in Figure 9. A switch is connected to at most 24
clients and several layer 2 switches are connected to each layer
1 switch. It is also assumed that each local network is in the
neighborhood of another network with the probability of 0.33.
Also, if the content is not cached locally in the network, the
request is resolved by a neighbor seeker (with one hop from
the local seeker). If none of the seekers in the neighborhood
of the local seeker has a registered entry for the requested
content, it is requested from the original web server.

The client link is assumed to be 100 Mb/s from which
depending on the aggregation level some part will be
available for the PICN traffic. Table II represents the up-
load bandwidth and delay values for various links, be-
tween two clients connected to the same layer 1 switch
(layerl client to client), between two clients connected
to different layer 1 switches in the same local network
(layer2 client to client), between two clients in two neighbor
local networks (remote client to client). In addition, the
delay between a client and the seeker and between two
neighbor seekers are assumed 0.5 ms and 10 ms respectively.
Based on these delay values we estimate the signaling time
for a lookup based on the RTT between a client and seeker
or between two seekers. Also, the dedicated bandwidth value
on the external link for PICN is considered 800 Mb/s (from
total bandwidth of 1 Gb/s). This value is divided between all
the transfers from original web servers. So, the transfer rate
from the original web server depends on the web server speed
and the available bandwidth on the external link.

We estimate delay and bandwidth values for accessing
the web servers in trace files using a list of websites from
different categories of Alexa [24] top sites. For this reason, the
delay is computed by sending ICMP packets, and the average
bandwidth is estimated using the retrieval time of the first page
of each website. These values are assigned to the links between
the edge of the simulation network and each web server in the
trace files.

2The simulation script has been written in python using networkx and
FNSS (Fast Network Simulation Setup) packages. The simulation package is
available at code ocean with DOI: 10.24433/C0O.d553blad-81dd-4152-8bd6-
0165b78edad7

3Unfortunately IRCache web site is not available any more, however the
authors can be contacted to provide the trace files.

Seeker

layer 1 switch

Figure 9: Topology of local networks in the simulations

Table III: Berkeley trace files information

Date 1996
Total duration 4 days
Number of users 8374
Total number of requests 8559556
Total number of PICN supported requests | 5897643
Total number of contents 2230517
Maximum size of supported contents 4.3 GB
Average size of supported contents 9.6 KB
Total size of supported contents 57 GB

The security metadata length is assumed to be 1281 B*. Hit
ratio and the average latency for retrieving the contents are
computed by simulation. Latency is the time spent between
requesting an HTTP content and receiving the last byte of its
reply. For calculating the latency, the bandwidth on each link is
shared between all the simultaneous content flows on that link.
Transferring content between two clients on the same local
network is called local client retrieval and between two clients
of neighbor local networks is called remote client retrieval.

1) Berkeley trace files: This dataset includes 18 days of
HTTP traces gathered from the Home IP service offered by
UC Berkeley to students, faculty, and staff. There are 8559556
requests from 8374 clients for 2230517 different URLs in this
trace file. Table III describes trace file information. Given that
the number of different URLs is only about a quarter of the
number of requests, there are many redundant requests for the
same contents. So the hit ratio in the caches is high with this
dataset.

We also assume 10 local networks and 10 seekers for the
underlying overlay topology. We map 8374 clients uniformly
to the machines of all local networks. So for each local
network, there are about 837 clients that are connected to one
seeker. A cache storage of 100 M B is assigned to each client.
So the total cache storage of all the clients is about 83 GB
which is comparable to the total size of the supported contents
for caching in PICN which is about 57 G B. Simulation results
for the trace file show that the hit ratio is 37.4% in the local
machine caches, 24.2% in local clients and 10% in remote
clients; so total hit ratio is 71.6%. According to this simulation,
2.9% of external traffic is reduced using PICN with 100 M B
of cache size for each client.

