A. Ambainis, Quantum Walk Algorithm for Element Distinctness, SIAM Journal on Computing, vol.37, issue.1, pp.210-239, 2007.
DOI : 10.1137/S0097539705447311

A. Barg, Complexity issues in coding theory, Electronic Colloquium on Computational Complexity, 1997.

A. Becker, The representation technique, Applications to hard problems in cryptography, 2012.

A. Becker, A. Joux, A. May, and A. Meurer, Decoding Random Binary Linear Codes in 2 n/20: How 1???+???1???=???0 Improves Information Set Decoding, Advances in Cryptology -EUROCRYPT 2012 Lecture Notes in Comput. Sci, 2012.
DOI : 10.1007/978-3-642-29011-4_31

D. J. Bernstein, . Grover, and . Mceliece, Grover vs.??McEliece, Post-Quantum Cryptography 2010, pp.73-80, 2010.
DOI : 10.1007/978-3-642-12929-2_6

D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer, Quantum Algorithms for the Subset-Sum Problem, In Post-Quantum Cryptography Lecture Notes in Comput. Sci, vol.7932, pp.16-33, 2011.
DOI : 10.1007/978-3-642-38616-9_2

D. J. Bernstein, T. Lange, and C. Peters, Smaller Decoding Exponents: Ball-Collision Decoding, Advances in Cryptology -CRYPTO 2011, pp.743-760, 2011.
DOI : 10.1007/978-3-642-22792-9_42

M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum searching, Fortsch. Phys, pp.46-493, 1998.
DOI : 10.1002/3527603093.ch10

R. Canto-torres and N. Sendrier, Analysis of Information Set Decoding for a Sub-linear Error Weight, Post-Quantum Cryptography 2016 Lecture Notes in Comput. Sci, pp.144-161, 2016.
DOI : 10.1007/978-3-319-29360-8_10

URL : https://hal.archives-ouvertes.fr/hal-01244886

D. M. Cvetkovi´ccvetkovi´c, M. Doob, and H. Sachs, Spectra of graphs : theory and application, 1980.

I. Dumer, On minimum distance decoding of linear codes, Proc. 5th Joint Soviet-Swedish Int. Workshop Inform. Theory (Moscow, pp.50-52, 1991.

M. Finiasz and N. Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, Advances, pp.88-105, 2009.
DOI : 10.1007/978-3-642-10366-7_6

L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , STOC '96, pp.212-219, 1996.
DOI : 10.1145/237814.237866

L. K. Grover, Quantum Computers Can Search Arbitrarily Large Databases by a Single Query, Physical Review Letters, vol.18, issue.23, pp.4709-4712, 1997.
DOI : 10.1137/0218053

N. Howgrave-graham and A. Joux, New Generic Algorithms for Hard Knapsacks, Advances in Cryptology -EUROCRYPT 2010, 2010.
DOI : 10.1007/978-3-642-13190-5_12

URL : http://www.di.ens.fr/~fouque/ens-rennes/joux-sac.pdf

G. Kachigar, Etude et conception d'algorithmes quantiques pour le décodage de codes linéaires, 2016.

G. Kachigar and J. Tillich, Quantum information set decoding algorithms. preprint, arXiv:1703.00263 [cs, 2017.
DOI : 10.1007/978-3-319-59879-6_5

URL : https://hal.archives-ouvertes.fr/hal-01661905

F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via quantum walk, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing STOC '07, pp.575-584, 2007.
DOI : 10.1145/1250790.1250874

URL : https://hal.archives-ouvertes.fr/hal-00639627

A. May, A. Meurer, and E. Thomae, Decoding Random Linear Codes in $\tilde{\mathcal{O}}(2^{0.054n})$, Lecture Notes in Comput. Sci, vol.7073, pp.107-124, 2011.
DOI : 10.1007/978-3-642-25385-0_6

A. May and I. Ozerov, On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes, Advances in Cryptology -EUROCRYPT, pp.203-228, 2015.
DOI : 10.1007/978-3-662-46800-5_9

R. J. Mceliece, A Public-Key System Based on Algebraic Coding Theory, Jet Propulsion Lab, pp.114-116, 1978.

H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, pp.159-166, 1986.

R. Overbeck and N. Sendrier, Code-based cryptography, Post-quantum cryptography, pp.95-145, 2009.
DOI : 10.1007/978-3-540-88702-7_4

E. Prange, The use of information sets in decoding cyclic codes, IEEE Transactions on Information Theory, vol.8, issue.5, pp.5-9, 1962.
DOI : 10.1109/TIT.1962.1057777

M. Santha, Quantum Walk Based Search Algorithms, 5th TAMC, pp.31-46, 2008.
DOI : 10.1007/978-3-540-79228-4_3

URL : http://www.lri.fr/~santha/Papers/s08.pdf

R. Schroeppel and A. A. Shamir, n/4 ) algorithm for certain NP-complete problems, SIAM J. Comput, vol.10, issue.222, pp.3-456, 1981.

P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, vol.26, issue.5, pp.1484-1509, 1997.
DOI : 10.1137/S0097539795293172

J. Stern, A method for finding codewords of small weight, Coding Theory and Applications, pp.106-113, 1988.
DOI : 10.1007/BFb0019850

M. Szegedy, Quantum Speed-Up of Markov Chain Based Algorithms, 45th Annual IEEE Symposium on Foundations of Computer Science, pp.32-41, 2004.
DOI : 10.1109/FOCS.2004.53