A Finite-Difference Method for the Variable Coefficient Poisson Equation on Hierarchical Cartesian Meshes

Abstract : We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations. Finite difference method; Hierarchical Cartesian grid; Octree/Quadtree; Variable coefficient Poisson equation 1
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2017, 355, pp.59-77. 〈10.1016/j.jcp.2017.11.007〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01662050
Contributeur : Alice Raeli <>
Soumis le : mercredi 13 décembre 2017 - 09:25:37
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21

Fichier

RaeliBergmannIollo (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alice Raeli, Michel Bergmann, Angelo Iollo. A Finite-Difference Method for the Variable Coefficient Poisson Equation on Hierarchical Cartesian Meshes. Journal of Computational Physics, Elsevier, 2017, 355, pp.59-77. 〈10.1016/j.jcp.2017.11.007〉. 〈hal-01662050〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

212