The average latency for different sizes is computed and
presented in Figure 10 to clarify the latency improvement.
Figure 11 has some more details; we show latency in these

4(300 B for maximum length of an RSA-2048 public key structure) +
(245 B for an Encrypted SHA-512 hash value that is a maximum block size
for encrypting with RSA-2048) + (735 B for certification, since 3 blocks are
required for encrypting pair of publisher domain name and public key) +
(1B for access-control flag)

B Hit in PICN cache storages
Pure HTTP 7

N g 0 O N <
S N S O O o
n o o O = m
—w N < 0 ©
—

Average size (kB)

Figure 10: Content latency for Berkeley trace files simulation

10—
E== Hit in local clients -
Il Hit in remote clients]
102 || EEM Miss in PICN 7 !
Pure HTTP L
w
= 10! |
>
@)
c
L 100
o L |
-
10 g
107 L
H N S ®©® O N ©® © N S 0 © N <
© o~ n ~ (o] < [=2] [=)] o
A~ N In O © O +A mMm
4 N F o 0
Average size (kB)
(a) With security signaling overhead
wW—
E== Hit in local clients .
102 mEm Hit in remote clients W
B Miss in PICN -
Pure HTTP 7
—_ 1 E 7 B
@ 10
>
@) |
c
(O]
)
(1]
- B
N S ® © N S
4 N O O ®
n © © © o m
4 N §F o Q9

Average size (kB)
(b) Without security signaling overhead

Figure 11: Content latency for different providers when using
PICN or without PICN for Berkeley trace files

Table IV: IRCache trace files information

Date 9th Jan 2007
Total duration 24 hours
Number of users 816

Total number of requests 3803030
Total number of PICN supported requests | 3561233
Total number of contents 3290208
Maximum size of supported contents 730 MB
Average size of supported contents 46 KB

Total size of supported contents 163 GB

diagrams when the content is retrieved from different providers
in PICN. Pure HTTP indicates retrieving all the requests
using HTTP without asking PICN or using the local cache. The
diagrams show that for each average size, latency is slightly
lower for retrieving the content from PICN caches compared to
the original web server, except for the first content size class.
The different behavior of the diagram for the size below 2K B
is because of signaling overhead that is discussed in Section
1I-A.

Since the meta-data is assumed to be 1281 B in the
simulations, for the content sizes below this value, PICN
latency is greater than the original web server. This is because
of the overhead of access control in PICN. The diagram in
Figure 11-(b) represents the case for PICN without applying
security signaling. The delay between two neighbor local
networks is significantly higher than the delay between clients
in a local network. So remote client retrieval has a higher
latency compared to local client retrieval, even for small size
contents. Totally, latency is decreased using PICN with average
ratio of 78% and up to 99.7%. Consequently, content transfer
rate is improved with average ratio of 69.2% and up to 96.3%.

2) IRCache trace files: This dataset includes cache access
logs from the IRCache proxies during day 9th of January
2007 for 8 root cache servers located in cities throughout
the US (Table IV). We performed two simulations for each
day because the clients IP addresses have been anonymized
by changing the IP addresses and the mapping of real-to-
anonymous IP addresses are different from day to day. Some
IP addresses in the trace files are NAT addresses, so there
are many requests from these addresses for the same contents.
Therefore we consider 10 most repeated client addresses in
each trace file as NAT and assign uniformly one of the other
client addresses to the correspondent requests.

In this simulation, there are 816 clients, each one has a
cache storage of only 100 M B. With the described simulation
conditions for IRcache trace files, hit ratio is 11.8% in local
clients, 0.15% in remote clients and 5.2% in local machines.
Therefore totally 17.1% of the requests hit in PICN and conse-
quently 4.4% of external traffic is reduced. Figure 12 presents
the latency diagram for content retrieval. It is apparent that the
latency is decreased when using PICN for replaying IRCache
trace files. Further, content latency without signaling overhead
is shown in Figure 13-(b). According to these diagrams, for
IRCache trace files, latency is decreased using PICN with an
average ratio of 77.8% and up to 99.8%. Also, content transfer
rate is improved with an average ratio of 71.6% and up to
97.8%.

B Hit in PICN cache storages -
Pure HTTP 7

101
-2
10 o~ < [e) O o~ <
~ N < [e2] [«)] [ee]
n o o o — m
— o < [ee] (e}
—

Average size (kB)

Figure 12: Content latency for IRCache trace files simulation

10—
B Hit in local clients A
B Hit in remote clients r
10° || B Miss in PICN 7 !
Pure HTTP

Latency (s)
S

,_,
o
-

-2
10
A N < 0 O N I 0 VW N I 00 © N T
O N 1IN A4 N g O O o
- N In O O O o M
HN?OOg

Average size (kB)

(a) With security signaling overhead

103

B Hit in local peers ’
102 EE Hit in remote clients _ |
E Miss in PICN 7
Pure HTTP]

Latency (s)

128

256
1

1024

2048

4096

8192

16384

Average size (kB)
(b) Without security signaling overhead

Figure 13: Content latency for different providers when using
PICN or without PICN for IRCache trace files

Table V: Comparing hit ratio value in PICN with proxy servers

(a) Simulated proxy servers with Berkeley trace files

Client Local | Remote | Local Proxy Total Reduced
cache size | clients clients cache servers hit external traffic
PICN 10 MB 24.1% 10.5% 36.1% - 70.7% 2.6%
PICN 50 M B 24.2% 10% 37.4% - 71.6% 2.8%
PICN 100 M B 24.2% 10% 37.4% - 71.6% 2.9%
PICN 1GB 24.2% 11.8% 37.4% - 73.4% 4.8%
PICN 2 GB 24.2% 11.1% 37.4% - 72.7% 5%
PICN 5 GB 24.2% 12% 37.3% - 73.5% 92.4%
Proxy - - 24.7% | 34.4% | 59.1% 80%
servers
(b) IRCache proxy servers
Client Local Remote | Local Proxy Total Reduced
cache size | clients clients cache | servers hit external traffic

PICN 10 MB 11.9% 0.2% 3.5% - 16.2% 3.3%
PICN 50 M B 11.8% 0.1% 5.1% - 17% 4.2%
PICN 100 M B 11.8% 0.1% 5.1% - 17% 4.4%
PICN 1GB 11.8% 0.1% 5.2% - 17.1% 4.4%
PICN 5 GB 11.8% 0.2% 5.2% - 17.2% 4.4%
Proxy - - - 18.8% 18.8% 5.4%
servers

3) Comparing with Central Cache Servers: We also com-
pare PICN with a solution based on a central proxy server.
For Berkeley trace files, we replace each seeker with a central
cache server and perform a simulation to compute the hit
ratio in proxy servers. The local cache is still enabled for
each client, but it does not share its cache with others. The
cache storage size of each central server is chosen to be
sufficiently large to be able of caching all the contents of
the trace files. Also, the bandwidth on upload link of proxy
server is considered 800 Mb/s. For IRCache trace files, 8
local networks with 8 seekers are assumed instead of 8 root
proxy servers. So we compare hit ratio in PICN with the hit
ratio in 8 root proxy servers according to hit ratio in the trace
files.

Hit ratio and reduced external traffic load are presented
in Table V for PICN with different sizes of client cache
storages and central cache servers with a sufficiently large
cache. Comparing total hit ratio in PICN with proxy servers,
we conclude that the same value of hit ratio is achieved in
PICN as in proxy servers, even with a small size of cache for
each client. But to achieve the same value of reduced external
traffic load for PICN as in proxy servers, it is required to
choose a suitable cache size for clients. It is more obvious
in the case of Berkeley trace files because the maximum size
of content that is repeated in the requested contents is larger
than that in IRCache trace file. The average size of contents
is only about 9.6 K B in these trace files while the maximum
size of contents is more than 4 GB. As a result the external
traffic reduction ratio increases from 5% to 92.4% when the
client cache storage exceeds from 2 GB to 5 GB, because
the content with maximum size is repeated many times in the
trace file.

Nowadays, a storage of 10 GB is not considered a large
size, so each client can easily dedicate such an amount of

Table VI: Comparing hit ratio value in PICN for different
availability probability of clients

(a) Berkeley trace files

Availability | Local clients | Remote clients | Local cache Total
probability hit
1 24.2% 10% 37.4% 71.6%
0.8 22.8% 9.5% 37.3% 69.6%
0.6 20.9% 11.2% 37% 69.1%
(b) IRCache trace files
Availability | Local clients | Remote clients | Local cache Total
probability hit
1 11.8% 0.15% 5.1% 17.0%
0.8 11.1% 0.15% 5.1% 16.3%
0.6 10.2% 0.25% 5.1% 15.5%

memory for PICN and share with others. Average and largest
size of contents in IRCache files which are more recent
trace files compared to Berkeley, are respectively 46 KB
and 730 M B. So, for IRCache trace files, even with a cache
storage of 50 M B for each client, the external traffic ratio
reduction is close to its value in proxy servers.

Some extensions can be considered for PICN, such as
caching large files in more than one client and enabling partial
download mechanisms. Another solution is to use a static
central cache server in each local network for large files.

4) Clients Availability: In the previous simulation, all
clients were assumed to be available during the simulation
time. Next, we consider that each client is available with
a given probability. The results are presented in Table VI
for cache storage of 100 M B. As it is expected, the hit
ratio decreases when the clients are not permanently available.
However, the results from both trace files show that even for
the availability probability of 60%, hit ratio only decreases
from 71.6 to 69.1 for Berkeley trace files and from 16.8 to

15.2 for IRCache.

IV. RELATED WORK

There are many proposals in ICN such as DONA [25],
PURSUIT [26], CCN [15], SAIL [27], and COMET [28].
Despite the valuable benefits of these ICN proposals, the
gains are achieved with significant costs [6], [7]. In fact,
there are two main drawbacks with theses proposed ICN
architectures. First, they apply a self-certifying name system
to the current Internet. This means that the traditional URIs
must change which requires application-layer modifications.
There exist millions of content providers (websites) running
different kinds of application platforms. It is unlikely one can
convince the content providers to make such a big modification
in their applications. Second, the proposed ICNs require
some fundamental changes in the network infrastructure. It is
extensively discussed in previous work [6]. Such a significant
modification in the network layer looks unrealistic.

To overcome these problems, PICN makes minimal changes
in the HTTP layer. There is no need to change the application
or the network layer. We only add two fields to the HTTP
header to achieve content-centric security. These fields can be
ignored by non-PICN traffic [17]. So the system is backward
compatible and can be incrementally deployed at the network
edge.

With a similar approach to PICN, [29] proposes ICN-
enabled wireless access points which deploy ICN nodes at
the edge of the network. This solution results in avoiding
numerous hops to content files as well as localizing bursty
traffic caused by increasing number of mobile devices. The
main idea is based on Nano Data Centers (NaDa) [30] that
provide facilities for ISPs to use some gateways that act as
nano servers for computing and storage services. NaDa has
been proposed to overcome the problems of centralized design
principles such as high energy consumption. According to
[30], energy consumption is reduced because of distributed
nature of NaDa compared to central data centers with enor-
mous energy consumption. Traffic localization resulting from
the co-location between NaDa and end users and utilizing
the gateways that are already powered up and active also
contribute to the reduction of the energy consumption. As
a similar edge based solution, [31] proposes to benefit from
the storage available at wireless access points in MobilityFirst
architecture.

As a more traditional solution in Internet, proxy servers
have been largely deployed as a popular caching system in
customer networks [32]. Proxy caching solution suffers from
the very same centralization problems that NaDa tries to
solve. Generally speaking, this solution has some important
drawbacks: (1) It has high energy and management cost, (2) a
proxy cache fails to work with secure protocols like HTTPS,
(3) it may become a bottleneck, (4) it has limited storage
capacity for caching, and (5) user privacy is easily violated.

In [33], the authors proposed Home Router Sharing based
on Trust (HORST) which uses information from social net-
works to enable the users sharing their retrieved contents via
WiFi access points. HORST establishes a NaDa on the home

router for content caching. In PICN, for WiFi networks, the
seeker service can be implemented within WiFi access points.
In [33], it is suggested that the cache storage is also placed
in the WiFi access points, which is less practical idea, while
seeker in PICN is only responsible for the cache lookup and
management.

Unlike in NaDa-based methods and proxy servers, PICN
replaces the NaDa gateway or cache proxy server with a
content seeker and provides caching by clients systems at
the network edge. In this way, PICN achieves large cache
storage at almost no cost. For instance, let us assume 1000
clients and each one can dedicate 10 GB of their storage
devices to PICN, with a dedicated bandwidth of 1 Mbps on
its connected links. Hence, a 10 T'B cache storage would
be obtained. Achieving this large cache with high available
upload bandwidth is important as authors in [6] show the cache
size plays an essential role in different performance metrics
in ICN. Also, they conclude that putting all the caches at the
edge and enabling local-scoped cooperation can improve the
performance metrics.

Another noticeable improvement in PICN compared to
solutions based on proxy cache servers is that in PICN
the seeker acts as a mediator that communicates only some
short messages with the clients. Consequently, there is no
data communication between the seeker and the clients. So
unlike a proxy cache server or NaDa gateways, PICN avoids
computational and bandwidth bottlenecks. The next important
benefit is that the seeker cannot violate privacy easily in
comparison to a simple cache server. Because the seeker works
with content hashes and encrypted data and the users can use
a privacy preserving mechanism. Last, but not the least, an
important advantage of PICN compared to solutions based on
proxy cache servers is its support of content-centric security.
The signaling overhead when a request misses the caches in
PICN causes a small amount of increase in latency. Although
this might be considered as a drawback for PICN. But high
request rate and high load on links could impose a high load
on a central proxy server that consequently results in a higher
latency and lower transfer rate compared to PICN. Obviously
the amount of storage for RIT tables in PICN seeker is much
less than the amount of storage needed to store the contents
themselves in cache proxies.

The idea of enabling web browsers on end users to share
local caches has been proposed in [11], with squirrel. The
main purpose of squirrel is to form an efficient and scalable
web cache, without the need for a dedicated cache storage.
In squirrel, each request routes through other nodes to find a
target node which is responsible for introducing a new node
containing the requested content. In contrast, PICN sends each
request directly to a known seeker in the local network to find
the content. This results in decreasing the lookup function
overhead. Furthermore, PICN adopts a different paradigm
from squirrel in proposing a comprehensive architecture in-
cluding some protocols for providing ICN primitives such as
content-based lookup, content-based security, and privacy.

Also, the authors in [34] survey the different proposals on
the combination of CDN and P2P. One particular instance of
such a system is Akamai’s Netsession system [35]. PICN is

fundamentally different in terms of business model, in addition
to differences in its architecture. In short, PICN is an extension
of ICN with P2P while Netsession is an extension of a CDN
with P2P.

In terms of business model, in a CDN such as Akamai,
the content providers pay the CDN for their caching service
[8]. Moreover, cache storages are located within the access
operator’s network. This is done without any charges and
only based on a mutual agreement because both the CDN
and network operators have their own incentives to deploy
the storages in this way. On the contrary, in almost all ICN
proposals the solution is built into the network and becomes
the inherent operation of the network. Our solution allows to
speed up the response time of the customer network for its
clients and to decrease outbound traffic load. It is possible to
incite the end-users to contribute in this system as detailed in
Section II-G. Content providers may have interest in PICN as
well because it can improve the Quality of Experience (QoE)
for their customers by bringing down the content retrieval time.
It also reduces their costs by reducing the load on their servers.

In terms of architecture, Netsession relies on a control plane
operated by a collection of Akamai servers for providing
security, NAT and firewall functions, and registrations and
lookup for contents on peers. Also, some edge servers of
Akamai play some roles in Netsession. While it is sufficient
for a network that wants to join PICN to dedicate a server as
the seeker, and install the seeker service on it.

Finally, unlike Netsession, PICN can be used in ad-hoc
mode for home networks. In this simplified case, PICN can
work without any seekers. It eliminates the seeker’s role
in the original PICN. For this reason, the client software
broadcasts each request in the home network. Since almost all
users’ devices run content retrieval applications such as social
networks and there exists a significant amount of common
interests among home users, PICN is likely to achieve good
performance in this case. It decreases the home external
bandwidth consumption and content retrieval latency by only
installing a simple application.

V. CONCLUSION

In this paper we propose a practical ICN framework that
requires no changes neither in application layer nor in network
layer. PICN leverages unused resources at the network edge
including communication capability of local networks and
storage capacity of client machines to provide ICN capabilities
at low cost and equipment overhead. Also with the content-
centric security method of PICN, one of the most important
qualitative benefits of ICN goals is achieved. Using edge
caching with the help of end users, in average 68% decrease
in HTTP response time is met while the external traffic is also
reduced significantly. Our simulations show that PICN results
in almost the same or even higher hit ratio in small cache
storages of clients compared to a solution based on central
proxy servers with large and costly cache storage and relatively
much higher management and maintenance cost.

Future work includes the improvement of incentive design,
cache policies, and complementary solutions for privacy pre-
serving. We plan to evaluate a comprehensive implementation

of PICN in real practical conditions and also customization
for various application scenarios such as home networks,
enterprise solutions and WAN.

ACKNOWLEDGEMENTS

The authors would like to thank Mathieu Goessens and
Davide Frey for their help and support in using IRCache Data.

REFERENCES

[1] R. Schollmeier, A definition of peer-to-peer networking for the clas-
sification of peer-to-peer architectures and applications, in: Proc. Ith
International Conference on Peer-to-Peer Computing, August 2001, pp.
101-102.

[2] S. Paul, J. Pan, R. Jain, Architectures for the future networks and the
next generation internet: A survey, Computer Communications 34 (1)
(2011) 2-42.

[3] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, M. Varvello, From
content delivery today to information centric networking, Computer
Networks 57 (16) (2013) 3116-3127.

[4] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. Katsaros, G. Polyzos, A survey of information-centric
networking research, IEEE Communications Surveys Tutorials 16 (2)
(2014) 1024-1049.

[5] G. Zhang, Y. Li, T. Lin, Caching in information centric networking: A
survey, Computer Networks 57 (16) (2013) 3128-3141.

[6] S. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, S. Shenker, Less pain, most of the
gain: Incrementally deployable icn, in: Proc. the ACM SIGCOMM
Conference, August 2013, pp. 147-158.

[71 M. Mangili, F. Martignon, A. Capone, A comparative study of content-
centric and content-distribution networks: Performance and bounds, in:
Proc. IEEE Global Communications Conference (GLOBECOM), June
2013, pp. 1403-1409.

[8] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman,
A survey of information-centric networking, IEEE Communications
Magazine 50 (7) (2012) 26-36.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and

zipf-like distributions: evidence and implications, in: Proc. INFOCOM,

March 1999, pp. 126-134.

R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, A. Zhang,

Improving traffic locality in bittorrent via biased neighbor selection, in:

Proc. 26th IEEE International Conference on Distributed Computing

Systems, July 2006, pp. 66—.

S. Iyer, A. Rowstron, P. Druschel, Squirrel: A decentralized peer-to-

peer web cache, in: Proc. 21th Annual Symposium on Principles of

Distributed Computing, July 2002, pp. 213-222.

A. Chanda, C. Westphal, Contentflow: Adding content primitives to soft-

ware defined networks, in: IEEE Global Communications Conference

(GLOBECOM), 2013, pp. 2132-2138.

S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topologically-aware

overlay construction and server selection, in: Proc. 21th Annual Joint

Conference of the IEEE Computer and Communications Societies,

Vol. 3, June 2002, pp. 1190-1199.

[14] J. Rosenberg, Rfc5245: Interactive connectivity establishment (ice): A

protocol for network address translator (nat) traversal for offer/answer

protocols, https://tools.ietf.org/html/rfc5245 (April 2010).

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

R. L. Braynard, Networking named content, in: Proc. 5th International

Conference on Emerging Networking Experiments and Technologies,

December 2009, pp. 1-12.

A. Arsenault, S. Turner, Internet x.509 public key infrastructure:

roadmap internet draft, http://www.ietf.org/internet-drafts/

draft-ietf- pkix-roadmap-09.txt. (2002).

IETF Network Working Group, Hypertext Transfer Protocol -

HTTP/1.1, http://tools.ietf.org/html/rfc2068 (January 1997).

R. Dingledine, N. Mathewson, P. Syverson, Tor: The second-generation

onion router, in: Proc. 13th Conference on USENIX Security Sympo-

sium, Vol. 13, August 2004, pp. 21-21.

S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, The eigentrust

algorithm for reputation management in p2p networks, in: Proc. 12th

International Conference on World Wide Web, May 2003, pp. 640-651.

[10]

[11]

[12]

[13]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]
[25]

[26]

[27]

(28]

J. Xu, W. Zame, M. van der Schaar, Token-based incentive protocol
design for online exchange systems, in: Proc. 3th International ICST
Conference on game Theory for Networks: Revised Selected Papers,
2012, pp. 248-258.

J. Rajahalme, M. Sireld, K. Visala, J. Riihijérvi, On name-based inter-
domain routing, Computer Networks 55 (4) (2011) 975-986.

Berkeley, UC Berkeley Home IP Web Traces, http://ita.ee.lbl.gov/html/
contrib/UCB.home-IP-HTTP.html (November 1996).

Web cache access logs from the ircache proxies during the “day in the
life of the internet” in january 2007, http://imdc.datcat.org/collection/
1-01J0-5=IRCache+traces+for+DITL+January,+2007.

The top sites on the web, http://www.alexa.com/topsites (March 2017).
T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker,
I. Stoica, A data-oriented (and beyond) network architecture, SIG-
COMM Computer Communication Review 37 (4) (2007) 181-192.

N. Fotiou, P. Nikander, D. Trossen, G. Polyzos, Developing information
networking further: From psirp to pursuit, in: Proc. 7th International
ICST Conference on Broadband Communications, Networks, and Sys-
tems, Vol. 66 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, October 2010,
pp. 1-13.

SAIL, Scalable and Adaptive Internet Solutions (SAIL),
http://www.sail-project.eu/wp-content/uploads/2013/01/SAIL-DB3-v1.
1-final-public.pdf (January 2013).

G. Garcia, A. Beben, F. Ramon, A. Maeso, I. Psaras, G. Pavlou,
N. Wang, J. Sliwinski, S. Spirou, S. Soursos, E. Hadjioannou, Comet:

[29]

(30]

[31]

[32]

(33]

[34]

(35]

Content mediator architecture for content-aware networks, in: Proc.
Future Network Mobile Summit (FutureNetw), December 2011, pp. 1-8.
S. Eum, Y. Shoji, M. Murata, N. Nishinaga, Design and implementation
of icn-enabled ieee 802.11 access points as nano data centers, J. Netw.
Comput. Appl. 50 (C) (2015) 159-167.

V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, P. Rodriguez, Green-
ing the internet with nano data centers, in: Proc. 5th International
Conference on Emerging Networking Experiments and Technologies,
December 2009, pp. 37-48.

F. Zhang, C. Xu, Y. Zhang, K. K. Ramakrishnan, S. Mukherjee,
R. Yates, T. Nguyen, Edgebuffer: Caching and prefetching content at
the edge in the mobilityfirst future internet architecture, in: Proc. IEEE
16th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), June 2015, pp. 1-9.

A. Luotonen, K. Altis, World-wide web proxies, Computer Networks
and ISDN Systems 27 (2) (1994) 147-154.

M. Seufert, V. Burger, T. Hossfeld, Horst - home router sharing based
on trust, in: Proc. 9th International Conference on Network and Service
Management, October 2013, pp. 402—405.

N. Anjum, D. Karamshuk, M. Shikh-Bahaei, N. Sastry, Survey on peer-
assisted content delivery networks, Computer Networks 116 (C) (2017)
79-95.

M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, M. Ponec, Peer-assisted content distribution
in akamai netsession, in: Proc. Conference on Internet Measurement,
October 2013, pp. 31-42.

